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Abstract. Since 2005 a new powerful invariant of an algebra has
emerged using the earlier work of Horváth, Héthelyi, Külshammer
and Murray. The authors studied Morita invariance of a sequence
of ideals of the center of a finite dimensional algebra over a field
of finite characteristic. It was shown that the sequence of ideals is
actually a derived invariant, and most recently a slightly modified
version of it is an invariant under stable equivalences of Morita
type. The invariant was used in various contexts to distinguish
derived and stable equivalence classes of pairs of algebras in very
subtle situations. Generalisations to non symmetric algebras and to
higher Hochschild (co-)homology were given. This article surveys
the results and gives some of the constructions in more details.

1. Introduction

Brauer studied representations of finite groups over fields of char-
acteristic p dividing the order of the group. In 1956, he showed [12],
amongst many other things, that if the field is algebraically closed, then
the number of simple modules is equal to the number of conjugacy
classes of elements of G of order prime to p. His method was rather
general already and Külshammer used these ideas 25 years later to de-
fine very sophisticated invariants for general symmetric algebras. More
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precisely, Külshammer defined and studied in a series of four papers
[30, 31, 32, 33] a sequence of ideals of the center of a symmetric algebra.
In case of group rings over a finite group, Külshammer studied lower de-
fect groups, and proved Brauer’s main theorems and many other results
known in modular representation theory of finite groups by these ideals
and related invariants. Külshammer’s approach was left untouched un-
til Murray [38, 39] studied Külshammer’s approach in connection with
the question of the existence of real characters and of characters of de-
fect 0. This was the starting point of the collaboration between Breuer,
Héthelyi, Horváth, Külshammer and Murray (see [13] and [19]), where
the authors study the existence of odd diagonal entries in the Cartan
matrix of a group algebra. Moreover, in [19], the Morita invariance of
the sequence of ideals was shown and the question of derived invariance
was posed.

In [56], completely different methods were used to show that indeed
at least for perfect base fields the sequence of ideals was invariant un-
der derived equivalence. Still the assumption that the algebras were
symmetric was needed.

After a lecture of the author in September 2005 in Oberwolfach,
Holm became interested in the sequence of ideals and proposed sev-
eral improvements and applications. First, in joint work of the author
with Bessenrodt and Holm [4], using trivial extension algebras the de-
rived invariance, and also the very definition of the Külshammer ideals
was extended to not necessarily symmetric algebras. Further more, the
Külshammer ideals were used in [23] to distinguish the derived equiva-
lence class of two algebras of dihedral type and of two pairs of algebras
of semidihedral type which were not seen to be not derived equivalent
in the classification of Holm [20].

During the September 2005 Oberwolfach lecture Adem asked for a
generalisation of the Külshammer ideal structure to higher Hochschild
(co-)homology. The question is far from trivial and was solved in [57],
where actually two approaches were taken, both of which were not ex-
actly what was asked for. The first approach uses Hochschild homology
instead of cohomology as in the Külshammer ideal structure, and the sec-
ond approach uses the Stasheff approach to the Gerstenhaber structure
to get a non linear analogue. The case of non symmetric algebras was an-
swered in [58] again using trivial extension algebras and the Hochschild
homology approach.
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The derived equivalence classification of tame domestic weakly sym-
metric algebras was given by Bocian, et al. for domestic algebras [9, 10]
and by Holm and Skowroński [21] using for the last remaining delicate
questions, the Külshammer ideals. Similarly, also using Külshammer
ideals in parts, Bia lkowski, et al. [6, 7] and Holm and Skowroński [22]
gave a derived equivalence classification of tame algebras of polynomial
growth up to some difficult problems concerning scalars in the relations
of certain algebras, similar to the problem solved in [23].

Then, most recently Bia lkowski, Erdmann and Skowroński classified
selfinjective algebras with the property that the third syzygy of every
simple module S is again isomorphic to S. They obtain that these
algebras are all certain deformations of preprojective algebras of a gen-
eralised Dynkin type. The deformations involve parameters in the re-
lations of the algebra. As was seen in [21, 22, 23], Külshammer ideals
are well suited for this kind of questions. Derived equivalence classes of
one family called of type L, defined in detail in Example 3.19 and more
generally in Section 6.2 below, were largely given in a joint work with
Holm [24]. Here, we develop quite sophisticated methods to determine
the Külshammer subspace structure at the beginning, which hold for a
priori non symmetric algebras as well. We display this method, even
though strictly speaking only small parts of it are really necessary in
case of algebras of type L. Nevertheless, the method works in general,
is potentially very useful and it seems reasonable to present it here.

During a lecture of the author in October 2007 at Beijing Normal
University, the question of an invariance under stable equivalences was
posed. In most recent results with Yuming Liu and Guodong Zhou,
a generalisation of the Külshammer ideal theory was given for stable
categories and an invariance was proved for stable equivalences of Morita
type ([36] and [29]). Most interestingly, the result has strong links to the
Auslander-Reiten conjecture [3, Conjecture 5, page 409], which says that
a stable equivalence should preserve the number of simple non projective
modules. The result [36, 29] was used in a joint work with Zhou [52]
to give a classification of algebras of dihedral, of semidihedral and of
quaternion type, as defined by Erdmann [16] up to stable equivalences
of Morita type. Moreover, in [53], in a joint work with Zhou, we prove
that the classification of weakly symmetric tame algebras of polynomial
growth up to stable equivalence of Morita type coincides with the derived
equivalence classification of Bia lkowski-Holm-Skowroński.
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Here, we survey these results and give at certain points quite com-
plete proofs for results which seem to be very useful also in further
contexts. In Section 2, we trace some steps in the origins, starting from
Brauer and Reynolds. Section 3 reviews properties of selfinjective alge-
bras and develops tools to actually compute the Külshammer ideals for
quite complicated algebras. These tools were developed during the past
years for this purpose, but the origins are, of course, very classical. Sec-
tion 4 presents the Külshammer ideals as they were developed originally
by Külshammer and as they were generalised later to non-symmetric
algebras. Section 5 displays the invariance of the various forms of the
Külshammer ideals under Morita, derived and stable equivalences. Sec-
tion 6 is devoted to various applications mentioned above including a
detailed outline of the proof for the deformed preprojective algebras
of type L. Section 7 gives the above mentioned two approaches to the
Hochschild (co-)homology generalisations of the Külshammer invariants.

2. Historical facts and basic definitions: the origins by Brauer
and Reynolds

Brauer developed in the 1950’s the far reaching representation the-
ory of groups over fields of finite characteristic. In 1956, he showed in
particular the following result.

Theorem 2.1. (Brauer [12, Statement 3B]) If K is an algebraically
closed field of characteristic p > 0 and if G is a finite group, then the
number of simple KG-modules up to isomorphism equals the number of
conjugacy classes of G of elements of order prime to p.

Of course, in the spirit of that time, Brauer did speak of irreducible
characters rather than of modules, but the result translates into modern
terms as it is shown above. The method of proof he used is somewhat
indirect. He defines for any K-algebra A the space of commutators
[A,A], which is defined as the K-vector space generated as vector space
by all possible expressions ab− ba where a, b ∈ A.

Further, he defines

TA := {a ∈ A | ∃n ∈ N : ap
n ∈ [A,A]}.

The first lemma is a little more general than stated in [12], but with
an identical proof. The generalisation comes from the fact that actually
one can consider more generally

TnA := {a ∈ A | apn ∈ [A,A]},
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for all n ∈ N, a fact which is an observation due to Külshammer. We
will need and study TnA in more detail later.

Lemma 2.2. (Brauer [12, Statement 3A]) Let K be a field of character-
istic p > 0 and let A be a K-algebra. Then, TnA is a K-subspace of A
satisfying TA =

⋃
n∈N TnA. If A is finite dimensional, and K is a split-

ting field for A, then the number of simple A-modules up to isomorphism
equals the dimension of A/TA.

