
Arc
hive

 of
 S

ID

Bulletin of the Iranian Mathematical Society Vol. 37 No. 2 (2011), pp 273-290.

Conference Paper

RIGID DUALIZING COMPLEXES

A. NEEMAN

Communicated by Siamak Yassemi

Abstract. Let X be a sufficiently nice scheme. We survey some
recent progress on dualizing complexes. It turns out that a com-
plex in K(Inj/X) is dualizing if and only if tensor product with
it induces an equivalence of categories from Murfet’s new category
Km(Proj/X) to the category K(Inj/X). In these terms, it becomes
interesting to wonder how to glue such equivalences.

1. Introduction

Nowadays, dualizing complexes must count as a venerable, old part of
algebraic geometry. They date back to the early 1960’s, to Grothendieck’s
work on duality. In the past few years, we have come to a remarkable
new perspective on them; as is always the case with recent progress, our
understanding is still quite patchy.

In this survey, I would like to present a novel approach to dualizing
complexes, and then raise one of the many puzzling questions. The way
I have structured the article is that it begins with a review of classical,
relatively well-understood facts. The next section summarizes the du-
alizing complexes, how they can be rigidified (Van den Bergh’s style),
and how one goes about proving their existence. Section 3 offers a short
review of some developments in the past few years, and the final section
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consists of some problems, addressing an aspect of the theory which is
understand very little.

2. Old stuff

Let X be a noetherian, separated scheme. Let Db(Coh/X) be the
bounded derived category of coherent sheaves on X. We define a du-
alizing complex to be an object I ∈ Db(Coh/X) so that the natural
functor

RHom(−, I) : Db(Coh/X)
op −−−−→ Db(Coh/X)

is an equivalence of categories.1 Historically, dualizing complexes formed
the core of Grothendieck’s theory of duality; the main technical lemmas
in the subject can be viewed as controlling the behavior of dualizing
complexes under morphisms of schemes, and the traditional approach, in
which the subject was originally developed, with built on these lemmas.
Of course, the Grothendieck duality contains theorems which make no
explicit mention of dualizing complexes, but the proofs, at least the old
ones that go back to Grothendieck, all depended crucially on dualizing
complexes.

Nowadays, we know that much of the theory can be set up without any
reference to dualizing complexes. Furthermore, the modern approach is
smoother than the original clunky version. It might help if we sketch
for the reader the current status of the theory.

Notation 2.1. Let f : X −→ Y be a morphism of quasicompact, sep-
arated schemes. Then, Rf∗ : D(Qcoh/X) −→ D(Qcoh/Y ) stands for
the derived pushforward map, from the (unbounded) derived category
of quasicoherent sheaves on X to the derived category of quasicoherent
sheaves on Y . We let Lf∗ denote its left adjoint. If f is flat, then there
is no need to take left derived functors, and we feel free to write f∗ for
Lf∗. The first result is given next.

1It is traditional to impose on I a finiteness condition, concerning the injective
dimension. The theory works fine without the restriction; the reader can find this in
[11]. In the traditional terminology, what we call here “dualizing complexes” would
go by the name “pointwise dualizing complexes”, and one consequence of the results
of [11] is that pointwise dualizing complexes share practically all the good properties
of dualizing complexes.
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Theorem 2.2. With the notation as above, the functor Rf∗ has a right
adjoint f# : D(Qcoh/Y ) −→ D(Qcoh/X). This right adjoint satisfies
the following properties.

(i) f# takes D+(Qcoh/Y ) ⊂ D(Qcoh/Y ) into D+(Qcoh/X) ⊂
D(Qcoh/X).

(ii) Suppose X and Y are noetherian and f is proper. Assume that we
are given a cartesian square

X ′
g′−−−−→ X

f ′
y yf
Y ′ −−−−→

g
Y

with g a flat morphism of noetherian schemes. Then, for every
object V ∈ D+(Qcoh/Y ), there is a canonical, natural base-change
isomorphism

(g′)∗f#V −−−−→ (f ′)#g∗V.

