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Abstract. In this survey, we give an overview over some aspects
of the set of tilting objects in an m−cluster category, with focus
on those properties which are valid for all m ≥ 1. We focus on the
following three combinatorial aspects: modeling the set of tilting
objects using arcs in certain polygons, the generalized assicahedra
of Fomin and Reading, and colored quiver mutation.

1. Introduction

Cluster categories were defined in [9] in order to use categorical meth-
ods to give a conceptual model for the combinatorics of cluster alge-
bras, as defined by Fomin and Zelevinsky [16]. With contributions from
many mathematicians, this theory and its generalisations have given new
links between categorical representation theory and several branches of
mathematics and mathematical physics. In addition, various problems
concerning cluster algebras and related combinatorial problems have
been solved. There are several recent survey papers on this topic, e.g.,
[25, 26, 1], discussing both categorical and combinatorial aspects of the
theory.

In this survey, we discuss some combinatorial aspects of a generalisa-
tion of cluster categories, called m-cluster categories, or higher cluster
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categories. Such categories are not explicitly linked to cluster algebras.
A survey on categorical aspects of higher cluster categories, and gener-
alizations, is given in [27].

A cluster category is defined as an orbit category of the derived cate-
gory of an hereditary finite dimensional algebra. Loosely speaking, it is
obtained by identifying the AR-translation τ with the shift [1]. Keller
[24] proved that a cluster category is triangulated, and that the canoni-
cal functor from the derived category to the cluster category is a triangle
functor. The orbit category is a Calabi-Yau category of CY-dimension
2.

Keller’s proof also showed that the orbit category obtained by iden-
tifying τ with the m-fold shift [m] is triangulated. These categories
has later been called m-cluster categories, and they are Calabi-Yau of
dimension m+ 1.

The main interest in 1-cluster categories, and some other triangulated
categories of CY-dimension 2, is due to the combinatorial properties
of the set of tilting objects (also called cluster tilting objects). The
definition of tilting objects canonically extends to m-cluster categories.

In this survey, we give an overview over some combinatorial aspects
of the set of tilting objects in an m-cluster category, with focus on those
properties which are valid for all m ≥ 1. In the two first sections, we
give some more details and background and a precise definition. We also
recall definitions and results on tilting theory in higher cluster categories.
The results in these sections are mainly due to Wraalsen [37], Zhou
[38] and Zhu [39]. Then, in the next three sections, we consider three
different, but related, combinatorial aspects of the set of tilting objects
T in m-cluster categories. First, we discuss work of Baur and Marsh,
who modeled the combinatorics of T in the Dynkin case A or D using
arcs in certain (unpunctured or punctured) polygons [7, 8]. Next, we
discuss links to the Fomin-Reading generalised associahedra [15], due to
Thomas [32] and Zhu [38]. Then, in Section 5, we explain colored quivers
and mutation of such, as defined in a joint work with Thomas [12], and
show how these can be used to describe combinatorial aspects of T for
arbitrary finite quivers. We end, in Section 6, with some comments on
other aspects of higher cluster categories and generalisations.
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2. Background and definition

We give some background on derived categories, before we discuss the
construction of the m-cluster categories. For more information on de-
rived categories, see [18, 21]. For basic information on finite dimensional
algebras and their representation theory, see the textbooks [4, 5].

2.1. The derived category. Let H be a hereditary finite dimensional
algebra over an algebraically closed field k. We assume H is basic,
and hence H is isomorphic to a path algebra kQ of some finite quiver
Q. Let modH be the category of finite dimensional left H-modules,
and let Db(H) be the (bounded) derived category. Let [1] denote the
shift functor on Db(H), and let [−1] denote its inverse. The derived
category is a Krull-Schmidt category, and its indecomposable objects
are isomorphic to stalk complexes M [i], where M is an indecomposable
H-module, and i is some integer. For indecomposables M [i] and N [j],
we have that the morphism spaces are given by

HomDb(H)(M [i], N [j]) =


HomH(M,N) if i = j

Ext1H(M,N) if j = i+ 1

0 otherwise.

By results of Happel [18], the derived category Db(H) has Auslander-
Reiten triangles. This implies that there is an autoequivalence τ on the
derived category, with the property that for each indecomposable object
M , there is a uniquely determined triangle

τM → E → M → .

Furthermore, we have the Auslander-Reiten formula

HomDb(H)(M,N [1]) ≃ DHomDb(H)(N, τM),

where D = Hom(·, k) is the ordinary duality.
We view objects in modH as stalk complexes in degree 0. If M is a

non-projective indecomposable module, then τM coincides with τHM ,
where τH denotes the AR-translation in the module category. If P is an
indecomposable projective, then τP = I[−1], where I = DHomH(P,H)
is indecomposable and injective.