The proof of this lemma is so simple that we may give it here in almost
full detail.

Proof (Brauer). Take x, y ∈ TnA. Then develop (x+y)p and get a sum
of all possible words in x and y with p factors, each occurring exactly
once. If 1 < s < p, then there are n(s) of such words in which x occurs s
times and y occurs p− s times. Take N(s) to be the set of these words.
Then, the cyclic group of order p acts on this set by a cyclic permutation
of the word: c · (a1a2 . . . ap−1ap) := (a2a3 . . . apa1) for a generator c of
the cyclic group and ai ∈ {x, y}. Hence, N(s) decomposes into orbits of
length p, and the difference of two elements in the same orbit is clearly
in [A,A]. Hence,

(x+ y)p − xp − yp ∈ [A,A].

Moreover,

(xy − yx)p + [A,A] = (xy)p − (yx)p + [A,A]

= x
(
(yx)p−1y

)
−
(
(yx)p−1y

)
x+ [A,A] = [A,A]

and

(λx)p = λpxp,

for all x, y ∈ A and λ ∈ K, show that TnA is a K-subspace of A.
Traces of commutators of matrices are 0. Therefore, if A = Matn(K),

then [A,A] ⊆ {M ∈ Matn(K) | trace(M) = 0}. On the other hand,
using elementary matrices, one sees that the inclusion actually is an
equality. The space of matrices with trace 0 is of codimension 1, and
Matn(K) has exactly one simple module up to isomorphism. We denote
by rad(A) the Jacobson radical of the algebra A. Hence, putting A :=
A/rad(A), one gets

A/(TA) = A/(TA)

as vector spaces since rad(A) is nilpotent, and therefore rad(A) ⊆ T (A).
This shows the statement by Wedderburn’s theorem.
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Brauer’s Theorem 2.1 follows from the fact that, for a group ring KG,
a basis is formed by the elements of G, and any element g ∈ G admits a
unique (so-called the p-primary decomposition) g = gp · gp′ , where gp is
a p-element and gp′ is of order prime to p commuting with gp. Hence,

(g − gp′)p
n

+ [KG,KG] = (gp
n − gp

n

p′ ) + [KG,KG] = [KG,KG]

for a certain large n. Then,

hgh−1 − g = hgh−1 − gh−1h = [h, gh−1] ∀g, h ∈ G
and the rest is straightforward.

Remark 2.3. Observe that actually much more is shown: TA = rad(A)+
[A,A].

Another concept due to Reynolds [45] is closely linked. Let G be a
finite group, and let K be an algebraically closed field of characteristic
p > 0. For any g ∈ G and h ∈ G, consider the p-primary decomposition
g = gp · gp′ and h = hp · hp′ . Then, let

Sh := {g ∈ G | ∃x ∈ G : x · gp′ · x−1 = hp′}
be the set of elements in G, whose p′-part is conjugate to the p′-part of
h. Put

Ch :=
∑
g∈Sh

g

to be the sum of all these elements in Sh. Recall that the center of
KG has a basis consisting of all conjugacy class sums of elements of G.
Therefore, Ch ∈ Z(KG), for all h ∈ G.

Definition 2.4. (Reynolds [45, Theorem 1]) The Reynolds ideal of KG
is the ideal of Z(KG) generated as a K-vector space by the elements Ch,
for h ∈ G.

We now get the following result.

Proposition 2.5. (Reynolds [45], cf [18, Theorem VI.4.6]) The Reynolds
ideal R(KG) of KG is the annihilator of rad(KG) in Z(KG).

3. Selfinjective and symmetric algebras revisited

In order to be able to explain more deeply the relations between
Reynolds ideals, T (KG) and related objects, we need to explain the
structure of selfinjective and of symmetric algebras. The theory is clas-
sical and originates in Nakayama’s work [40, 41] in the late 1930’s.
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Various approaches can be found in the literature, but as far as we
know the approach using the Picard groups, which we will explain in
Section 3.2, did not appear elsewhere, though Yamagata [51] gave some
related thoughts.

Throughout this section, we suppose for simplicity that K is a field.
However, many results stay true under weaker assumptions on K; some-
times, K being a commutative ring would be sufficient.

3.1. Basic definitions and properties. Recall that for a K-algebra
A the space of linear forms HomK(A,K) is an A−A-bimodule by

(afb)(x) := f(bxa) ∀a, b, x ∈ A∀f ∈ HomK(A,K).

A group algebra is a symmetric algebra in the following sense.

Definition 3.1. Let K be a field and let A be a K-algebra. Then, A is

• symmetric if A ' HomK(A,K) as A−A-bimodules.
• selfinjective if A ' HomK(A,K) as A left-modules.

We shall derive some consequences.
Suppose A is selfinjective and let ϕ : A −→ HomK(A,K) be an

isomorphism of A left-modules. Then, we may define a K-bilinear form

〈 , 〉 : A×A −→ K

by
〈a, b〉 := (ϕ(b))(a).

The fact that ϕ is an isomorphism of vector spaces is equivalent to the
fact that 〈 , 〉 is non degenerate.

The fact that ϕ is A-linear is equivalent to

〈a, bc〉 = (ϕ(bc))(a) = (bϕ(c))(a) = ϕ(c)(ab) = 〈ab, c〉,
for all a, b, c, where the linearity is used in the second equality. A bilinear
form on an algebra A is called associative if

〈a, bc〉 = 〈ab, c〉, for all a, b, c ∈ A.

Now, ϕ is an A − A-bimodule homomorphism if and only if 〈 , 〉 is
associative (i.e., ϕ is left A-linear) and moreover,

〈a, b〉 = (ϕ(b))(a) = (ϕ(1)b)(a) = ϕ(1)(ba) = 〈ba, 1〉 = 〈b, a〉,
and so A is symmetric if and only if the associative non degenerate form
〈 , 〉 may be chosen symmetric.

We summarise the statements in a (well known) proposition which
gives an alternative definition of selfinjective and symmetric algebras.

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

298 A. Zimmermann

Proposition 3.2. Let K be a field and let A be a finite dimensional
K-algebra. Then, we have the following statements.

• The algebra A is selfinjective if and only if there is a non degen-
erate associative bilinear form on A.
• The algebra A is symmetric if and only if there is a non degen-

erate associative and symmetric bilinear form on A.

We should mention that the existence statement in Proposition 3.2
is constructive: The bilinear form is as explicit as is the isomorphism.
That is, if one knows the explicit isomorphism of A to its dual by an
explicit formula, then one knows the bilinear form by an explicit formula,
and vice versa.

The non degenerate associative symmetric bilinear form is called sym-
metrising form for a symmetric algebra. In the remaining parts of Sec-
tion 3, these ideas are developed further in particular with emphasis on
the question how to actually determine the bilinear form and associated
questions.

For the moment, we shall continue with Reynolds ideals and give the
promised link.

In the following, we frequently use for a symmetric algebra A and
subsets S of A the symbol S⊥ to designate the orthogonal space with
respect to the symmetrising form of the algebra.

Proposition 3.3. (Külshammer [34]; [30, Part I, Lemma A; Satz C;
Satz D]) Let K be a field and let A be a finite dimensional symmetric K-
algebra. Then, [A,A]⊥ = Z(A) and soc(A) = rad(A)⊥ = AnnA(rad(A)).
In particular, we have R(KG) = Z(KG) ∩ soc(KG) for a finite group
G.

Proof.