Proof. A modern proof for the existence of f# can be found in [9, Exam-
ple 4.2]. For (i), see the first two paragraphs in the proof of [9, Propo-
sition 6.3], while (ii) is found in [13, Theorem 2] or [7, Corollary 4.4.3].
It should be noted that the hypothesis in (ii), that X and Y both be
noetherian, can be relaxed somewhat; the reader can find a more general
statement in the second of the references. In this survey, I am not trying
to give the sharpest known results; I am happy to sacrifice generality
in the interest of transparency. If the strongest known statement is at
all technical, which is in the case of (ii), then I choose simplicity over
generality. �

Notation 2.3. Assume f : X −→ Y is a finite type morphism of noe-
therian, separated schemes. By a theorem of Nagata’s [2, Theorem 4.1],

we may factor f : X −→ Y as X
g−→ X

h−→ Y , where, g is an open
immersion and h is proper. We will write f ! for the composite

D+(Qcoh/Y )
h#−−−−→ D+(Qcoh/X)

g∗=Lg∗−−−−−→ D+(Qcoh/X).

The first important fact is that f ! is well defined. Even though the proof
is standard2, we will give it in some detail, to underline why it only works

2See, for example, [13, Corollary 1]. A more extensive discussion may be found in
[7, Section 4.8].
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276 A. Neeman

for D+; note that we were careful to only define f ! on bounded-below
complexes.

Lemma 2.4. Up to canonical isomorphism, the functor f !:D+(Qcoh/Y )
−→ D+(Qcoh/X) is independent of the factorization f = hg.

Proof. Suppose we are given another factorization X
g′−→ X̂

h′−→ Y . We

can factor g and g′ through the pullback X ×Y X̂. Let X̃ ⊂ X ×Y
X̂ be the scheme-theoretic closure of X in the pullback. We obtain a
commutative diagram

X
α−−−−→ X̃

β−−−−→ X

β′
y yh
X̂ −−−−→

h′
Y

where, g = βα, g′ = β′α. The map α is an open immersion, and β, β′

are proper maps which are isomorphisms on the image of α. Given
any object V ∈ D+(Qcoh/Y ), by Theorem 2.2(i), we have that h#V

(respectively (h′)#
V) lies in D+(Qcoh/X) (respectively D+(Qcoh/X̂)).

We also have two cartesian squares

X
α−−−−→ X̃ X

α−−−−→ X̃

1

y yβ 1

y yβ′ (∗)

X −−−−→
g

X X −−−−→
g′

X̂

with β and β′ being proper, while g = βα and g′ = β′α are open
immersions (hence flat). We have nautral isomorphisms

g∗h#V ∼= α∗β#h#V

{
Theorem 2.2(ii) applied to left square of (∗)

and to h#V ∈ D+(Qcoh/X),

∼= α∗(β′)#(h′)#
V because hβ = h′β′,

∼= (g′)∗(h′)#
V

{
Theorem 2.2(ii) applied to right square of (∗)

and to (h′)#
V ∈ D+(Qcoh/X̂).

Note that we appealed to Theorem 2.2(ii) twice, which requires the
complexes to be bounded below; see [9, Example 6.5] for what dreadful
things can happen with unbounded complexes. �
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The proof of the next lemma is similar, and is left to the reader.

Lemma 2.5. Suppose X
f−→ Y

g−→ Z are composable morphisms, both
of finite type, of noetherian, separated schemes. Then, up to canonical

isomorphism, f !g! ∼= (gf)!.

The relevance of all this, to dualizing complexes, comes from the
following result.

Proposition 2.6. Let f : X −→ Y be a finite type morphism of noe-
therian, separated schemes. If J is a dualizing complex on Y , then f !J

is a dualizing complex on X.