2.2. An example of type A. Let Q be the quiver

1 // 2 3oo // 4 .
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Consider the path algebra H = kQ, and let ei be the idempotent in
H corresponding to the vertex i. There are 10 indecomposable modules
in modH. These are the 4 projectives Pi = Hei and the 4 injectives
Ii = D(eiH), in addition to the two modules X ∼= (P1 ⨿ P3)/P2 and
Y = P3/P4. The AR-quiver of the module category is given as follows,
where the action of τ is indicated by the dotted arrows:

P1

&&LL
LLL

I4

&&LL
LLL

oo

P2

&&LL
LLL

88rrrrr
X

88rrrrr

&&LL
LLL

oo I3oo

P3

88rrrrr

&&LL
LLL

I2oo

&&LL
LLL

88rrrrr

P4

88rrrrr
Y

88rrrrroo I1oo

In the derived category, the AR-translation τ is defined on all objects,
and actually becomes an autoequivalence. A segment of the AR-quiver
of the derived category looks as follows, where for an indecomposable
M , we have that τM is the neighbour directly to left:

I1[−1]

��?
??

P1

��?
??

I4

��?
??

P4[1]

��?
??

Y [1]

��?
??

I1[1]

��?
??

P1[2]

��?
??

P4[2]

··· I2[−1]

��?
??

??���
P2

��?
??

??���
X

��?
??

??���
I3

��?
??

??���
P3[1]

��?
??

??���
I2[1]

��?
??

??���
P2[2]

��?
??

??���
X[2]

��?
??

??���
···

I3[−1]

??���

��?
??

P3

??���

��?
??

I2

??���

��?
??

P2[1]

??���

��?
??

X[1]

??���

��?
??

I3[1]

??���

��?
??

P3[2]

??���

��?
??

I2[2]

··· I4[−1]

??���
P4

??���
Y

??���
I1

??���
P1[1]

??���
I4[1]

??���
P4[2]

??���
Y [2]

??���
···

2.3. The m-cluster category. Consider now the autoequivalence G =
τ−1[m] on Db(H), and define the m-cluster category to be the orbit
category C = Db(H)/G.

The objects of C are the G-orbits of objects in Db(H); we use the
same notation for an object in Db(H) and its orbit in C. The morphism
spaces in C are given by

HomC(X,Y ) = ⨿iHomDb(H)(X,GiY ).

Keller [24] proved that C is triangulated, and that the canonical func-
tor Db(H) → C is a triangle functor. It follows from [9] that C is a
Krull-Schmidt category with almost split triangles and translation func-
tor induced from Db(H), and it can be shown that the AR-formula

HomC(M,N [1]) ≃ DHomC(N, τM),

still holds in C.
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There is a canonical embedding of modH into Db(H). Let modH[0]
denote the image under this embedding, and let modH[i] be defined in
the obvious way. We say that modH[0]∨· · ·∨modH[m−1]∨H[m] is a
standard domain in Db(H). It is clear from the definition of C, that any
indecomposable object in C is up to isomorphism induced by an object
in the standard domain.

2.4. Example. We consider the path algebra of example given in 2.2.
Now, the 2-cluster category is of finite type, consisting of 24 indecom-
posable objects: 2 copies of the 10 indecomposable objects in the module
category and one additional copy of the 4 indecomposable projectives.
The AR-quiver looks as follows, where one should note that objects on
the left border and the right border are identified:

P1

""DD
D I4

""D
DD

P4[1]

""DD
Y [1]

""DD
I1[1]

""DD
P1[2]

""D
D

P1

P2

""DD
D

==zzz
X

""D
DD

==zzz
I3

""DD
D

==zz
P3[1]

""DD

==zz
I2[1]

""DD

==zz
P2[2]

""DD

==zz
P2

""DD
D

==zzz

P3

==zzz

""DD
D I2

==zzz

""D
DD

P2[1]

==zz

""DD
X[1]

==zz

""DD
I3[1]

==zz

""DD
P3[2]

==zzz

""D
D

P3

P4

==zzz
Y

==zzz
I1

==zz
P1[1]

==zz
I4[1]

==zz
P4[2]

==zz
P4

==zzz

3. Tilting objects and exchange triangles

Tilting theory in module categories over finite dimensional algebras
was initiated more than 30 years ago; see [3]. The original motivation
was to compare module categories. Happel [18] introduced the use of
derived categories in the theory, and showed that algebras related by
tilting are derived equivalent.