〈ab−ba, c〉=〈ab, c〉−〈ba, c〉=〈a, bc〉−〈c, ba〉=〈bc, a〉−〈cb, a〉=〈bc−cb, a〉,
and hence c ∈ [A,A]⊥ if and only if 〈ab−ba, c〉 = 0, for all a, b. Therefore,
c ∈ [A,A]⊥ if and only if 〈bc − cb, a〉 = 0, for all a, b. In particular,
c ∈ [A,A]⊥ if and only if bc − cb ∈ A⊥. But A⊥ = 0, since the form is
non degenerate. Hence, c ∈ [A,A]⊥ if and only if bc = cb, for all b ∈ A.
This shows [A,A]⊥ = Z(A). Also,

〈I, rad(A)〉 = 〈1, I · rad(A)〉
and hence

I ⊆ rad(A)⊥ ⇔ I · rad(A) = 0⇔ I ⊆ soc(A),
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which completes the proof.

3.2. The Nakayama automorphism. Selfinjective algebras come
along with an automorphism, called the Nakayama automorphism which
will next be explained.

If A is a selfinjective K-algebra, then A ' HomK(A,K) an A left-
module. Hence, HomK(A,K) is a free left A-module of rank 1. More-
over,

EndA( AHomK(A,K)) ' EndA( AA) ' A,
and so HomK(A,K) is a progenerator over A with endomorphism ring
isomorphic to A, whence inducing a Morita self-equivalence of A. This
implies that the isomorphism class of HomK(A,K) is in the Picard
group PicK(A) (cf. e.g., [44, Section 37]). As is shown there, there is a
group homomorphism,

ω0 : AutK(A) −→ PicK(A),

given by ω0(α) = 1Aα. Here, for any two automorphisms α and β of A,
the A − A-bimodule αAβ denotes A as a vector space, on which a ∈ A
acts by multiplication by β(a) on the right and by α(a) on the left. To
shorten the notation, we abbreviate in this context the identity on A
by 1. One gets ker(ω0) = Inn(A), the inner automorphisms of A, and
hence

OutK(A) := AutK(A)/Inn(A)

is a subgroup of PicK(A). (Observe that the group of inner automor-
phisms does not depend on K.) The image of ω0 consists of those
isomorphism classes of invertible A−A-bimodules which are free on the
left (cf. [44, (37.16) Theorem]). Observe that

α−1A1 −→ 1Aα

a 7→ α(a)

is an A − A-bimodule homomorphism. Hence, ω0 may also be defined
by twisting the action on the left.

Now, as HomK(A,K) is free of rank 1 as left-module, one gets that
HomK(A,K) is in the image of OutK(A) in PicK(A) and therefore there
is an automorphism ν ∈ AutK(A) so that

HomK(A,K) ' 1Aν ,

as A-A-bimodules. The automorphism ν is unique up to an inner auto-
morphism.
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Definition 3.4. Let A be a selfinjective K-algebra. Then, there is an
automorphism ν of A so that HomK(A,K) ' 1Aν , as A-A-bimodules.
This automorphism is unique up to inner automorphisms and is called
the Nakayama automorphism.

Remark 3.5. In Nakayama’s original approach, νA1 is used instead of

1Aν and so the Nakayama automorphism in Nakayama’s work corre-
sponds to the inverse of what we define d here.

In principle, the definition of selfinjectiveness uses an isomorphism of
the A-left-module of linear forms on A with the regular A-module. One
could use the right module structure as well. We get the well-known
result that left selfinjective is equivalent to right selfinjective.

Corollary 3.6. AA ' AHomK(A,K)⇔ AA ' HomK(A,K)A.

To prove the corollary, one just needs to see that the isomorphism as
left-modules implies the following bimodule isomorphisms:

HomK(A,K) ' 1Aν ' ν−1A1

and so HomK(A,K) ' A, as A right-modules.

Now, for a selfinjective K-algebra A, given a simple A-module S, then

1Aν ⊗A S ' HomK(A,K)⊗A S is again a simple A-module.

Definition 3.7. Let K be a field and let A be a finite dimensional K-
algebra. Then, A is weakly symmetric if A is selfinjective and HomK(A,
K)⊗A S ' S, for all simple A-modules S.

This definition will be important in Section 6.3.

3.3. The Nakayama twisted center. Let K be a field and let A be
a finite dimensional K-algebra. For an explicitly given algebra, say as
quiver with relations, it is not very hard to write down many commuta-
tors. This gives an upper bound for the dimension of A/[A,A]. However,
to prove that the commutators found really generate [A,A] is quite diffi-
cult in general. The method is to interpret A/[A,A] as a different space,
in which it is easier to find many linearly independent elements. This
then gives a lower bound for the dimension of A/[A,A]. If the lower and
the upper bounds coincide, then one has proved that the commutators
found actually generate the whole space [A,A].

Let A be a selfinjective K-algebra. Given a ring R and a right R-
module M and a left R-module N , the very definition of the tensor
product M ⊗R N , as free abelian on symbols m⊗ n with relations m⊗
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rn = mr ⊗ n and additivity in each variable, gives an isomorphism
A/[A,A] ' A ⊗A⊗KAop A. An alternative way to see this is by the bar
resolution of the Hochschild homology.

Now,

HomK(A/[A,A],K) ' HomK(A⊗A⊗KAop A,K)

' HomA⊗KAop(A,HomK(A,K))

' HomA⊗KAop(A, 1Aν),

which gives

HomK(A/[A,A],K) ' {a ∈ A | b · a = a · ν(b) ∀b ∈ A},
where the isomorphism is given by sending a homomorphism to the
image of 1 ∈ A, which will satisfy the equation by the property of the
homomorphism being A⊗K Aop-linear.

Definition 3.8. (Holm and Zimmermann [24, Definition 2.2]) Let K be
a field and let A be a selfinjective K-algebra with the Nakayama auto-
morphism ν. Then, the Nakayama twisted center is defined to be

Zν(A) := {a ∈ A | b · a = a · ν(b) ∀b ∈ A}.
Remark 3.9. The definition works for K a commutative ring as well.
The automorphism ν is unique only up to an inner automorphism. If ν
differs from ν ′ by an inner automorphism, let ν(b) = u · ν ′(b) · u−1, for
all b ∈ A and some unit u of A. Then,

Zν(A) = {a ∈ A | b · a = a · ν(b) ∀b ∈ A}
= {a ∈ A | b · a = a · u · ν ′(b) · u−1 ∀b ∈ A}
= {a ∈ A | b · (a · u) = (a · u) · ν ′(b) ∀b ∈ A}
= {a ∈ A |a · u ∈ Zν′(A)}
= Zν′(A) · u−1.

Remark 3.10. In general, the Nakayama twisted center will not be a
ring: if a, b ∈ Zν(A), then

b(a1a2) = (ba1)a2 = (a1ν(b))a2 = a1(ν(b)a2) = a1a2ν
2(b)

and ν2 = ν is equivalent to ν = id. Nevertheless, if z ∈ Z(A) and
a ∈ Zν(A), then

b · za = zba = za · ν(b)

and za ∈ Zν(A). Hence, Zν(A) is a Z(A)-submodule of A. The module
structure does not depend on the chosen Nakayama automorphism, up
to isomorphism of Z(A)-modules.
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Remark 3.11. In case one follows Nakayama’s original definition of a
Nakayama automorphism we need to replace ν by ν−1 and hence there the
Nakayama twisted center would consist of elements a satisfying ν(b)·a =
a · b.

We summarize our results in the following proposition.

Proposition 3.12. (Holm and Zimmermann [24, Lemma 2.4]) If A is a
selfinjective K-algebra over a field K with the Nakayama automorphism
ν, then HomK(A/[A,A],K) ' Zν(A), as Z(A)-modules.

Again, the proposition holds as well for K being a commutative ring.

3.4. How to get the Nakayama automorphism explicitly. Let K
be a field and let A be a finite dimensional selfinjective K-algebra. In
order to compute the Nakayama automorphism ν we need to find an
explicit isomorphism A −→ HomK(A,K), as A-modules.