Proof. The question is local in X; see [11, Theorem 3.12]. Let U ⊂ X
be an affine open subset, whose image under f is contained in an affine
open subset V ⊂ Y . Let g : U −→ X be the inclusion; it suffices to show

that g∗f !J is dualizing on U . By Lemma 2.5, we have that g∗f ! = (fg)!;
replacing f by fg, we may assume that X = U is affine. But, now
the map f : X −→ Y factors through the open affine V ⊂ Y . In the

factorization X
α−→ V

β−→ Y , the map β is an open immersion, and
hence β!J = β∗J is dualizing. We are therefore reduced to the case
where both X and Y are affine. The map f : X −→ Y may be factored
as

X
α−−−−→ X ′

β−−−−→ X ′′
γ−−−−→ Y

where, α is an open immersion, β is a closed immersion, and γ is a
projection Pn × Y −→ Y . Now, each of α!, β! and γ! takes dualizing
complexes to dualizing complexes; for α! = α∗, this comes from [11,
Theorem 3.12], for β! = β#, we use [11, Lemma 3.18 and Theorem 3.14],
and for γ! = γ#, this can be proved many ways, including by modifying
slightly the argument of [11, Section 4].3 �

3We could appeal to [11, Fact 0.3(ii)]. But, then we would need to assume that Y
satisfies the technical condition (∗) of [11, Conjecture 4.16]. The modification I am
suggesting, which quite easily handles the case of the projection γ : Pn

Y = Pn×Y −→
Y , is the following. In [11, Lemma 4.4], we learn that the functor

[
γ!OY

]
L⊗ (−)

commutes with all products of complexes of the form γ∗L, with L ∈ D(Qcoh/Y ). It
certainly follows that

[
γ!OY

]
L⊗ (−) commutes with the much more restricted class

of products, where we only allow L to be of the form ΣnOY ; this is formalized in [11,
Definition 4.7], and [11, Sections 4 and 5] studies what one can deduce about γ!OY ,
from the weaker hypothesis. In the case of the projection γ : Pn

Y −→ Y , it is helpful
to use all the complexes γ∗L, since it is easy to express any complex on Pn

Y in terms
of γ∗L’s plus a finite number of the OPn

Y
(m).
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And now we come to the punchline.4

Theorem 2.7. Let f : X −→ Y be a finite type morphism of noetherian,
separated schemes. Suppose Y is Gorenstein, that is, the structure sheaf
OY is a dualizing complex on Y . Then, the complex I = f !OY is a
dualizing complex on X.

If we assume furthermore that f is flat, then there is a canonical
isomorphism I −→ ∆![I� I]. Here, ∆ : X −→ X ×Y X is the diagonal
map, and I� I = I�Y I is the external tensor product.

Proof. The fact that I = f !OY is a dualizing complex comes from Propo-
sition 2.6. Assume f to be flat; we need to produce the isomorphism
I −→ ∆![I� I]. For this, consider the composite

X
∆−−−−→ X ×Y X

f×f−−−−→ Y ×Y Y
e−−−−→ Y,

where, ∆ is the diagonal map, and e is the obvious identification. The
composite is equal to f . Lemma 2.5 therefore gives us a canonical iso-
morphism

f !OY
∼= ∆!(f × f)!e!OY . (∗∗)

Now, e!OY is just the pullback of OY by the isomorphism Y ×Y Y = Y ,
and hence identifies with the external tensor product OY � OY . This
makes

(f × f)!e!OY
∼= (f × f)![OY �OY

] ∼= f !OY �f
!OY = I�I ,

and from (∗∗) we deduce our isomorphism I −→ ∆![I� I].
Perhaps we should explain where the hypothesis of flatness plays a

role. It is in the proof that (f × f)![OY �OY
] ∼= f !OY � f !OY . Observe

that

(f × f)![OY � OY
] ∼= (f × 1)!(1× f)![OY � OY

]
∼= (f × 1)![OY � f !OY

]
∼= f !OY � f !OY ,

where, the last isomorphism appeals to the two facts

4A version of the second part of Theorem 2.7 first appeared in Van den Bergh [12].
In the form given in Theorem 2.7 it is due to Lipman, and may be found in [14,
Remark 6.20].
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(i) If g : Z −→ Z ′ is of finite tor-dimension, then g!F ∼= g!OZ′
L⊗ g∗F.5

In our case, g is the map

f × 1 : X ×Y X −−−−→ Y ×Y X, (∗)
while F = OY � f !OY .

