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Abstract. We establish a relationship between general constrained
pseudoconvex optimization problems and globally projected dy-
namical systems. A corresponding novel neural network model,
which is globally convergent and stable in the sense of Lyapunov,
is proposed. Both theoretical and numerical approaches are consid-
ered. Numerical simulations for three constrained nonlinear opti-
mization problems are given to show that the numerical behaviors
are in good agreement with the theoretical results.

1. Introduction

Projected dynamical system theory is a mathematical device for in-
vestigating the behaviors of dynamical systems, where solutions are re-
stricted to a constraint set. The discipline shares connections to and
applications with both the static world of optimization and equilibrium
problems and the dynamical world of ordinary differential equations. A
globally projected dynamical system is given by the flow to the projected
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differential equation [11],

dx

dt
= PΩ(x− αF (x))− x, ∀x ∈ Rn.

where Ω is the constraint set. Globally projected dynamical systems
have been introduced as models for describing network disequilibria (see
Friesz et al., 1994) and have been applied to neural networks for solving
a class of optimization problems (see Xia et al., 2000). In recent years,
Malek and co-authors proposed various neural network models for linear
[7], quadratic [8] and nonlinear [14] convex problems with different types
of constraints. Here, a specific neural network model based on globally
projected dynamical system, is proposed in order to solve general con-
strained pseudoconvex optimization problems. The motivation behind
solving mathematical programming problems by neural networks is that
these models may be easily implemented by a circuit [12]. Thus, prov-
ing the stability of such systems is of great importance for scientists and
engineers. The proposed neural network is shown to be globally conver-
gent and stable in the sense of Lyapunov under specific conditions.
The remainder of our work is organized as follows. In the next section,
preliminary information are given. In Section 3, the problem formula-
tion and neural network models are described. The convergence and
stability of the proposed neural network are discussed in Section 4. In
Section 5, illustrative examples are worked out. Finally, Section 6 gives
the conclusion.

2. Preliminaries

This section provides the necessary mathematical background, which
is used to propose the desired neural network and to study its stability
and convergence.

Definition 2.1. Consider the dynamical system

(2.1) ẋ = H(x(t)), x(t0) = x0 ∈ Rn.

A point x̄ is called an equilibrium point, critical point or steady state of
the dynamical system, if H(x̄) = 0. If, furthermore, there is a neighbor-
hood N ⊂ Rn of x̄ such that H(x̄) = 0 and H(x) ̸= 0, for x ∈ N\{x̄},
then x̄ is called an isolated equilibrium point.
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Definition 2.2. Let Ω ⊆ Rn be an open neighborhood of x̄. A con-
tinuously differentiable function ω : Rn → R is said to be a Lyapunov
function at the state x̄ over the set Ω for (2.1), if{

ω(x̄) = 0
dω(x(t))

dt = [∇ω(x(t))]T H(x(t)) ≤ 0, ∀x ∈ Ω.

Definition 2.3. An isolated equilibrium point x̄ is Lyapunov stable, if
for any x0 = x(t0) and any ε > 0, there exists a δ > 0 so that if
∥x0 − x̄∥ < δ, then ∥x(t)− x̄∥ < ε, for t ≥ t0.

Definition 2.4. Variational inequality problem is to find x∗ such that

(2.2) V I(F,Ω) : ⟨F (x∗), (x− x∗)⟩ ≥ 0, ∀x ∈ Ω,

where Ω is a closed convex subset of Rn and F : Rn → Rn is a continuous
map.

Definition 2.5. The dynamical system (2.1) is said to be globally con-
vergent to the solution set Ω∗ = {x|x solves (2.2)}, if every solu-
tion of the system satisfies lim

t→∞
dis(x(t),Ω∗) = 0, where dis(x,Ω∗) =

inf
y∈Ω∗

∥x− y∥ and ∥.∥ denotes the Euclidean norm.

Definition 2.6. Let Ω be a closed convex set in Rn. Then, for each x ∈
Rn, there exists a unique point y ∈ Ω such that ∥x− y∥ ≤ ∥x− z∥ , ∀z ∈
Ω. The projection of x on the set Ω with respect to the Euclidean norm
is y = PΩ(x) = argmin

z∈Ω
∥x− z∥.