Proposition 3.13. (Holm and Zimmermann [24, Lemma 2.7]) Let K
be a field and let A be a finite dimensional selfinjective K-algebra with
associated bilinear form 〈 , 〉. Then, the Nakayama automorphism ν of
A satisfies 〈a, b〉 = 〈b, ν(a)〉, for all a, b ∈ A, and any automorphism
satisfying this formula is a Nakayama automorphism.

Remark 3.14. If one would use Nakayama’s original definition, then
the form would satisfy 〈ν(a), b〉 = 〈b, a〉, for all a, b ∈ A.

Proof of Proposition 3.13. There is a non-degenerate associative bilin-
ear form on A, which induces an isomorphism between A and the linear
forms on A, as A-modules, by Proposition 3.2. The isomorphism gives
an isomorphism of A-A-bimodules of 1Aν and HomK(A,K) by

1Aν
ϕ−→ HomK(A,K)

a 7→ 〈−, a〉 = ϕ(a).

Therefore, ϕ(a) = ϕ(1 · ν−1(a)) = ϕ(1) · ν−1(a) and ϕ(a) = ϕ(a · 1) =
a · ϕ(1). Since for f ∈ HomK(A,K) one has (fa)(b) = f(ab) and
(af)(b) = f(ba), for all a, b ∈ A, one gets

〈b, a〉 = (ϕ(a))(b) = (ϕ(1) · ν−1(a))(b) = ϕ(1)(ν−1(a)b)

= (b · ϕ(1))(ν−1(a)) = ϕ(b)(ν−1(a)) = 〈ν−1(a), b〉.
Now, putting a := ν(a′), one gets

〈b, ν(a′)〉 = 〈a′, b〉,
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for all a′, b ∈ A. Hence, the Nakayama automorphism has the above
property. Conversely, if an automorphism ν satisfies 〈a, b〉 = 〈b, ν(a)〉,
for all a, b ∈ A, then the mapping A −→ HomK(A,K), given by a 7→
〈−, a〉, gives an isomorphism of A and HomK(A,K), as A-modules,
inducing the element 1Aν in the Picard group of A.

3.5. Practical questions for algebras given by quivers and re-
lations. In [23], the following very useful result was proven for weakly
symmetric algebras. However, the statement holds in a more general
form.

Proposition 3.15. Let K be a field and let A = KQ/I be a selfinjective
algebra given by the quiver Q and ideal of relations I, and fix a k-basis
B of A consisting of pairwise distinct non-zero paths of the quiver Q.
Assume that B contains a basis of the socle soc(A) of A. Define a K-
linear mapping ψ on the basis elements by

ψ(b) =

{
1 if b ∈ soc(A)
0 otherwise,

for b ∈ B. Then, an associative non-degenerate K-bilinear form 〈−,−〉
for A is given by 〈x, y〉 := ψ(xy).

Remark 3.16. In case A is weakly symmetric, Proposition 3.15 was
proven in [23]. The assumption that A is weakly symmetric was used
in [23] only to prove the non degeneracy of the form. For the reader’s
convenience, we include a complete proof.

Proof. By definition, since A is an associative algebra, ψ is associative
on basis elements, and hence is associative on all of A.

Let ν be a Nakayama automorphism of A. We observe now that
ψ(x · ν(e)) = ψ(e · x), for all x ∈ A, and all primitive idempotents
e ∈ A. Indeed, since ψ is linear, we need to show this only on the
elements in B. Let b ∈ B. If b is a path not in the socle of A, then
bν(e) and eb are either zero or not contained in the socle either, and
hence 0 = ψ(b) = ψ(bν(e)) = ψ(eb). If b ∈ B is in the socle of A,
then b = ebb = bν(eb), for exactly one primitive idempotent eb, and
e′b = bν(e′) = 0 for each primitive idempotent e′ 6= eb. Therefore,
ψ(e′b) = ψ(bν(e′)) = 0 and ψ(ebb) = ψ(b) = ψ(bν(eb)).

It remains to show that the map (x, y) 7→ ψ(xy) is non-degenerate.
Suppose we had x ∈ A\{0} so that ψ(xy) = 0, for all y ∈ A. In particu-
lar, for each primitive idempotent ei of A we get ψ(eixy) = ψ(xyν(ei)) =
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0, for all y ∈ A. Hence, we may suppose that x ∈ eiA, for some primitive
idempotent ei ∈ A.

Now, xA is a right A-module. Choose a simple submodule S of xA
and s ∈ S \ {0}. Then, since s ∈ S ≤ xA, there is a y ∈ A so that
s = xy. Since S ≤ xA ≤ A, and since S is simple, s ∈ soc(A) \ {0}.
Moreover, since x ∈ eiA, also s = eis, i.e., s is in the (1-dimensional)
socle of the projective indecomposable module eiA. So, up to a non
zero scalar factor, s is a path contained in the basis B (recall that by
assumption, B contains a basis of the socle). This implies that

ψ(xy) = ψ(s) = ψ(eis) 6= 0,

contradicting the choice of x, and hence proving non-degeneracy.

Remark 3.17. It should be noted that the form depends on the chosen
basis of the algebra. Indeed, take A = K[X]/X2. The socle is one-
dimensional, and take a basis {X}. Then, one may complete with an
element 1 +µX, for µ ∈ K, to a basis of A. Hence, 1 +X = (1 +µX) +
(1− µ)X and we get 〈1 +X, 1〉 = 1− µ, which depends heavily on µ.

Example 3.18. This example was communicated to me by Guodong
Zhou in January 2010 during a visit in Paderborn. Let K be a field and
let Aq = K〈X,Y 〉/(X2, Y 2, XY − qY X), for q 6= 0. Then, Aq is always
selfinjective and Aq is symmetric if and only if q = 1. Now, ν(X) = qX
and ν(Y ) = q−1Y defines a Nakayama automorphism. Indeed, if we use
the K-basis {1, X, Y,XY }, for Aq we get

1 = 〈X,Y 〉 = 〈Y, ν(X)〉 = 〈Y, qX〉 = 1

1 = 〈Y,X〉 = 〈X, ν(Y )〉 = 〈X, q−1Y 〉 = 1

and likewise for the other basis elements.
Now, if q 6= 1, we get

Z(Aq) = K · 1 +K ·XY,
whereas,

Zν(Aq) = K ·X +K · Y +K ·XY.
Hence, the Z(Aq)-module Zν(Aq) is isomorphic to (Z(Aq)/rad(Z(Aq)))

3.
If A is a symmetric algebra, and ν is chosen to be inner, then Zν(A)

is a rank 1 free Z(A)-module.
Observe that the order of the above automorphism is the multiplica-

tive order of q in K. Hence, for big fields K it is possible to create
algebras with the Nakayama automorphisms of any given order, even
infinite order.
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Example 3.19. Proposition 3.15 is stated in [21] and in [22] with an
additional conclusion. Namely, it is stated there that the form 〈 , 〉 is
symmetric in case the algebra is symmetric. This is not true in general.
A counterexample was given during the collaboration on [24]. Namely,
the deformed preprojective algebra in the sense of Bia lkowski, Erdmann
and Skowroński [5] of type Ln for n ≥ 3 gives an example (see Re-
mark 6.6 below). This algebra is defined by the following quiver

•
0

•
1

•
2

•
3

•
n− 2

•
n− 1

· · · · · · · · ·
- - - -

������
��

?

ε
a0 a1 a2 an−2

a0 a1 a2 an−2

subject to the following relations

aiai + ai−1ai−1 = 0 for all i ∈ {1, . . . , n− 2} ,

an−2an−2 = 0 , ε2n = 0 , ε2 + a0a0 + ε3p(ε) = 0,

for a polynomial p(X) ∈ K[X]. These algebras are the deformed pre-
projective algebras of type Ln, in the sense of Bia lkowski, Erdmann and
Skowroński [5].