(ii) We apply Theorem 2.2(ii), slightly generalized to work for an f ! in
place of an f#, to the pullback square

X ×Y X
1×f−−−−→ X ×Y Y

f×1

y yf×1

Y ×Y X −−−−→
1×f

Y ×Y Y

and to the object OY � OY ∈ D+(Qcoh/Y ×Y Y ). This is where
we absolutely need flatness.

�

Remark 2.8. By the first half of Theorem 2.7, every noetherian scheme
X, of finite type over a Gorenstein scheme Y , automatically has a dual-
izing complex. Dualizing complexes are cheap and widely available.

Remark 2.9. If Y = Spec(k), where k is a field, then we know that

(i) any morphism f : X −→ Y is flat, and
(ii) Y is Gorenstein.

Both parts of Theorem 2.7 therefore apply to any morphism of finite
type f : X −→ Spec(k). In Remark 2.8, we observed that any scheme,
of finite type over a field k, has a dualizing complex I; the flatness part
of Theorem 2.7 guarantees that I may be chosen to have a canonical
rigidifying isomorphism I −→ ∆![I � I]. The reader is encouraged to
look at Van den Bergh’s [12], where a version of this was originally
observed; for applications, see also the later articles by Yekutieli and
Zhang [14, 15, 16].

It should also be mentioned that rigid dualizing complexes, that is
dualizing complexes I together with a rigidifying isomorphisms I −→
∆![I�I], are useful in non-commutative algebraic geometry. One should
not scoff and say that we already know all we really need to know about
the existence of dualizing complexes. This might be true in commutative

5If g is proper, in which case g! = g#, then the proof may be found in [9, Exam-
ple 5.2 and Theorem 5.4]. For general g, we first reduce to the case where Z and Z′

are both affine, and then use the standard factorization.
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algebraic geometry, but we are very far from such a satisfactory state of
affairs in the non-commutative case.

We note in passing: the definition of rigid dualizing complexes, in Van
den Bergh’s sense, assumes we have a morphism X −→ Y so that we can
speak of an isomorphism I −→ ∆![I �Y I]. In order to prove existence,
using Theorem 2.7, we need to assume further that Y is Gorenstein and
X is flat over it; but for all we know, these hypotheses might not be the
best possible.

Remark 2.10. Dualizing complexes are not unique: if J is a dualizing
complex on X, if L is a line bundle on X and if n is any integer, then
ΣnL ⊗ J is also a dualizing complex. The only ambiguity corresponds
to the case when X is connected; see [11, Lemma 3.9].

The useful fact is that rigid dualizing complexes are unique; if X is a
scheme of finite type over a noetherian, separated Y , and if we have, on
X, two dualizing complexes I and J and isomorphisms

I −→ ∆![I�Y I] , J −→ ∆![J�Y J] ,

then I and J must be isomorphic; the isomorphism between them is
even unique (that is, canonical) if we require it to be compatible with
rigidifications, and no ambiguity up to suspension or twisting by a line
bundle. If X and Y are smooth and X is flat over Y , then I is a shift
of the relative canonical bundle by the relative dimension.

Remark 2.11. The argument we have given so far shows that one can
use the functor f ! to deduce the existence of dualizing complexes on
many schemes, and in some cases even the existence of rigid dualizing
complexes. This is the reverse of the historical approach to the sub-
ject; in Grothendieck’s original development, dualizing complexes were
used to prove the existence of f !. This means that the old guys had to
construct dualizing complexes without the help of Proposition 2.6.

The classical way people proceeded was by gluing together dualizing
complexes on affine bits of a scheme. Given a scheme X, the idea was
to find an open cover X = ∪Ui, where the Ui are affine and for each i
we have a dualizing complex Ii on Ui ⊂ X. The problem was to glue to
a global dualizing complex. Without getting bogged down in technical-
ities, let me remind the reader that gluing objects in derived categories
is not for the faint-hearted; derived categories are singularly ill-suited
for patching objects together, and the objects involved have to be very
special for it to have any chance of success. The way Grothendieck set
about this was by looking at the minimal injective resolutions of the
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Ii and their remarkable properties; the reader can look up [3, 1] or [8,
Section 9] to see how convoluted the arguments become. It seems to me
that, at a deep, fundamental level, we really do not yet understand why
dualizing complexes glue.