Definition 2.7. A nonlinear mixed complementarity problem is to find
a point x ∈ Rn such that

NMC(F ) :

{
xiFi(x) = 0, Fi(x) ≥ 0, xi ≥ 0, ∀i ∈ I
Fi(x) = 0, ∀i ∈ N\I,

where F is a continuously differentiable mapping from X = {x ∈ Rn|xi ≥
0, i ∈ I} into Rn, N = {1, 2, ..., n} and I ⊆ N .

Definition 2.8. A differentiable function f : Rn → R is pseudoconvex
on Ω, if for every pair of distinct points x, y ∈ Ω,

∇f(x)T (y − x) ≥ 0 ⇒ f(y) ≥ f(x).
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Theorem 2.9. [9]. Consider the dynamical system (2.1) and assume
that H : Rn → Rn is a continuous mapping. Then, for arbitrary t0 ≥ 0
and x0 ∈ Rn, there exists a local solution x(t), t ∈ [t0, τ), for (2.1), for
some τ > t0. If, furthermore, H is locally Lipschitz continuous at x0,
then the solution is unique. And if H is Lipschitz continuous in Rn,
then τ can be extended to infinity.

Lemma 2.10. [9]. An isolated equilibrium point x̄ is Lyapunov stable
if there exists a Lyapunov function over a neighborhood of x̄.

Definition 2.11. Consider the function Φ : E ⊂ Rn → R. For any
arbitrary constant β > 0, the set Lβ = {x ∈ E | Φ(x) < β} is called a
level set of Φ.

Lemma 2.12. [10]. Let Φ : D ⊂ Rn → R, where D is unbounded. Then,
all level sets of Φ are bounded if and only if lim

k→∞
Φ(xk) = ∞, whenever

{xk} ⊂ D and lim
k→∞

∥xk∥ = ∞.

3. Problem formulation and neural network model

Consider the following general optimization problem:

(3.1) Min f(x) s.t. g(x) ≤ 0, h(x) = 0,

where f(x) is continuously differentiable and a pseudoconvex function,
g : Rn → Rm and h : Rn → Rr are continuously differentiable vector-
valued functions. From now on, we make the assumptions that g and h
are convex and linear functions. This pseudoconvex optimization prob-
lem is related intimately to a certain finite-dimensional variational in-
equality problem. The following well-known result reveals the relation-
ship between these two types of problems.

Lemma 3.1. [6]. Let Ω be a closed convex subset of Rn and f : Rn →
R be differentiable and pseudoconvex on Ω. Then, x∗ ∈ Ω satisfies
∇f(x∗)T (x− x∗) ≥ 0, ∀x ∈ Ω, if and only if x∗ is a minimum of f(x)
in Ω.
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According to Lemma 2, the optimization problem converts to the
following variational inequalities:

(3.2) ⟨∇f(x∗), (x− x∗)⟩ ≥ 0, ∀x ∈ S,

where S = {x ∈ Rn|g(x) ≤ 0, h(x) = 0}.

Lemma 3.2. [2]. x∗ ∈ S is a solution of problem (3.2) if and only if
there exists y∗ ≥ 0, y∗ ∈ Rm and z∗ ∈ Rr such that u∗ = ((x∗)T , (y∗)T ,
(z∗)T )T is a solution of NMC(G), where G : s0 → Rn+m+r is defined
by

G(u) =

 ∇xf(x) +∇xg(x)
T y +∇xh(x)

T z
−g(x)
−h(x)

 ,

with s0 = {u = (xT , yT , zT )T |y ≥ 0}.

Theorem 3.3. u∗ ∈ s0 is a solution of NMC(G) if and only if it is a
solution of

(3.3) ⟨G(u∗), u− u∗⟩ ≥ 0, ∀u ∈ s0.

Proof. First, note that if u∗ is a solution of NMC(G), then

⟨G(u∗), u⟩ ≥ 0, ∀u ∈ s0.

Thus,

⟨G(u∗), u− u∗⟩ = ⟨G(u∗), u⟩ − ⟨G(u∗), u∗⟩ = ⟨G(u∗), u⟩ ≥ 0.

Second, suppose that u∗ is a solution to the variational inequality (3.3).
Then, v = u∗ + ei, ei = (0, ..., 0, 1, 0, ..., 0)T (1 in the ith place) is an
element of s0. Thus,

⟨G(u∗), u∗ + ei − u∗⟩ = ⟨G(u∗), ei⟩
= Gi(u

∗) ≥ 0, ∀i ∈ N = {1, 2, ..., n+m+ r},
Therefore,

(3.4) G(u∗) ≥ 0.