In the setting of hereditary algebras, a tilting module in modH is
a module T with Ext1H(T, T ) = 0 and with n indecomposable non-
isomorphic direct summands, where H has n isomorphism-classes of
simples.

In the work of Riedtmann and Schofield [30], Unger [35], and several
others, combinatorial properties on the set of tilting modules were stud-
ied. In particular, the simplicial complex defined by the set of direct
summands in tilting modules was introduced; see [36] for more back-
ground on combinatorial aspects of tilting modules for finite dimensional
algebras.

In this section, we will define tilting objects in higher cluster cate-
gories. Using the natural embedding of a module category into a cluster
category, it is easy to see that the tilting modules will be mapped to
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the tilting objects. In fact, for 1-cluster categories, all tilting objects
are of this form (up to derived equivalence). In the case of higher clus-
ter categories, there are more tilting objects, as we will observe in later
examples.

3.1. Tilting theory in m-cluster categories. An object M in an m-
cluster category is called rigid if ExtiC(M,M) = 0, for i = 1, . . . ,m. A
finite collection of rigid objects {Xi} is said to be Ext-compatible if the
direct sum ⨿Xi is rigid. M is called maximal rigid if the indecomposable
direct summands in M form a maximal Ext-compatible collection. A
tilting object M in C is a rigid object with the additional property that
if an object X satisfies Exti(M,X) = 0, for i = 1, . . . ,m. Then, this
implies that X is in addM .

Zhu [38] (see also [37]) showed that tilting and maximal rigid objects
coincide. This was shown in [9] for the case m = 1. Recall that an object
X is called basic if any indecomposable object occurs at most once in a
direct sum decomposition of X.

Theorem 3.1. [38] The followings are equivalent for a basic rigid object
T in an m-cluster category.

(a) T is maximal rigid.
(b) T is tilting.
(c) T has n isomorphism classes of indecomposable direct summands.

Note that it follows from this that every (basic) rigid object is a direct
summand in a tilting object.

3.2. Complements. Let T = ⨿n
i=1Ti be a tilting object in an m-cluster

category, and fix an indecomposable direct summand Tk.
We call Bk = T/Tk an almost complete tilting object, and indecom-

posable objects X such that Bk ⨿X is tilting, are called complements

to Bk. Indeed, Tk is a complement. Let Tk
f→ B′

k be a minimal left
addBk-approximation of Tk. This means:

- B′
k is in addBk.

- Any map from Tk to an object in addBk, factors through the
map f .

- If gf = f , for some endomorphism g : B′
k → B′

k, then g is an
automorphism.

Let

(3.1) Tk → B′
k → T ∗

k →

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

An Introduction to Higher Cluster Categories 143

be the induced triangle in C. Then, one can show that T ∗
k is also a com-

plement to Bk with T ∗
k ̸≃ Tk. The triangle (3.1) is called an exchange

triangle. One can of course iterate this procedure to produce new com-
plements and exchange triangles. However, one can show that after m
iterations, such that totally m+1 complements are constructed, no new
complements will occur. Also, one can show that Bk has no further com-
plements than those constructed in this way. More precisely, we have
the following theorem.

Theorem 3.2. [37, 39] The almost complete tilting object Bk in the m-

cluster category C has exactly m+1 complements T
(c)
k , for c = 0, 1, . . . ,m,

occurring in m exchange triangles

(3.2) T
(c)
k

f
(c)
k→ B

(c)
k

g
(c+1)
k→ T

(c+1)
k

h
(c+1)
k→ .

The fact that we get m + 1 complements in this way was proved in
[23], while the fact that there are no further complements was proved
independently in [39] and [37].

It is pointed out in [39] that exchange is transitive on the set of tilting
objects; i.e., any tilting object can be reached from any other tilting
object by a finite sequence of exchanges. This was proved in [9] for
m = 1, using ideas in [19].