One could take the cheap way out; we know, by virtue of Remark 2.8,
that global dualizing complexes exist in great generality. Once we know
the global existence, it becomes clear that local data must be glueable.
This seems to me a cheat; there are many hard theorems in the literature
informing us how to glue dualizing complexes, and they beg for a clearer
understanding.

Remark 2.12. Until now, the most inspired idea was to use the rigidi-
fying isomorphisms I −→ ∆![I� I] of Van den Bergh; see Yekutieli and
Zhang [14] for more. Again let me not go into detail; suffice it to say that
the technicalities involved in gluing rigid dualizing complexes are much
more pleasant than those that come up in the more classical, non-rigid
context. In view of Remark 2.10, this is hardly surprising; unlike their
unrigidified cousins, rigid dualizing complexes cannot be perturbed by
tensoring with line bundles and shifting.

The drawback of the approach is that, in order to produce rigidifying
isomorphisms, Theorem 2.7 would require all the affine schemes being
glued to be flat over a fixed Gorenstein scheme. This is OK for schemes
over a field k, but the flatness hypothesis becomes a problem as soon as
we deal with more general base schemes. The older gluing results were
much more general (albeit infinitely uglier to prove). The question,
which I will raise in Section 4, is whether there is some alternative
rigidifying structure.

3. Some very new results

In the past few years, we have come to have a new perspective on
dualizing complexes; the approach is so novel, and so beset with obvious
questions which beg to be answered, that it is hard to know where to
start; it is unclear which of the many gaps in our understanding to
mention first. In this section, we will briefly survey the developments
of the recent past and then, in Section 4, we will raise only one of the
multitude of open problems, the one we hinted at towards the end of
Section 2.

But, first we need to review the recent progress. To state the new
results, let me remind the reader of the general formalism of compact
objects in a [TR5] triangulated category. We recall the definitions.
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Definition 3.1. A triangulated category satisfies [TR5] if it has arbi-
trary small coproducts.

Example 3.2. The following are examples:

(i) Let X be a noetherian scheme, and let K(Inj/X) be the category
whose objects are chain complexes of injective objects in the cat-
egory of quasicoherent sheaves on X, and whose morphisms are
the homotopy equivalence classes of chain maps. Then, K(Inj/X)
satisfies [TR5]. The point is that, over a noetherian scheme, direct
sums of injective quasicoherent sheaves are injective.

(ii) LetR be a commutative ring, and letX = Spec(R) be its spectrum.
The category K(Proj/X) has for its objects the chain complexes
of projective objects in the category of quasicoherent sheaves, and
the morphisms are the homotopy equivalence classes of chain maps.
The category K(Proj/X), which is obviously equivalent to K(R–Proj),
also satisfies [TR5].

Definition 3.3. Let T be a triangulated category satisfying [TR5]. An
object k ∈ T is compact if any map

k //
∐
λ∈Λ

Xλ

factors as

k //

%%

∐
λ∈Λ

Xλ

n∐
i=1

Xλi

. �

>>

that is, any map, from k into an arbitrary coproduct, factors through a
finite coproduct.

Definition 3.4. Let T be a triangulated category satisfying [TR5]. The
full subcategory of all compact objects in T is denoted by Tc.

Definition 3.5. Let T be a triangulated category satisfying [TR5]. We
say that T is compactly generated if

(i) Tc is essentially small, and
(ii) Tc generates T. This means that one of the following two equivalent

conditions holds:
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(a) If S is a triangulated subcategory of T, closed under coproducts
and containing Tc, then S = T.

(b) If X ∈ T is any non-zero object, then there is a non-zero map
k −→ X with k ∈ Tc.

This reminds us of the basic definitions in the theory of compactly gener-
ated triangulated categories. The relation of dualizing complexes, with
compactly generated triangulated categories, comes from two recent the-
orems, which appeared in two lovely articles in 2005.

Theorem 3.6. (Krause [6]) Suppose that X is a noetherian, sepa-
rated scheme.6 Then, the category K(Inj/X) is compactly generated.
Furthermore, there is a natural equivalence

K(Inj/X)c ∼= Db(Coh/X).