Now, let v′ = x∗ − e′i, e
′
i = (0, ..., 0, 1, 0, ..., 0)T (1 in the ith place),

i ∈ N\I, and I = {n+ 1, ..., n+m}. It is obvious that v′ ∈ s0. Thus,

⟨G(u∗), u∗ − ei − u∗⟩ = ⟨G(u∗),−ei⟩ = −Gi(u
∗) ≥ 0

or
Gi(u

∗) ≤ 0, ∀i ∈ N\I.
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Using relation (3.4) implies that Gi(u
∗) = 0, for i ∈ N\I.

Let 0 ∈ s0. Then, 0 ≤ ⟨G(u∗), 0− u∗⟩ = −⟨G(u∗), u∗⟩. Thus,

⟨G(u∗), u∗⟩ ≤ 0

which means that

(3.5) ⟨G(u∗), u∗⟩ =
∑
i∈I

Gi(u
∗)u∗i +

∑
i∈N\I

Gi(u
∗)u∗i =

∑
i∈I

Gi(u
∗)u∗i ≤ 0.

According to (3.4), G(u∗) ∈ Rn
+ and u∗ ∈ s0. Hence,

(3.6) Gi(u
∗)u∗i ≥ 0, ∀i ∈ I.

Finally, from (3.5) and (3.6), we obtain that u∗iGi(u
∗) = 0, for all i ∈ I.

Remark 3.4. Let s0 be the set as defined in Lemma 3.2. Then, by
Definition 2.6,

Ps0(u) = (x1, ..., xn, (y1)
+, ..., (ym)+, z1, ..., zr),

where (yi)
+ = max{0, yi}.

Lemma 3.5. [3]. The vector u∗ ∈ s0 is a solution of the variational
inequality (3.3) if and only if for any arbitrary constant α ≥ 0, it satisfies
the relation

u∗ = Ps0(u
∗ − αG(u∗)).

According to the above procedure, we propose the following projection
neural network model for solving the problem (3.1):

du

dt
=

d

dt

 x
y
z

 =(3.7)

λ

 −(∇xf(x) +∇xg(x)
T y +∇xh(x)

T z)
(y + g(x))+ − y

h(x)

 ,

where λ is a positive scaling factor. The proposed neural network has
one layer structure with the low model complexity.
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4. Stability and convergence analysis

In this section, we study some basic properties of the dynamic sys-
tem (3.7) and prove its global convergence and Lyapunov stability. For
complete analysis, first we prove the existence of the solution for the
ordinary differential equation (3.7).

Theorem 4.1. For any initial point u(t0) = u0 ∈ Rn+m+r, there exists
a unique solution u(t) for the proposed neural network model. Moreover,
if u0 ∈ s0 then, u(t) ∈ s0.

Proof. Let k(t) = Ps0(u−G(u))− u. Then, ∇k(u) = −In+m+r, where
In+m+r is (n+m+r)×(n+m+r) identity matrix. So, ∥k(u)− k(u′)∥ =
∥∇uk(û)(u− u′)∥ ≤ ∥u− u′∥ , ∀u, u′ ∈ s0, where û = λ′u + (1 −
λ′)u′, λ′ ∈ [0, 1]. Hence, k(t) is a locally Lipschitz continuous func-
tion. According to Theorem 2.9, there exists a unique solution u(t),
t ∈ [t0, τ), for (3.7), for some τ > t0. Next, it is sufficient to show that

if u0 ∈ s0, then y(t) ≥ 0. Since dy
dt + y = λ(y + g(x))+, we have∫ t

t0

(
dy

dt
+ y)esds = λ

∫ t

t0

(y + g(x))+esds,

esy(s)|tt0 = λ

∫ t

t0

(y + g(x))+esds,

y(t) = e−(t−t0)y(t0) + λe−t

∫ t

t0

(y + g(x))+esds ≥ 0.

Lemma 4.2. [6]. Assume that the set K is closed convex in Rn. We
have the followings:
(i) For any w ∈ Rn and any v ∈ K,

(PK(w)− w)T (PK(w)− v) ≥ 0.