3.3. Example. We revisit our example given in 2.2. The boxed objects
are the direct summands of an almost complete tilting object B = I4 ⨿
I1 ⨿ Y [1], and the encircled object are the three complements of B:

P1

""D
DD

I4

""D
DD

P4[1]

""DD
Y [1]

""D
D I1[1]

""DD
P1[2]

""D
D

P1

P2

""DD
D

==zzz /.-,()*+X

""DD
DD

==zzz
I3

""D
DD

==zz
P3[1]

""DD

==zz
I2[1]

""D
D

==zz
P2[2]

""DD

==zz
P2

""DD
D

==zzz

P3

==zzzz

""DD
D I2

==zzz

""D
DD

?>=<89:;P2[1]

==zz

""DD
D X[1]

==zz

""DD
?>=<89:;I3[1]

==zz

""DD
D P3[2]

==zzz

""D
D

P3

P4

==zzz
Y

==zzz
I1

==zzz
P1[1]

==zz
I4[1]

==zzz
P4[2]

==zz
P4

==zzz

The three exchange triangles are:

X → I1 ⨿ I4 → P2[1] →

P2[1] → Y [1] → I3[1] →

I3[1] → 0 → I3[2](= X) → .
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4. A graphical description

Independent of the ideas in [9], Caldero et al. [13] defined a family
of categories, using diagonals in regular n-gons as objects. They also
showed that their categories are equivalent to the cluster categories of
Dynkin type A. Later, Schiffler [31] used a similar approach to describe
the cluster categories of type D. He considered punctured n-gons in-
stead.

Generalising this, Baur and Marsh gave a graphical interpretation of
m-cluster categories in type A [8] and in type D [7]; see [6] for a survey.
Here, we will give a brief discussion of their ideas in type A, including
an example.

4.1. A category from polygons. We discuss here the results of Baur
and Marsh [8] for Dynkin type A. We want to construct a certain
category of diagonals of an (nm+2)-gon P = Pnm+2, where m and n are
positive integers, and n > 1. This category will be equivalent to the m-
cluster category of a Dynkin quiver of type An−1. The indecomposable
objects in the m-cluster category C of type An−1 will correspond to m-
diagonals in P. Here, an m-diagonal is a diagonal with the property
that it divides P into an (mi+ 2)-gon (for some positive integer i), and
its complement, which is then an (m(n− i) + 2)-gon.

The actual reconstruction of the cluster category from this data is
made in three steps:

- construct a quiver Γ which is isomorphic, as a stable translation
quiver, to the AR-quiver of the cluster category,

- take the mesh category of Γ, and
- take the additive category generated by the mesh category.

We shall first explain these notions, and then see how Γ is constructed.
The AR-quiver ∆ of a cluster category is an example of a stable trans-
lation quiver. The AR-translation gives a bijective map τ : ∆0 → ∆0

with the following property: given any two vertices x, y, the number of
arrows x → y equals the number of arrows τy → x.

A (locally finite) quiver Γ without loops, such that a translation-
function τΓ with the same property as τ above exists, is called a stable
translation quiver.

Given a stable translation quiver Γ with translation function τΓ, one
can define a mesh category M(Γ,τΓ). The objects in this category are
the vertices of Γ, and these are then the indecomposable objects in the
additive category generated by M(Γ,τ). Here we only consider quivers
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Γ without multiple arrows. In this case, the maps in M(Γ,τ) are all
linear combination of paths modulo a certain ideal I generated by the
mesh relations. For every vertex v, there is one mesh relation, which is
constructed as follows. Let {bi : vi → v} be all arrows ending in v, and
let ai : τv → vi be the arrow corresponding to bi. Then, the sum

∑
biai

is the mesh relation for v.
We now describe how to get a stable translation quiver Γ from the

(mn + 2)-gon. Label the vertices of the polygon 1, . . . ,mn + 2 (in a
clockwise oriented cycle), and let (i, j) denote an m-diagonal between
the vertices i and j. We now construct a finite quiver Γ, by letting
the vertices correspond to the m-diagonals. We denote by (i, j) = (j, i)
the vertex corresponding to the diagonal between i and j. We draw an
arrow (i, j) → (i, j + m), if (i, j + m) is an m-diagonal, and an arrow
(i, j) → (i+m, j), if (i+m, j) is an m-diagonal. In addition, we define
a translation τΓ by mapping (i, j) to (i−m, j −m).

Theorem 4.1. [8] The m-cluster category of type An−1 is equivalent
to the additive category of the mesh category M(Γ,τΓ), where Γ is the
constructed from the (mn+ 2)-gon as above.