For the special case p(X) = X2j, for j ∈ N, and for abbreviation we

call this algebra by Ljn and assume that K is of characteristic 2. Here,
we just give an example where the bilinear form Proposition 3.15 does
not yield a symmetric bilinear form. We will deal with the general case
later in Section 6.2.

In order to be able to apply Proposition 3.15, we need to fix a basis of

the socle of Ljn. The fact that the elements below is indeed a basis of the
algebra is shown in [24] and the basis displayed in Proposition 6.9 can
easily be transformed into the basis below. Most recently, in a completely
independent approach, Andreu [1] shows that the basis below is indeed a
basis.

For our purpose, it seems to be most natural to take as K-basis of the
socle the set

{ε2n−1, ai−1ai−2 . . . a0ε2n−3−2ia0a1 . . . ai−1 | i ∈ {1, 2 . . . , n− 2}}.
Complete the elements

ai−1ai−2 . . . a0ε
2n−3−2ia0a1 . . . ai−1

of eiL
j
nei, for i ≥ 1, to a basis of eiL

j
nei by the elements

ai−1ai−2 . . . a0ε
`a0a1 . . . ai−1,
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for ` ≤ 2n− 4− 3i and

aiai+1ai+2 . . . ajajaj−1 . . . ai+2ai+1ai,

for i+1 ≤ j ≤ n−2. A basis of e0L
j
ne0 is given by ε`, for 0 ≤ ` ≤ 2n−1.

Now, we verify

〈a0εm, a0〉 =

{
1 if m = 2n− 3
0 if m 6= 2n− 3

〈a0, a0εm〉 =

{
1 if m = 2n− 3 or m = 2n− 4− 2j

0 else.

Hence, the bilinear form from Proposition 3.15 is not symmetric. How-

ever, the algebras Ljn are symmetric (cf. Proposition 6.10 below).

4. Külshammer, the new idea in the 1980s

We come back to Brauer’s proof displayed in Section 2, Reynolds’
discoveries and present the original approach which was introduced by
Külshammer to improve and unify these earlier approaches. Moreover,
we explain the generalisation to non symmetric algebras.

4.1. Külshammer’s original construction for symmetric alge-
bras. Recall that for a symmetric K-algebra A, one defines Tn(A) :=
{a ∈ A| apn ∈ [A,A]} and T⊥n (A) is the orthogonal space with respect
to the symmetrizing form.

Definition 4.1. (Külshammer [33]) Let A be a symmetric K-algebra.
Then, the ideal Tn(A)⊥ of Z(A) is the n th Külshammer ideal.

Remark 4.2.

• Remark 2.3 gives that T (A) = [A,A] + rad(A). Hence,

T (A)⊥ = rad(A) ∩ soc(A) =: R(A).

• Külshammer calls the ideals Tn(A)⊥ the generalized Reynolds’
ideals.
• Since Tn(A) ⊆ Tn+1(A) we get Tn(A)⊥ ⊇ Tn+1(A)⊥ and the set

of Külshammer ideals is a decreasing sequence of ideals of the
center with first term being the center and last term being the
Reynolds ideal R(A).
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Külshammer obtained in [30, 31, 32, 33] many properties of a group
in terms of properties of the sequence of ideals Tn(KG)⊥. Already in the
first discussions in [30] the setup was completely general and the defini-
tions were given for a symmetric algebra over a field of finite character-
istic in general. Nevertheless, the applications in focus in Külshammer’s
discussions mainly have been group algebras and representations of finite
groups.

The main tool for technical proofs is still the symmetrizing form.
Since we have by Proposition 3.3 that [A,A]⊥ = Z(A), the restriction
of the symmetrizing form 〈 , 〉 to Z(A) on the left argument induces a
non degenerate form, also denoted by 〈 , 〉,

〈 , 〉 : Z(A)×A/[A,A] −→ K.

As seen in Lemma 2.2, the mapping

A/[A,A]
µ−→ A/[A,A]

a+ [A,A] 7→ ap + [A,A]

is additive and semilinear, i.e., linear if one applies in addition a twist
with the Frobenius automorphism of the field. If V and W are finite
dimensional vector spaces over a field K and if 〈., .〉 is a non degenerate
bilinear pairing V ×W −→ K, then any endomorphism ϕ of W has a
unique left adjoint ϕ∗ ∈ EndK(V ) satisfying 〈v, ϕ(w)〉 = 〈ϕ∗(v), w〉, for
all v ∈ V and w ∈W .

Now, this fact holds for semi-linear maps as well as for linear maps,
and the map µ has a left adjoint,

ζ : Z(A) −→ Z(A).

Now, a ∈ Tn(A)⇔ a ∈ ker(µn) gives the following lemma.

Lemma 4.3. z ∈ Tn(A)⊥ ⇔ z ∈ im(ζn).

This characterization will be the main tool for most of abstract state-
ments later.

4.2. Extending to general algebras: trivial extension algebras
and Külshammer’s theory. Up to now, in order to establish a
Külshammer’s ideal theory it was necessary already for the very defini-
tion to work over symmetric algebras. There is a method to circumvent
this difficulty.
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Let A be any finite dimensional K-algebra. Then, as already men-
tioned, HomK(A,K) is an A−A-bimodule by

(afb)(c) := f(bca) ∀a, b, c ∈ A and f ∈ HomK(A,K).

Recall the construction of the trivial extension algebra, which is well-
known and very useful in the representation theory of associative al-
gebras. We may form TA := HomK(A,K) × A, which is naturally a
K-vector space. We may define an algebra structure on this space:

(f, a) · (g, b) := (ag + fb, ab) ∀ a, b ∈ A, f, g ∈ HomK(A,K) .

It is a tedious but straightforward computation to verify that TA is
a K-algebra by this multiplication. Moreover, the projection to the
second component is an algebra homomorphism TA −→ A with kernel
HomK(A,K) being an ideal with square 0.

Definition 4.4. For any finite dimensional K-algebra A, the algebra
TA is called the trivial extension algebra.

The property that is most interesting for our purposes is that TA is
a symmetric algebra, whatever may be the structure of the algebra A.
Indeed,

〈(f, a), (g, b)〉 := g(a) + f(b) ∀(f, a), (g, b) ∈ TA
is a symmetric associative non degenerate bilinear form on TA. This
fact can be found in [4, Section 3], for example. Proposition 3.2 shows
then the statement.

In [4], Bessenrodt, Holm and the author compute the Külshammer
ideals of TA. We denote

AnnHomK(A,K)(I) := {f ∈ HomK(A,K) | f(I) = {0}},
for any subset I ⊆ A. With this notation we showed the following.

Proposition 4.5. (Bessenrodt, Holm, Zimmermann [4, Theorem 4.1])
Let A be a finite-dimensional algebra over a field of characteristic p > 0,
and let TA be its trivial extension.

(1) We have T0(TA)⊥ = Z(TA) = AnnHomK(A,K)([A,A])× Z(A).

(2) For all n ≥ 1, we have Tn(TA)⊥ = AnnHomK(A,K)(TnA)× 0.