(ii) For any w, v ∈ Rn,

∥PK(w)− PK(v)∥ ≤ ∥w − v∥ .

Theorem 4.3. If ∇2
xf(x)+∇2

xg(x)
T y+∇2

xh(x)
T z is positive definite on

s0, then the proposed neural network model is stable in the sense of Lya-
punov and globally convergent to a stationary point u∗ = ((x∗)T , (y∗)T ,
(z∗)T )T of (3.7), where x∗ is a solution of the problem (3.1).
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Proof. Let u(t) be a solution of (3.7) with the initial point u0 ∈ s0. We
have u(t) ∈ s0, using Theorem 4.1. suppose that G(u) be the function
as defined in Lemma 3.1. Consider the following function on s0:

V (u(t)) =
1

2
{Ps0(u− αG(u))− u}T {Ps0(u− αG(u))(4.1)

−(u−G(u)) +G(u)} − 1

2
∥u(t)− u∗∥2 .

In order to prove the Lyapunov stability of (3.7), according to Lemma
2.10, it is sufficient to show that V (u(t)) is a Lyapunov function at state
u∗ over the set s0. First, it is obvious that V (u∗) = 0. Second, let
b(u) = Ps0(u−G(u)), for any λ ≥ 0. Then,

dV (u)

dt
=

(
dV (u)

du

)T du

dt
=λ{G(u)− (∇G(u)− I)b(u) + (u− u∗)}T b(u),

or

(4.2)
dV (u)

dt
= λ{G(u)+(u−u∗)}T b(u)+λ ∥b(u)∥2−λb(u)T∇G(u)b(u),

where,

∇G(u) =

 ∇2
xf(x) +∇2

xg(x)
T y +∇2

xh(x)
T z ∇xg(x) ∇xh(x)

−∇xg(x) 0m×m 0r×r

−∇xh(x) 0m×m 0r×r

 ,

and 0 is used for zero matrices of appropriate dimensions. It is obvi-
ous that ∇G(u) is asymmetric matrix and since ∇2

xf(x) +∇2
xg(x)

T y +
∇2

xh(x)
T z is positive definite, we can see that ∇G(u) is positive defi-

nite.
In the first inequality of Lemma 4.2, let w = u − G(u), v = u∗ and
K = s0. We get

(b(u) + (u− u∗))T (−b(u)−G(u)) ≥ 0,

or

(4.3) (G(u) + (u− u∗))T b(u) ≤ −G(u)T (u− u∗)− ∥b(u)∥2 .

Thus, from (4.2) and (4.3), we have

dV (u(t))

dt
≤−λG(u)T (u−u∗)−λ ∥b(u)∥2+λ ∥b(u)∥2−λb(u)T∇G(u)b(u)

(4.4) = −λG(u)T (u− u∗)− λb(u)T∇G(u)b(u),
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that is,

(4.5)
dV (u(t))

dt
≤ −λb(u)T∇G(u)b(u) ≤ 0.

This shows the Lyapunov stability of the proposed neural network model (3.7).
Next, by using the first inequality of Lemma 3.5, when w = u − G(u),
v = u and K = s0, we have

(4.6) G(u)T b(u) ≤ −∥b(u)∥2 .

Now, from (4.1) and (4.6), we may write:

V (u(t)) ≥ 1

2
∥u− u∗∥2 .

Hence, V (u(tk)) → ∞, as ∥u(tk)∥ → ∞. So, by Lemma 2.12, all the
level sets of V are bounded.
According to inequality (4.5),

{u(t)} ⊂ X0 = {u ∈ s0 | V (u) ≤ V (u0)},

and thus for any initial point u0 ∈ s0, the solution trajectory u(t) is
bounded. By the invariant set Theorem [9], we see that all the so-
lution trajectories of (3.7) converge to largest invariant set

∏
, where

dV (u(t))/dt = 0. We now prove that dV /dt = 0 ⇔ du/dt = 0. Clearly,

if du/dt = 0, then dV (u(t))/dt = (dV /du)T (du/dt) = 0. To prove
the converse, let û = (x̂T , ŷT , ẑT )T ∈ Π. It is enough to show that
dx̂/dt = 0, dŷ/dt = 0 and dẑ/dt = 0. Form (4.4) it can be seen that
dV (û(t))/dt = 0 implies that

(4.7) G(û)T (û− u∗) + b(û)T∇G(û)b(û) = 0.