4.2. Example. Let m = 2 and n = 5, and consider the 12-gon. It gives
rise to the following stable translation quiver, which is easily seen to be
isomorphic to the AR-quiver of the m-cluster category of type A4 from
example given in 2.4:

(3,6)

""DD
(5,8)

""DD
(7,10)

""DD
(9,12)

""DD
(11,2)

""DD
(1,4)

""DD
(3,6)

(1,6)

""DD

==zz
(3,8)

""DD

==zz
(5,10)

""DD

==zz
(7,12)

""DD

==zz
(9,2)

""DD

==zz
(11,4)

""DD

==zz
(1,6)

""DD

==zz

(1,8)

==zz

""DD
(3,10)

==zz

""DD
(5,12)

==zz

""DD
(7,2)

==zz

""DD
(9,4)

==zz

""DD
(11,6)

==zz

""DD
(1,8)

(11,8)

==zz
(1,10)

==zz
(3,12)

==zz
(5,2)

==zz
(7,4)

==zz
(9,6)

==zz
(11,8)

==zz

4.3. Interpretation of tilting objects and exchange. The construc-
tion described above also has an additional important feature. The cor-
respondence between indecomposable objects in the m-cluster category
of type An−1 and the category of diagonals of Pmn+2 is defined such
that two indecomposable objects X and Y in C are Ext-compatible if
and only if the m-diagonals corresponding to X and Y do not cross.
The maximal sets of non-crossing m-diagonals in P are called (m+ 2)-
angulations. They always have n − 1 elements and correspond to the
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tilting objects in CAn−1 . If we remove an m-diagonal in an (m + 2)-
angulation, we can replace it with m different m-diagonals, to obtain
m different (m + 2)-angulations. This corresponds to replacing one in-
decomposable summand Tk in a tilting object T with one of the m
complements of T/Tk different from Tk.

4.4. Example. The tilting object B ⨿X of example given in 3.3, cor-
responds to a 4-angulation of a 12-gon as in Figure 1.

12

1

2

3

4

5

6

7

8

9

10

11

Figure 1. The 4-angulation corresponding to B ⨿X

If we remove the 2-diagonal corresponding to X in this 12-angulation,
we can replace it with m = 2 different 2-diagonals, and obtain the two 4-
angulations of Figure 2. These correspond to the tilting objects B⨿P2[1]
and B ⨿ I3[1].

5. The simplicial complex of m-clusters

An (abstract) simplicial complex is a nonempty family ∆ of finite
subsets of a fixed universal set, with the property that if X is in ∆, then
also every subset Y ⊂ X is in ∆.

An m-cluster category C = CH gives in a canonical way rise to a sim-
plicial complex ∆(C): take the set of isomorphism classes of indecom-
posables in C as the universal set, and let ∆(C) consist of the subsets X
with the property that the elements in X are Ext-compatible.

Consider now the case, where C = CH is the m-cluster category of
H = kQ, and Q is a Dynkin quiver. Corresponding to the underlying
graph of Q, there is a finite root system Φ.
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Figure 2. The 4-angulations corresponding toB⨿P2[1]
(left) and B ⨿ I3[1] (right)

Starting with a finite root system and a positive integer m, Fomin
and Reading [15] have defined another simplicial complex, the m-cluster
complex, and one of the original motivations of studying tilting theory in
m-cluster categories, was to compare their simplicial complex to ∆(C).
This was done independently by Thomas [32] and Zhu [38]. Zhu also
dealt with non-simply laced Dynkin graphs and their corresponding root
systems. The m-cluster complexes naturally generalizes the 1-cluster
complexes, which play a crucial role in the study of cluster algebras [16].

For a finite root system Φ, Fomin and Reading considered the set
Φm
≥−1 of coloured almost positive roots. This set consists of m copies of

the positive roots, and one set of copies of the negative simple roots.
This is the universal set for the m-cluster complex. Then, they defined
a notion of compatibility of elements in this set. This is combinatorially
defined, and we leave out the details here, but refer instead to [15,
Section 2]. The m-cluster complex consists of all sets of compatible
elements in Φm

≥−1.
Fomin and Reading show that m-cluster complexes satisfy some nice

conditions.

Theorem 5.1. [15] Consider a root system with n simple positive roots,
or equivalently a Dynkin graph with n vertices.

(a) All facets (inclusion-maximal sets) in the m-cluster complex have
cardinality n.

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

148 A. B. Buan

(b) Each set in the m-cluster complex of cardinality n−1 is a subset
of exactly n+ 1 facets.

For a given Dynkin quiver Q, it is well known that the set of indecom-
posable H = kQ-modules is in bijection with the set of positive roots of
the corresponding root system. Hence, it is clear that the indecompos-
able objects ind CH in the cluster category CH are in bijection with the
set Φm

≥−1 of colored almost positive roots.
Now, assume Q has alternating orientation, i.e., each vertex is either

a sink or a source. In this case, Thomas [32] and Zhu [38] defined a
bijection W between these two sets in such a way that Ext-compatible
objects in the cluster category were mapped to compatible elements in
Φm
≥−1 . Hence, they obtained the following result.