This result, though not difficult to prove, is most remarkable, since
for symmetric algebras we may use the symmetrizing form to transport
Tn(A) via orthogonality to an ideal Tn(A)⊥ of the center of A. The
ideal structure allows to consider many invariants from commutative
algebra attached to this ideal Tn(A)⊥. If A is not symmetric, this is not
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easily possible. Hence, it is surprising that enlarging A to TA, the space
Tn(TA)⊥ keeps the trace of Tn(A)⊥ faithfully in the sense that Tn(A)⊥

can be fully recovered by Tn(TA)⊥.
If A is already symmetric, then the isomorphism TA −→ HomK(TA,

K) takes Tn(A)⊥ to AnnHomK(A,K)(Tn(A)). This fact is not hard to
see. Indeed, if A is symmetric, then HomK(A,K) is the space of all
〈a,−〉, for a ∈ A. Now, a linear form being in AnnHomK(A,K)(Tn(A)) is

equivalent to 〈a, Tn(A)〉 = 0, which in turn is equivalent to a ∈ Tn(A)⊥.

5. Morita’s derived and stable invariance

5.1. The Morita invariance. In [19], Héthélyi, Horváth, Külshammer
and Murray studied amongst other questions the invariance of
Külshammer’s ideals Tn(A)⊥ under the Morita equivalence. Recall that
if

M ⊗A − : A−mod −→ B −mod
is an equivalence, then for any z ∈ Z(A) there is a unique ϕM (z) ∈ Z(B)
so that m · z = ϕM (z) ·m, for all m ∈ M . Then, ϕM : Z(A) −→ Z(B)
is an isomorphism of algebras.

Proposition 5.1. (Héthelyi, Horváth, Külshammer and Murray [19,
Corollary 5.3]) Let K be a perfect field of characteristic p > 0 and let A
and B be finite dimensional K-algebras. If

M ⊗A − : A−mod −→ B −mod
is a Morita equivalence, then ϕM (Tn(A)⊥) = Tn(B)⊥, for all n ∈ N.

The authors show that the mapping ζ of Lemma 4.3 behaves well
with respect to multiplication by idempotents. Using this statement it
is possible to reduce to basic algebras, and to use then that two Morita
equivalent basic algebras are isomorphic.

The existence of basic algebras, i.e., an up to isomorphism unique
minimal algebra which is Morita equivalent to the given algebra, is
very specific for Morita equivalences. Such a concept does not exist for
weaker equivalences such as derived equivalences or stable equivalences
of Morita type.

5.2. Derived invariance. [19, Question 5.4] asked if Külshammer’s
ideals are also invariant under derived equivalences. The method used
for the Morita invariance does not apply since as said before a concept
of “derived basic” algebras do not exist. Nevertheless, an equivalence
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between derived categories of finite dimensional algebras imply the ex-
istence of an isomorphism of the centers.

More precisely, denote by Db(A) the derived category of bounded
complexes of finitely generated A-modules with non zero homology in
only finitely many degrees.

The main tool is the following result.

Theorem 5.2. (Rickard [47, Theorem 3.3], Keller [26, Section 8]; cf.
also, e.g. [28, Theorem 6.2.8]) Let K be a field, let A and B be fi-
nite dimensional K-algebras and suppose that Db(A) ' Db(B) is an
equivalence of triangulated categories. Then, there is a complex X ∈
Db(B ⊗K Aop) which is formed by modules which are projective as B-
modules and projective as A-modules, so that

X ⊗L
A − : Db(A) −→ Db(B)

is an equivalence of triangulated categories.

A complex X as in the theorem is called two-sided tilting complex.
It is unknown if every equivalence between derived categories is of the
form

X ⊗L
A − : Db(A) −→ Db(B).

This is shown to hold on the level of objects, but it is not known if
there may be an exotic equivalence behaving differently on morphisms
(cf. Rickard [47, Corollary 3.5]).

The result has many consequences. In particular,

X ⊗L
A (−⊗L

A HomA(X,A)) : Db(A⊗K Aop) −→ Db(B ⊗K Bop)

is an equivalence. Therefore, if Db(A) ' Db(B), then there exists a two-
sided tilting complex realizing an equivalence. The given equivalence
one started with may be different. Then, this two-sided tilting complex
induces the equivalence of the derived categories of bimodules, and this
then has the property that

EndDb(A⊗Aop)(A)
'−→ EndDb(B⊗Bop)(B)

is an equivalence.
It is known that the for any algebra C the module category is a full

subcategory of the derived category by identifying a module with the
complex concentrated in a single degree 0 (cf. e.g. Verdier [49, Chapitre
III Section 1.2.9]). Therefore, for a C-module M one gets EndC(M) '
EndDb(C)(M). Hence, EndDb(A⊗Aop)(A) ' EndA⊗Aop(A) ' Z(A) and

EndDb(B⊗Bop)(B) ' EndB⊗Bop(B) ' Z(B).

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Külshammer’s Invariants in Representation Theory 311

Corollary 5.3. (Rickard [47, Proposition 2.5]) Let K be a field and let
A and B be finite dimensional K-algebras. If Db(A) ' Db(B), then a
choice of a two-sided tilting complex X realizing this equivalence as ten-
sor product induces an isomorphism ϕX as algebras between the center
of A and the center of B.

We see that still an equivalence between the derived categories of finite
dimensional algebras yield an isomorphism between the centers of the
algebras. The isomorphism however is far less explicit and somewhat
complicated.

Despite these difficulties, we obtain the following result.

Theorem 5.4. [56, Theorem 1] Let A and B be finite dimensional sym-
metric K-algebras over a perfect field K of characteristic p > 0. Suppose
that Db(A) ' Db(B), as triangulated categories. Then, any choice of a
two-sided tilting complex X yields an isomorphism ϕX : Z(A) −→ Z(B)
satisfying ϕX(Tn(A)⊥) = Tn(B)⊥, for all n ∈ N.

It is worth writing that we use here the mapping that is induced by
a functor on the morphisms. We recall that possibly non standard de-
rived equivalences exist. Non standard derived equivalences are not stan-
dard only on morphisms, but we only use morphisms here. Hence, non
standard derived equivalences would possibly induce an isomorphism
between the centers which does not preserve the Külshammer’s ideal
structure.

The proof is much more involved than the proof for the Morita in-
variance in the sense that one needs to reformulate the construction of
Külshammer’s ideals in a “derived category readable form”. Instead of
explicit constructions of particular sets, one needs to argue via homo-
logical properties of morphism spaces.

One should mention that being symmetric is an invariant under de-
rived equivalences.

Proposition 5.5. (Rickard [47, Corollary 5.3] for fields R, [55] for more
general rings) Let R be a Dedekind domain and let A and B be R-algebras
of finite rank over R so that Db(A) ' Db(B). Then, if A is symmetric,
B is symmetric as well.

Applications of Theorem 5.4 will be given in Section 6. Actually, the
invariance of Külshammer’s ideals proved to be a rather powerful tool in
particular in order to distinguish algebras given by quivers and relations
where the relations depend on certain parameters. The structure of the
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quotient Z(A)/Tn(A)⊥ tends to depend on the parameters in several
cases.

5.3. Stable invariance. As usual, the stable category A − mod of
a module category A − mod is the category with objects being A-
modules and morphisms between two A-modules in the stable category
are equivalence classes of morphisms between these A-modules mod-
ulo those which factor through a projective A-module. We denote by
HomA(M,N) the morphisms in A−mod from M to N .

Equivalences between stable categories can behave badly in general.
An example was given by Auslander and Reiten in 1973 [2, Example
3.5].

Example 5.6. Let K be a field. Then, the algebras

A :=

(
K K
0 K

)
×
(
K K
0 K

)
and

B :=

 K K K
0 K K
0 0 K

/ 0 0 K
0 0 0
0 0 0

 ,

the quotient of the upper triangular matrix ring by the ideal generated
by the upper right component matrices have equivalent stable categories.
Indeed, A has six indecomposable modules: four simple modules, two
of which are projective, and the projective cover of the non projective
simple. Hence, the stable module category is equivalent to two copies of
K −mod. The algebra B has five indecomposable modules: three simple
modules, one of which is projective and the projective covers of the other
two simple modules. Hence, the stable module category is equivalent to
two copies of K −mod as well.