Theorem 3.7. (Jørgensen [5]) Let R be a noetherian, commuta-
tive ring,7 and put X = Spec(R). Then, the category K(Proj/X) ∼=
K(R–Proj) is compactly generated. Furthermore, there is a natural
equivalence

K(Proj/X)c ∼= Db(Coh/X)
op
.

To be precise means the following. Let X be a noetherian, separated
scheme. In theorems 3.7 and 3.6, Jørgensen and Krause respectively,
exhibit two functors

Db(Coh/X)
op Φ−−−−→ K(Proj/X) , Db(Coh/X)

Ψ−−−−→ K(Inj/X).

Jørgensen’s functor Φ was defined only if X was affine. When they exist,
these functors are fully faithful, and in each case the essential image is
the subcategory of compact objects. The functor Ψ is simple to describe;
it takes an object in Db(Coh/X) to its injective resolution. The functor
Φ is slightly more subtle and I would rather not go into details.

Suppose X is a noetherian scheme, and let I be any bounded-below
complex of quasicoherent sheaves, that is, I ∈ D+(Qcoh/X). For any ob-
ject F of Db(Coh/X), the Hom-complex RHom(F, I) is bounded below;

6Krause’s result is more general than what we state here. We only care about the
scheme version.

7Jørgensen’s theorem [5, Theorem 2.4] is more general in that the ring is not as-
sumed commutative, and needs only be right and left coherent, which is less restrictive
than noetherian. But then, Jørgensen’s result imposes a further hypothesis on R, a
condition which turns out to be unnecessary; see [10, Facts 2.8(iii)] for an assertion
which covers Theorem 3.7, and [10, Remark 2.10] for a comparison with Jørgensen’s
result.
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it belongs to D+(Qcoh/X). The functor RHom(−, I) takes Db(Coh/X)
into D+(Qcoh/X). Noting that the natural map K+(Inj/X) −→
D+(Qcoh/X) is an equivalence, we may view RHom(−, I) as a func-
tor

RHom(−, I) : Db(Coh/X) −−−−→ K+(Inj/X) .

With this notation, we now state a lemma.

Lemma 3.8. Let X be a noetherian, affine scheme, and let I be a
bounded-below complex of injective quasicoherent sheaves, that is, I ∈
K+(Inj/X). Then, the following diagram of functors commutes up to
canonical natural isomorphism

Db(Coh/X)
op RHom(−,I) //

� _

Φ

��

K+(Inj/X)� _

I

��
(†)

K(Proj/X)
I⊗−

// K(Inj/X)

In the diagram (†), the map Φ is Jørgensen’s functor, while I is the
natural inclusion. The functor I⊗− takes F to I⊗ F.

Since I have not disclosed to the reader what is the functor Φ, I must ask
her to accept Lemma 3.8 on faith; the fact that this square commutes
was first observed by Iyengar and Krause [4], who then proceeded to
cleverly use it. Much of the argument below follows their footsteps.

Remark 3.9. Let the notation be as in Lemma 3.8. For a general
I ∈ K+(Inj/X) and a general F ∈ Db(Coh/X), all we know is that
RHom(F, I) belongs to D+(Qcoh/X) ∼= K+(Inj/X). If I is carefully
chosen, then it may just happen that for every F ∈ Db(Coh/X), the
complex RHom(F, I) actually lies in the subcategory Db(Coh/X). For
such a wisely selected I, the following square clearly commutes, once
again up to canonical natural isomorphism:

Db(Coh/X)
op RHom(−,I) //

� _

Φ

��

Db(Coh/X)� _

Ψ

��
(††)

K(Proj/X)
I⊗−

// K(Inj/X)

This comes from the commutativity of (†) coupled with the definition of
the map Ψ; we remind the reader that the map Ψ, given to us in Krause’s
Theorem 3.6, is nothing other than taking injective resolutions.
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Dualizing complexes are examples of wisely chosen complexes, as in
Remark 3.9. We now deduce the following result.