Since ∇G(u) is positive definite and G(û)T (û − u∗) ≥ 0, relation (4.6)
implies that G(û)T (û − u∗) = 0, b(û)T∇G(û)b(û) = 0, and further-
more ⟨G(û)−G(u∗), û− u∗⟩ = 0. Thus, b(û)T∇G(û)b(û) = (∇f(x̂) +
∇xg(x̂)

T ŷ+∇xh(x̂)
T ẑ)TJ(x̂)(∇f(x̂)+∇xg(x̂)

T ŷ+∇xh(x̂)
T ẑ) = 0, where

J(x̂) = (∇2
xf(x̂) +∇2

xg(x̂) +∇2
xh(x̂).

Since J(x) is positive definite, then

(∇f(x̂) +∇xg(x̂)
T ŷ +∇xh(x̂)

T ẑ) = 0.

Thus, dx̂/dt = 0. On the other hand,

⟨G(û)−G(u∗), û− u∗⟩ =
∫ 1

0
(û− u∗)T∇G(u∗ + s(û− u∗))(û− u∗)ds
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=

∫ 1

0
(û− u∗)T∇G(us)(û− u∗)ds

= (x̂− x∗)T (

∫ 1

0
J(us)ds)(x̂− x∗) = 0,

where us = u∗ + s(û− u∗), 0 ≤ s ≤ 1.

Note that J(us) and
∫ 1
0 J(us)ds are positive definite functionals. It

follows that x̂ = x∗. Thus,

dẑ/dt = λh(x̂) = λh(x∗) = 0.

Now, consider that G(û)T (û− u∗) = 0. This gives:

g(x̂)T (ŷ − y∗) + h(x̂)T (ẑ − z∗) = g(x̂)T (ŷ − y∗) + h(x∗)T (ẑ − z∗) =

g(x̂)T (ŷ − y∗) = 0.

Then, g(x̂)T ŷ = g(x̂)T y∗ = g(x∗)T y∗ = 0, which is equivalent to
ŷ = (ŷ − g(x̂))+, i.e., dŷ/dt = 0.
Therefore, the proposed neural network model (3.7) is globally conver-
gent.

Corollary 4.4. If ∇2
xf(x) is positive definite and ∇2

xg(x) and ∇2
xh(x)

are semi-positive definite, or if ∇2
xg(x) is positive definite and ∇2

xf(x)
and ∇2

xh(x) are semi-positive definite, or if ∇2
xh(x) is positive defi-

nite and ∇2
xf(x) and ∇2

xg(x) are semi-positive definite, then the pro-
posed neural network is Lyapunov stable and globally convergent to u∗ =
((x∗)T , (y∗)T , (z∗)T )T , where x∗ is a solution of problem (3.1).

5. Extension

Consider the following nonlinear optimization problem:

(5.1) Min f(x) s.t g(x) ≤ 0, h(x) = 0, x ∈ Ω1,

where Ω1 = {x ∈ Rn|li ≤ xi ≤ hi,∀i = 1, ..., n}.
In contrast with (3.7), we propose the neural network model for solv-
ing (5.1) in the form:

(5.2)

d

dt

x
y
z

=λ

PΩ1(x− (∇xf(x) +∇xg(x)
T y +∇xh(x)

T z))− x
(y − g(x))+ − y

h(x)

 ,
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where,

PΩ1 =

 li xi < li
xi li ≤ xi ≤ hi
hi xi > hi.

Similar to Theorem 4.3, we can get the following stability and convergent
results for the neural network model (5.2).

Theorem 5.1. If ∇2
xf(x) + ∇2

xg(x)
T y + ∇2

xh(x)
T z is positive definite

on

s1 = {u = (xT , yT , zT )T ∈ Rn+m+r|x ∈ Ω1, y ≥ 0},
then the proposed neural network model (5.2) is stable in the Lyapunov
sense and globally convergent to a stationary point u∗ = ((x∗)T , (y∗)T

, (z∗)T )T , where x∗ is a solution of problem (5.1).

6. Illustrative examples

In this section, we give several examples to illustrate the effectiveness
of the proposed neural networks (3.7) and (5.2) in solving optimization
problems with linear or nonlinear constraints. The simulations are con-
ducted in MATLAB 7.1.