The algebras A and B are hence stably equivalent and B is indecom-
posable, whereas A is not. Neither A nor B has any simple direct factor.

Given two self-injective algebras A and B, suppose that X is a com-
plex of A − B-bimodules inducing a standard equivalence Db(B) −→
Db(A). The quasi-inverse is again a standard equivalence, given by
a complex Y of B − A-bimodules. Then, a somewhat technical con-
struction on X and on Y produces an A − B-bimodule M , projective
on either side, and a B − A-bimodule N , projective on either side, so
that the A − A-bimodule M ⊗B N is isomorphic to A ⊕ P , for some
projective A − A-bimodule P , and so that one has an isomorphism of
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B−B-bimodules N⊗AM ' B⊕Q, for some projective B−B-bimodule
Q. This motivated Broué to define a class of stable equivalences with
nicer properties.

Definition 5.7. (Broué [14, Section 5]) Let K be a commutative ring,
A and B be two K-algebras, M ∈ A⊗K Bop −mod, and let N ∈ B ⊗K
Aop−mod. Then, (M,N) is said to induce a stable equivalence of Morita
type if

• M as well as N are projective as A-modules and as B-modules.
• M ⊗B N ' A⊕ P , as A−A-bimodules, for a projective A−A-

bimodule P .
• N ⊗AM ' B ⊕Q, as B −B-bimodules, for a projective B −B-

bimodule Q.

Remark 5.8. Liu showed in [35, Theorem 2.2] that a stable equivalence
of Morita type between two finite dimensional algebras with no separa-
ble summands restricts to a stable equivalence between their summands.
Therefore, the algebras A and B in Example 5.6 are not stably equivalent
of Morita type.

In the meantime, several properties have been shown to be invari-
ant under stable equivalence of Morita type, whereas the general stable
equivalences are still rather poorly understood.

In particular, the following definition will be of importance in our
discussion. Let A be a K-algebra. Then,

Z(A) = HomA⊗KAop(A,A)

and define the stable center,

Zst(A) = HomA⊗KAop(A,A).

The natural homomorphism

HomA⊗KAop(A,A) −→ HomA⊗KAop(A,A)

has a kernel denoted by Zpr(A), the projective center.

Proposition 5.9. (Broué [14, Proposition 5.4]) Let A and B be finite
dimensional K-algebras and let (M,N) be bimodules inducing a stable
equivalence of Morita type. Then, Zst(A) ' Zst(B), as algebras.

How can we determine Zpr(A)? This is a result due to Liu, Zhou
and the author. The Cartan matrix of the algebra A is denoted by CA.
Recall that the Cartan matrix is square of size n, where n is the number
of simple A-modules up to isomorphism. If we label the rows and the
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columns by the isomorphism classes [S] of simple modules, then we have
that the coefficient in position ([S], [T ]) is HomA(PS , PT ), where PS
denotes the projective cover of S. Hence, CA has integer coefficients
and can therefore be interpreted as a linear endomorphism of the K-
vector space Kn.

Proposition 5.10. (Liu, Zhou, Zimmermann [36, Proposition 2.4, Corol-
lary 2.9, Lemma 7.8, Proposition 7.10]) Let K be an algebraically closed
field and let A be a finite dimensional symmetric K-algebra. Then,
Zpr(A) ⊆ Z(A) ∩ soc(A) = R(A) and dimK(Zpr(A)) = rankKCA.

In order to adapt the Külshammer ideal theory for stable equivalences
of Morita type we need to replace the center by the stable center, since
we know that a stable equivalence gives an isomorphism of the stable
centers and we do not have enough information about the center.

Further more, we need to find a replacement of A/[A,A]. For this
purpose, we recall the Hattori-Stallings trace which was generalised by
Bouc to a trace function on the whole Hochschild homology.

Definition 5.11. (Bouc [11] for higher dimensional Hochschild homol-
ogy, Hattori-Stallings in degree 0) Let K be a field and let A and B be two
finite dimensional K-algebras. Given an A − B-bimodule M , which is
projective as B-module, there are elements mi ∈M,ϕi ∈ HomB(M,B),
for i = 1, . . . , n, so that the identity on M in EndB(M) ' M ⊗B
HomB(M,B) is mapped to

∑n
i=1mi⊗ϕi. The fact that M is an A−B-

bimodule gives a mapping

A
αM−→ EndB(M) 'M ⊗B HomB(M,B)

a 7→
n∑
i=1

(ami)⊗ ϕi.

We produce

eval : M ⊗B HomB(M,B) −→ B/[B,B]

by eval(m ⊗ ψ) := ψ(m) + [B,B], for ψ ∈ HomB(M,B) and m ∈ M .
The composition eval ◦ α factorizes through A/[A,A] and the resulting
mapping

A/[A,A] −→ B/[B,B]

is called the trace of M , denoted by trM . Similar statements hold if M
is projective on the left.

Using the Hattori-Stallings trace we give the following definition.
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Definition 5.12. [36, Defintion 4.1] Let A be a finite dimensional K-
algebra

HHst
0 (A) :=

⋂
P projective indecomposable A−mod

ker(trP )

observing that any projective A-module P is a K−A-bimodule as required
by Definition 5.11.

With this preparation we obtain that the dimension of HHst
0 (A) is

an invariant under stable equivalence of Morita type. Denote by `(A)
the number of simple A-modules up to isomorphism.

Theorem 5.13. Let K be an algebraically closed field and let A and
B be finite dimensional K-algebras without any semisimple direct factor
and suppose that A and B are stably equivalent of Morita type.

• (Liu, Zhou, Zimmermann [36, Theorem 6.1]) Then,

dimK(A/[A,A]) = dimK(B/[B,B])⇔ `(A) = `(B).

Moreover, dim(Tn(A)/K(A)) = dim(Tn(B)/K(B)).
• (Liu, Zhou, Zimmermann [36, Corollary 6.2]) If in addition A is

symmetric, then

dimK(Z(A)) = dimK(Z(B))⇔ `(A) = `(B).

and (König, Liu, Zhou [29, Proposition 5.8])

Z(A)/Tn(A)⊥ ' Z(B)/Tn(B)⊥

, for all n ≥ 1.

The proof of the first part uses first that HHst
0 (A) is an invariant

under stable equivalences of Morita type. Then, one shows [36, Theorem
4.4] that

dim(HHst
0 (A)) + rankK(CA) = dim(A/[A,A])

Further more, it is shown in [36, Section 5] that rankK(CA)−dimK(K⊗Z
K0(A)) equals the dimension of the so-called stable Grothendieck group,
which is known to be an invariant under stable equivalences of Morita
type by the work of Xi [50, Section 5].

We should mention the long standing Auslander-Reiten conjecture.

Conjecture. (Auslander-Reiten [3, page 409, Conjecture 5]) Let A and
B be finite dimensional K-algebras. If A and B are stably equivalent,
then the number of simple non projective A-module up to isomorphism
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equals the number of simple non projective B-modules up to isomor-
phism.

A priori I feel that there is no obvious reason why the invariance of the
number of simple A-modules has anything to do with the commutator
quotient. This fact appears somewhat surprisingly in this connection.

The conjecture has been verified for quite a few classes of algebras.
Few general positive results are known so far.

6. Applications

In the last five years, Külshammer’s ideals were successfully employed
to distinguish algebras up to derived and up to stable equivalences of
Morita type for various classes of algebras which were extremely difficult
to deal with previously. In particular, if two algebras are defined by the
same quiver Q and a set of relations I(c) subject to some parameter c
in the base field, then the technique of computing Külshammer’s ideals
and the quotient of the center by the ideal proves to be fruitful in various
cases.