Corollary 3.10. Let X be a noetherian, affine scheme, and let I be (the
injective resolution of) a dualizing complex. Then, the functor

I⊗− : K(Proj/X) −−−−→ K(Inj/X)

is an equivalence of categories.

Proof. By Remark 3.9, the diagram (††) commutes, and because I is a
dualizing complex, the top row in (††) is an equivalence. This means
that the functor I ⊗ − : K(Proj/X) −→ K(Inj/X) is a coproduct-
preserving exact functor of compactly generated categories, inducing an
equivalence on the subcategories of compact objects. Formal nonsense
about compactly generated triangulated categories permit us to deduce
that I⊗− : K(Proj/X) −→ K(Inj/X) is an equivalence. �

The converse also holds. We prove the following.

Corollary 3.11. Let X be a noetherian, affine scheme, and let I be any
complex of injectives. Assume that the functor

I⊗− : K(Proj/X) −−−−→ K(Inj/X)

is an equivalence of categories. Then, I is a dualizing complex.

Proof. Any equivalence must take compact objects to compact objects.
It follows that the image of the compact object OX ∈ K(Proj/X) must
be compact in K(Inj/X); but the image is nothing other than I = I⊗OX .
Its compactness forces it to lie in the essential image of Krause’s functor
Ψ; thus, I is isomorphic in K(Inj/X) to a bounded below complex of
injectives. Replace it by such an isomorph. Then, Lemma 3.8 applies,
and the square (†) commutes. The fact that I ⊗ − takes compacts to
compacts, applied to the top row of (†), forces the functor RHom(−, I)
to take Db(Coh/X)

op
into Db(Coh/X) ⊂ K+(Inj/X). The square (††)

of Remark 3.9 therefore also commutes. Since I⊗− is an equivalence on
the large categories, it must restrict to an equivalence between the sub-
categories of compact objects. We conclude that I must be a dualizing
complex. �

Putting together Corollaries 3.10 and 3.11, we obtain the following.

Summary 3.12. Let X be a noetherian, affine scheme. An object
I ∈ K(Inj/X) is a dualizing complex if and only if the functor I ⊗ − :
K(Proj/X) −→ K(Inj/X) is an equivalence of categories.
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The first puzzle, now solved, was to try to find a global version of
this affine result. Perhaps we should explain why this was a puzzle: the
reader should note that the category K(Proj/X), of projective quasi-
coherent sheaves, is nearly worthless except when X is affine; it often
consists only of the zero object. The problem was to find a suitable
replacement.

In [10, Theorem 1.2], we proved that, when X is a noetherian, affine
scheme, the category K(Proj/X) can also be described as a Verdier
quotient K(Flat/X)/E. Here, K(Flat/X) is the homotopy category of
chain complexes of flat, quasicoherent sheaves on X, and the subcate-
gory E ⊂ K(Flat/X) has many characterizations. The one we want to
generalize here, to all noetherian, separated schemes, is the following.

Definition 3.13. Let X be a noetherian, separated scheme. Let K(Flat/
X) be the homotopy category of chain complexes of flat, quasicoherent
sheaves. We define the full subcategory E = E(X) ⊂ K(Flat/X) as
having objects F∗ which are complexes

· · · −−−−→ Fi−1 ∂i−1

−−−−→ Fi
∂i−−−−→ Fi+1 −−−−→ · · ·

such that

(i) the complex F∗ is acyclic, and
(ii) for each i ∈ Z, the image of the map ∂i : Fi −→ Fi+1 is flat.

As explained above, whenX is affine, the quotient category K(Flat/X)/E
is equivalent to K(Proj/X); more concretely, the natural composite

K(Proj/X) −−−−→ K(Flat/X)
π−−−−→ K(Flat/X)

E

is an equivalence of categories. The Verdier quotient map π makes sense
for any noetherian, separated scheme. We make this a definition.

Definition 3.14. Let X be a noetherian, separated scheme. Define the
functor π : K(Flat/X) −→ Km(Proj/X) to be the Verdier quotient map

π : K(Flat/X) −−−−→ K(Flat/X)
E

;

this means, in particular, that Km(Proj/X) is defined to be the Verdier
quotient K(Flat/X)/E.