Example 1. Consider the following nonlinear programming problem:

min f(x) =
1

4
x41 + 0.5x21 +

1

4
x42 + 0.5x22 − 0.9x1x2

s.t. gi(x) ≤ 0, i = 1, 2, 3,

where,  g1(x) = x21 + x22 − 64,
g2(x) = (x1 + 3)2 + (x2 + 4)2 − 36,
g3(x) = (x1 − 3)2 + (x2 + 4)2 − 36.

This problem has an optimal solution x∗ = (0, 0)T . Simulation results
show that the trajectories of (3.7) with any initial point will converge
successfully to u∗ = ((x∗)T , (y∗)T )T . For example, Fig. 1 displays the
trajectory of (3.7) with seven initial points.

Example 2. [5]. We now use the projection neural network to solve
a pseudoconvex optimization problem. Consider the following quadratic
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−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

2

4

6

x1(t)

x2
(t

)

x* = ( 0 , 0 )
p5=(−6,5)

p6=(−6,1)

p7=(−6,−4)

p1=(−4 , −9) p2=(4 , −9)

p3=(6,−6)

p4=(6,6)

Figure 1. Transient behavior for the neural network
model (3.7) with seven initial points in Example 1

programming problem:

min f(x) =
xTQx+ aTx+ a0x

bTx+ b0
,

with

Q=


5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5

 , a=


1
−2
−2
1

 , b=


2
1
1
0

 , a0 = −2, b0 = 4.

It is easily verified that Q is symmetric and positive-definite in R4 and
consequently [1] f is pseudoconvex on X={x ∈ R4|bTx+ b0 > 0}. This
problem has an optimal solution x∗=(−0.4370, 0.3286, 0.5979,−0.2972)T.
All simulation results show that the projection neural network model
(3.7) is Lyapunov stable at u∗ = (x∗, y∗), where y∗ = 0. For instance,
Fig. 2 shows that the trajectories of (3.7) with λ = 10 and the initial
point u0 = (0, 3, 6, 10, 0)T converge to u∗.
Now, we minimize f over Ω={x ∈ R4|1 ≤ xi ≤ 10, i = 1, ..., 4} ⊂ X, by
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using the neural network of (5.2). This problem has a unique solution
x∗ = (1, 1, 1, 1)T in Ω. Fig. 3 shows the trajectories of the proposed
neural network with u0 = (0, 3, 6, 10, 0)T .

0 0.5 1 1.5 2
−2

0

2

4

6

8

10

t

x(
t)

x1

x2

x4

x3

Figure 2. Simulation results based on the proposed
neural network model (3.7) for Example 2

Example 3. Consider the following nonlinear programming problem:

min f(x) = x21 + x22 + 0.5x23 + x1(x2 − x4)− 3x2 − 2x3

s.t.

3x1 − 9x2 + 9x3 = 1

x1 + x2 + 2x3 = 3

x1 − x2 + x3 ≤ 1

−x1 + x2 + x3 ≤ −1

9

0 ≤ xi ≤
4

3
, i = 1, 2, 3.
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Figure 3. Simulation result based on the proposed neu-
ral network model (5.2) for Example 2

This problem has an optimal solution x∗ = (1.333, 0.7777, 0.4445)T .
Simulation results show that all the trajectories of (5.2) with any initial
point converge to u∗ = ((x∗)T , (y∗)T , (z∗)T )T successfully. For example,
Fig. 4 displays the trajectory of (5.2) with five random initial points.

7. Conclusion

We proposed a continuous-time recurrent neural network for solving
general nonlinear pseudoconvex programming problems subject to lin-
ear and nonlinear constraints. By using the projection technique, a
relationship between the pseudoconvex optimization problem and glob-
ally projected dynamical system was established. Based on the projec-
tion formulations, the equilibrium points of the proposed neural net-
work model were found. It was shown that these equilibrium points
corresponded to the optimal solution of the nonlinear pseudoconvex pro-
gramming problems. The globally convergence and Lyapunov stability
of the proposed neural network werer proved under a specific condition.
Compared with other existing neural network models for solving such
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Figure 4. Transient behavior of the neural network
model (5.2) with five random initial points between [0, 1]
in Example 3

problems, the proposed model was lasily implemented. The simulation
results demonstrated the good global convergence behaviors and char-
acteristics of the proposed neural network for solving several nonlinear
programming problems.
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