Theorem 5.2. Using the bijection W to identify the set of indecompos-
able objects in the cluster category CH with the set Φm

≥−1, the m-cluster
complex coincides with ∆(C).

Let Mα be the indecomposable H = kQ-module corresponding to the
positive root α. The bijection map W basically extends, in a canonical
way, this correspondence to a correspondence between the indecompos-
ables in C of the form M [i], for 0 ≤ i ≤ m− 1, and the m copies of the
positive roots. The indecomposables P [m] = I[−1] are identified with
the negative simple roots.

Using this, the authors in [32, 38] gave a conceptual, and type-free
proof of Theorem 5.1, by combining Theorem 5.2 with the results in
Section 3. Here, we should note that the results needed concerning
the number of direct summands for tilting objects and the number of
complements were proved in [32, 38] for the Dynkin case.

6. Mutation of colored quivers

We will now discuss another combinatorial approach to m-cluster cat-
egories, motivated by the fact that tilting and exchange in 1-cluster
categories give a categorical model for the Fomin-Zelevinsky quiver mu-
tation. We will first recall the notion of quiver mutation.

6.1. The Fomin-Zelevinsky quiver mutation. Let Q = (qij) be a
finite quiver with vertices 1, . . . , n, with qij arrows from i to j, and with
no loops or oriented 2-cycles (parallel underlying edges with opposite
directions). For a fixed vertex v, we get a new quiver µv(Q), also without
loops or oriented two-cycles. This operation, called quiver mutation in
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v, can be described in various ways. Having the generalisation to m > 1
in mind, we choose the following formulation.

- For each pair of arrows i → v → j in Q, add an arrow i → j.
- If, between some pairs of vertices, there appear parallel under-
lying edges with opposite directions (oriented 2-cycles), remove
the same number of arrows in each direction, until there are no
oriented 2-cycles.

- Reverse all arrows starting in or ending in v.

It is straightforward to check that this operation satisfies µv(µv(Q)) =
Q. It is also straightforward to verify that the quiver µv(Q) = (q̃ij) is
determined by the following formula, which is a reformulation of the
FZ-mutation formula:

(6.1) q̃ij =

{
qji if v = i or v = j

max{0, qij − qji + qivqvj − qjvqvi} if i ̸= v ̸= j.

For a tilting object T in a cluster category C, we can consider the
endomorphism-algebra EndC(T ). This is again a finite dimensional ba-
sic k-algebra, and therefore is isomorphic to a factor algebra of a path
algebra of a finite quiver QT (the Gabriel quiver of T ).

Consider now a 1-cluster category. Let T = B⨿M and T ′ = B⨿M∗

be two tilting objects, and let QT and QT ∗ be their respective Gabriel-
quivers. The main result of [10] is that

(6.2) QT ∗ = µv(QT ),

where v corresponds to the indecomposable object M . This can be
considered a categorification of the FZ-quiver mutation.

It is natural to ask for a generalization of the above to the case m > 1.
We give an example to show that there can be no direct generalization
in terms of the Gabriel quiver of T .

6.2. Example. Consider the 3-cluster category of type A2. Let P1 be
the simple projective, P2 be the indecomposable projective of length 2,
and I2 be the simple injective. Then, the AR-quiver of the 3-cluster
category has 11 vertices:

P2

""DD
D P1[1]

""DD
I2[1]

""DD
P2[2]

""DD
P1[3]

""DD
P1

""DD
D

P1

==zzz
I2

==zz
P2[1]

==zz
P1[2]

==zz
I2[2]

==zz
P2[3]

==zzz
P2
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Consider the almost complete tilting object P2[2], and the four comple-
tions,

Ta = P2[2]⨿ P1, Tb = P2[2]⨿ P1[1]

Tc = P2[2]⨿ P1[2] and Td = P2[2]⨿ I2[2].

The following picture describes the Gabriel quivers of the endomor-
phism rings of these tilting objects, with the direction of exchange indi-
cated by the broken arrows:

Ta : · · // · · : Tb

��

OO

Td : · ·oo oo · // · : Tc

From this, it is clear that more information than the Gabriel quiver of
a tilting object T is needed, in order to generalize the formula (6.2).

6.3. Colored quivers and mutation. It turns out that instead of the
Gabriel quivers, we can now deal with colored quivers.