Remark 3.15. This definition is the starting point of Daniel Murfet’s
Ph.D. thesis. The logic behind the terminology was that, except in the
special case where X is affine, Km(Proj/X) can be thought of as a fake
substitute for K(Proj/X). The subscript m in Km(Proj/X) stands for
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the mock homotopy category of projectives. But Murfet probably grew
tired of being teased that m also happens to be the first letter of his last
name;8 he has recently begun changing his notation.

The results in Murfet’s Ph.D. thesis inform us as followings.

Theorem 3.16. Let X be a noetherian, separated scheme. Then, the
category Km(Proj/X) is compactly generated. Furthermore, there is a
fully faithful functor

Φ : Db(Coh/X) −−−−→ Km(Proj/X),

whose essential image is the subcategory of compact objects Km(Proj/X)c.

Once again, I would prefer not to give the definition of the functor Φ. I
ask the reader to believe that Lemma 3.8 generalizes; we have

Lemma 3.17. Let X be a noetherian, separated scheme, and let I be
a bounded-below complex of injective quasicoherent sheaves. Then, the
following diagram of functors commutes up to canonical natural isomor-
phism

Db(Coh/X)
op RHom(−,I) //

� _

Φ

��

K+(Inj/X)� _

I

��
(†)

Km(Proj/X)
I⊗−

// K(Inj/X).

In this diagram, Φ is Murfet’s functor, while I is the natural inclusion.

Remark 3.18. The careful reader will object about the functor I⊗−.
Clearly, there is a well-defined functor

I⊗− : K(Flat/X) −−−−→ K(Inj/X).

In order to define the tensor product functor on the Verdier quotient
Km(Proj/X) = K(Flat/X)/E, we need to know that, for every object
F ∈ E, the tensor product I ⊗ F is contractible. This is true; for X
affine, it is in [10, Corollary 9.7(ii)], and the general case may be found
in Murfet’s thesis.

Once you know that the diagram (†) commutes, for any noetherian,
separated scheme X, then the argument we gave, in proceeding from
Remark 3.9 through to Summary 3.12, generalizes formally. We conclude
as follows.

8Including, I must admit, by his Ph.D. advisor.
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Corollary 3.19. Let X be a noetherian, separated scheme. An object
I ∈ K(Inj/X) is a dualizing complex if and only if the functor

I⊗− : Km(Proj/X) −−−−→ K(Inj/X)

is an equivalence of categories.

4. Open problems

Let me begin with the one question to which I know the answer. The
first suggestion that might pop into the mind of the unwary is that,
perhaps, every equivalence of categories Km(Proj/X) −→ K(Inj/X)
takes OX ∈ Km(Proj/X) to a dualizing complex. This is false.

Example 4.1. Let X be a principally polarized abelian variety, with
principal polarization P. Because X is smooth, the categories Km(Proj/
X), D(Qcoh/X) and K(Inj/X) all agree. We need to produce an au-
toequivalence of D(Qcoh/X) which takes OX to something which is not
a dualizing complex.

The idea is to use the Fourier–Mukai correpondence; it is the func-
tor which takes an object F ∈ D(Qcoh/X), pulls it back to π∗1F in
D(Qcoh/X×X), forms the tensor product P L⊗π∗1F in D(Qcoh/X×X),
and then projects to R{π2}∗

[
P L⊗π∗1F

]
in D(Qcoh/X). This Fourier–

Mukai correspondence takes OX to a skyscraper sheaf supported at
0 ∈ X, and the skyscraper sheaf is not a dualizing complex.

What we learn from Example 4.1 is that equivalences of categories
E : Km(Proj/X) −→ K(Inj/X) are not all equal. And this is the point
of the questions I want to ask here.

Some equivalences, such as tensoring with a dualizing complex, take
OX to a dualizing complex. Other equivalences do not. Can one single
out, in some concrete fashion, the equivalences which take OX to du-
alizing complexes with restrictions, for example to rigid dualizing com-
plexes? What is the right notion of a rigid equivalence of categories
E : Km(Proj/X) −→ K(Inj/X)? How can one glue them?
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