An m-colored multi-quiver Q consists of vertices 1, . . . , n and colored

arrows i
(c)→ j, where c is in {0, 1, . . . ,m}. We let q

(c)
ij denote the number

of arrows from i to j of color (c).
Colored quiver mutation was introduced in [12]. Given a vertex v in

an m-colored quiver Q, define a new colored quiver µv(Q) by modifying
Q as follows:

- For each pair of arrows

i
(c) // v

(0) // j

with c in {0, 1, . . .m}, add two arrows: one arrow of color (c)
from i to j and one arrow of color (m− c) from j to i.

- If, for some pairs of vertices, there appear parallel arrows with
different colors from i to j, remove the same number of arrows
of each color.

- Change the color of all arrows ending at v, by adding one.
Change the color of all arrows starting at v, by subtracting one.

Alternatively one can describe colored mutation via a formula which
is a generalized version of the formula (6.1). If Q = (qij) is an m-colored
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quiver, then Q′ = µvQ = (q̃ij) is given by 1

q̃
(c)
ij =



q
(c+1)
ij if v = i

q
(c−1)
ij if v = j

max{0, q(c)ij −
∑

t̸=c q
(t)
ij + (q

(c)
iv − q

(c−1)
iv )q

(0)
vj otherwise.

+q
(m)
iv (q

(c)
vj − q

(c+1)
vj )}

6.4. The colored quiver of a tilting object. Let m ≥ 1 be an inte-
ger, and C be an m-cluster category. We want to assign to each tilting

object T = ⨿n
i=1Ti in C a colored quiver QT = (q

(c)
ij ) with n vertices

corresponding to the indecomposable direct summands in T . To deter-

mine the colored arrows, we use the exchange triangles (3.2): we let q
(c)
ij

be the multiplicity of Tj as a direct summand in B
(c)
i . Note that the

0-colored arrows are indeed the arrows of the Gabriel quiver of T .
Not all colored quivers can be obtained as QT for a tilting object T .

By definition, there are no loops (of any color) in QT , that is, q
(c)
ii = 0,

for i and all c. Also, one can prove that QT is locally monochromatic:
for fixed vertices i and j there are only arrows of one color from i to j.

One can also prove that q
(c)
ij = q

(m−c)
ji , that is, for each arrow of color c,

there is an arrow in the opposite direction with color m− c. There are
also more known restrictions; see [12, Prop. 5.1].

It is an interesting open problem to find a set of properties that char-
acterizes the colored quivers of type QT among all colored quivers.

One can now generalize the result in [10] to colored quivers of tilting
objects in higher cluster categories.

Theorem 6.1. Let T = ⨿n
i=1Ti and T ′ = T/Tj ⨿ T

(1)
j be tilting objects

in an m-cluster category C such that there is an exchange triangle

(6.3) Tj → B
(0)
j → T

(1)
j → .

Then, QT ′ = µj(QT ).

6.5. Example. Revisiting example given in 6.2, we now consider in-
stead the colored quivers, and their mutations. Note that we always

1Note that in [12], there is an unfortunate typo in the formula: the two first cases
are mixed up.

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

152 A. B. Buan

mutate in the leftmost vertex:

Ta : ·
(1)

// ·
(2)oo // ·

(2)
// ·

(1)oo : Tb

��

OO

Td : ·
(0)

// ·
(3)oo oo ·

(3)
// ·

(0)oo : Tc

6.6. Example. We consider again the case m = 2, with the quiver Q
of type A4 as in example given in 2.2.

The colored quivers of the three tilting objects

T = I1 ⨿ I4 ⨿ Y [1]⨿X, T ′ = I1 ⨿ I4 ⨿ Y [1]⨿ P2[1] and

T ′′ = I1 ⨿ I4 ⨿ Y [1]⨿ I3[1]

are given in Figure 3. Note that QT ′ is given by colored mutation of
QT at the vertex corresponding to X, that QT ′′ is given by colored
mutation of QT ′ at the vertex corresponding to P2[1], and that QT is
given by colored mutation of QT ′′ at the vertex corresponding to I3[1].

6.7. Finiteness of the mutation class. Let Q be an acyclic quiver.
We can view this as an m-colored quiver, by regarding each arrow α in
Q as an arrow of color (0), and then adding an arrow of color (m) in the
opposite direction to α.

Torkildsen [33] has proved the following, generalizing a similar state-
ment of [11] for m = 1.

Theorem 6.2. [33] The colored mutation class of a connected acyclic
quiver Q is finite if and only if Q is either of Dynkin or extended Dynkin
type, or has at most two vertices.

In Dynkin type A, Torkildsen [34] has also found a formula for the
number of elements in the mutation class, using a connection to the
classical cell-growth problem [20]. Fomin and Reading [15] have shown
that number of m-clusters (in the Dynkin case) is given by the Fuss-
Catalan numbers.

6.8. m-cluster tilted algebras. colored quiver mutation gives some
information on the m-cluster-tilted algebras, i.e., algebras of the form
EndC(T ), for T a cluster-tilting object in an m-cluster category.

Using that any tilting object can be reached from any other tilting
object by a sequence of exchanges [39], one obtains the following as a
consequence of Theorem 6.1.
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X
(0) //

(0)

��

(1)

��?
??

??
??

??
??

??
??

??
??

??
??

??
? I4

(2)
oo P2[1]

(2) //

(2)

��

(0)

��?
??

??
??

??
??

??
??

??
??

??
??

??
I4

(0)
oo

(1)

��

→

I1

(0) //

(2)

OO

Y [1]
(2)

oo

(1)

__??????????????????????????
I1

(0)

OO

Y [1]

(1)

OO

(2)

__?????????????????????????

↖ I3[1]
(1) //

(1)

��

(2)

��?
??

??
??

??
??

??
??

??
??

??
??

??
I4

(1)
oo ↙

I1

(1)

OO

(0) //
Y [1]

(0)

__?????????????????????????

(2)
oo

Figure 3. colored mutation at the upper left vertex

Theorem 6.3. [12] Let C = CkQ for an acyclic quiver Q. Then the
Gabriel quivers of all m-cluster tilted algebras are obtained by iterated
colored mutation of Q.

7. Other aspects and generalizations

In this survey, the main focus is on the combinatorial aspects of higher
cluster categories. In this concluding section, we give some links to other
aspects and generalizations, leaving out all the details.

7.1. Calabi-Yau triangulated categories. Consider a triangulated
category C with split idempotents and with suspension functor Σ. As-
sume in addition that all Hom-spaces of C are finite dimensional over
the algebraically closed field k, and that C admits a Serre functor ν, i.e.
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there is a bifunctorial isomorphism

HomC(X, νY ) ≃ DHomC(Y,X).

If, in addition, there is an isomorphism Σm+1 ≃ ν, then C is said to be
Calabi-Yau of CY-dimension m+1 (for short, m+1-Calabi-Yau). Note
that the m-cluster category satisfies all these properties with ν = τ [1].

Rigid objects and tilting objects may now be defined exactly as in the
case of m-cluster categories. In fact, one does not need to restrict to
objects. In [28], a (cluster) tilting subcategory in an m + 1-Calabi-Yau
category is defined as a k-linear functorially finite subcategory T of C,
satisfying

- Exti(T, T ′) = 0, for all T, T ′ in T and all 0 < i < m, and
- if X ∈ C satisfies Exti(T,X) = 0, for all T in T and all 0 < i <
m, then X belongs to T .

Note that the additive closure addT of a tilting object T in an m-
cluster category clearly satisfies this. Keller and Reiten [29] showed that
one can characterize m-cluster categories as exactly those m+1-Calabi-
Yau categories with an object T such that

- addT is a cluster tilting subcategory
- Hom(T,ΣiT ) = 0, for i = −m, . . . ,−1, and
- End(T ) is a hereditary algebra.

7.2. Generalized higher cluster categories. Amiot gave in [2] a
more general definition of cluster categories in the case m = 1. Starting
with a finite dimensional algebra A of global dimension at most 2, she
constructs a certain triangulated category CA, which is equivalent to the
ordinary cluster category in case A is hereditary. This category CA is in
general not Hom-finite. But, if A satisfies certain additional conditions,
then CA is Hom-finite, and in this case CA is 2-Calabi-Yau and A is a
tilting object in CA.

In a very recent paper, Lingyan Guo [17] generalized this construction
to m > 1. More precisely, for finite dimensional algebra A of finite global
dimension m, assume that the functor TorAm(−, DA) is nilpotent. In

this setting, she constructed a Hom-finite triangulated category C(m−1)
A ,

which was m-Calabi-Yau, and such that A was an m− 1-cluster tilting

object in C(m−1)
A .

In addition, both in [2] and [17], generalised (higher) cluster categories
were also considered in the setting of quivers with (super-)potentials; see
[14].
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2009.
[26] B. Keller, Cluster Algebras, Quiver Representations and Triangulated Categories,

In Triangulated Categories 76-160, London Math. Soc. Lecture Note Ser (375),
Cambridge University Press, 2010.

[27] B. Keller and Calabi-Yau, Triangulated categories, trends in representation the-
ory of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich
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