6.1. Algebras of dihedral, semidihedral and quaternion type.
Many authors during the past decades proved ring theoretic properties
for group algebras, and still the area is an active field of research. In
particular, many properties are shown to hold for the Cartan matrices
and the occurrence of certain components in the stable Auslander-Reiten
quiver for blocks of group algebras with dihedral, semidihedral or quater-
nion defect groups. Moreover, it was shown at that time that a block
of a group algebra is of tame representation type (cf. Section 6.3 below
for the precise definition) if and only if the defect group is a dihedral, a
semidihedral or a quaternion group.

Erdmann showed in [16] that these properties determine the Morita
equivalence classes of these algebras as belonging to a finite number of
families, given by quivers with relations, subject to certain parameters
in the relations. Up to these parameters in the relations, the algebras
are classified in a finite number of classes up to the Morita equivalences.

Holm [20] classified further these Morita equivalence classes up to de-
rived equivalences. Many classes merge to a common derived equivalence
class. However, Holm could not determine for a certain number of pa-
rameters if two algebras within one class but with different parameters
are derived equivalent or not.
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Külshammer ideals manage to distinguish derived equivalence classes
in some of these cases.

We display Thorsten Holm’s list [20] of algebras of dihedral, semidi-
hedral and quaternion type up to derived equivalences. Each of these
types form a family. Each family is subdivided into three subclasses:
algebras with one simple module, algebras with two simple modules and
algebras with three simple modules. Each subfamily contains algebras
defined by quivers and relations, depending on parameters.

dihedral semidihedral quaternion

1 simple K[X,Y ]/(XY,Xm − Y n), SD(1A)k1 , k ≥ 2; Q(1A)k1 , k ≥ 2;
m ≥ n ≥ 2,m + n > 4;

D(1A)11 = K[X,Y ]/(X2, Y 2);

(charK = 2) (charK = 2) (charK = 2)

K[X,Y ]/(X2, Y X − Y 2); SD(1A)k2 (c, d) Q(1A)k2 (c, d),
k ≥ 2, (c, d) 6= (0, 0); k ≥ 2, (c, d) 6= (0, 0);

D(1A)k1 , k ≥ 2;

(charK = 2) D(1A)k2 (d),
k ≥ 2, d = 0 or 1;

2 simples D(2B)k,s(c), SD(2B)k,t
1 (c) Q(2B)k,s

1 (a, c)
k ≥ s ≥ 1, c ∈ {0, 1} k ≥ 1, t ≥ 2, c ∈ {0, 1}; k ≥ 1, s ≥ 3, a 6= 0;

SD(2B)k,t
2 (c)

k ≥ 1, t ≥ 2,
k + t ≥ 4, c ∈ {0, 1};

3 simples D(3K)a,b,c, SD(3K)a,b,c Q(3K)a,b,c

a ≥ b ≥ c ≥ 1; a ≥ b ≥ c ≥ 1, a ≥ 2; a ≥ b ≥ c ≥ 1, b ≥ 2,
(a, b, c) 6= (2, 2, 1);

D(3R)k,s,t,u, Q(3A)2,21 (d)
s ≥ t ≥ u ≥ k ≥ 1, t ≥ 2 d 6∈ {0, 1}

All algebras with one simple module in the above list have the quiver
of type 1A

"!
# 

"!
# 

6•6X Y.

The quivers of the algebras of type 2B, 3K, 3A and 3R are respec-
tively:

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

318 A. Zimmermann

type 3K

•

•

•-
�

@
@
@
@
@R
@
@
@
@
@
@I

�
�
�
�
��
�
�

�
�
�
�	

β

γ

δ
ηλ κ

type 2B

• •-���
��

��
��

6
?

α η

β

γ

type 3A

• • •
-

�
-

�
η

β

γ

δ

type 3R

•

•

•6-

@
@
@

@
@@I �

�
�

�
��	

β

δλ

����6 ����

6

����
-

α

ξ

ρ

The relations are respectively:

D(1A)k1 : X2, Y 2, (XY )k − (Y X)k;

D(1A)k2(d) : X2 − (XY )k, Y 2 − d · (XY )k, (XY )k − (Y X)k,

(XY )kX, (Y X)kY ;

SD(1A)k1 : (XY )k − (Y X)k, (XY )kX,Y 2, X2 − (Y X)k−1Y ;

SD(1A)k2(c, d) : (XY )k − (Y X)k, (XY )kX,Y 2 − d(XY )k,

X2 − (Y X)k−1Y + c(XY )k;

Q(1A)k1 : (XY )k − (Y X)k, (XY )kX,Y 2 − (XY )k−1X,

X2 − (Y X)k−1Y ;

Q(1A)k2(c, d) : X2 − (Y X)k−1Y − c(XY )k,

Y 2 − (XY )k−1X − d(XY )k,

(XY )k − (Y X)k, (XY )kX, (Y X)kY,

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Külshammer’s Invariants in Representation Theory 319

as well as,

D(2B)k,s(c) : βη, ηγ, γβ, α2 − c(αβγ)k, (αβγ)k − (βγα)k,

ηs − (γαβ)k;

SD(2B)k,t1 (c) : γβ, ηγ, βη, α2 − (βγα)k−1βγ − c(αβγ)k, ηt − (γαβ)k,

(αβγ)k − (βγα)k;

SD(2B)k,t2 (c) : βη − (αβγ)k−1αβ, ηγ − (γαβ)k−1γα, γβ − ηt−1,
α2 − c(αβγ)k, βη2, η2γ;

Q(2B)k,s1 (a, c) : γβ − ηs−1, βη − (αβγ)k−1αβ, ηγ − (γαβ)k−1γα,

α2 − a(βγα)k−1βγ − c(βγα)k, α2β, γα2;

D(3K)a,b,c : βδ, δλ, λβ, γκ, κη, ηγ, (βγ)a − (κλ)b, (λκ)b − (ηδ)c,

(δη)c − (γβ)a;

D(3R)k,s,t,u : αβ, βρ, ρδ, δξ, ξλ, λα, αs − (βδλ)k, ρt − (δγβ)k,

ξu − (λβδ)k;

SD(3K)a,b,c : κη, ηγ, γκ, δγ − (γα)a−1γ, βδ − (κλ)b−1κ,

λβ − (ηδ)c−1η;

Q(3K)a,b,c : βδ − (κλ)a−1κ, ηγ − (λκ)a−1λ, δλ− (γβ)b−1γ,

κη − (βγ)b−1β, λβ − (ηδ)c−1η,

γκ− (δη)c−1δ, γβδ, δηγ, λκη;

Q(3A)2,21 (d) : βδη − βγβ, δηγ − γβγ, ηγβ − dηδη, γβδ − dδηδ, βδηδ,
ηγβγ.

For the dihedral type algebras with two simple modules a result due
to Kauer and Roggenkamp [25, Corollary 5.3] shows that the parameters
c = 0 and c = 1 yield different derived equivalence classes of algebras.
The method employed there is rather involved. The authors define graph
algebras and show that being a graph algebra is invariant under derived
equivalences. Further more, for one of the scalars, the algebra is a graph
algebra, for the other it is not. Holm and the author gave a much simpler
proof in [23] avoiding graph algebras.

The semidihedral type case can be dealt with at least partially. Again,
we consider the derived equivalence classes of semidihedral type algebras
with two simple modules, and again the question that if the parameters
c = 0 and c = 1 yield different derived equivalence classes is still open.
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Theorem 6.1. (Holm and Zimmermann [23, Theorem 1.1, Theorem 1.2
and Theorem 1.3]) Let K be an algebraically closed field of characteristic
2.

• For any given integers k and s ≥ 1, consider the algebras of di-
hedral type D(2A)k,s(c) for the scalars c = 0 and c = 1. Suppose
that k ≥ 2. Suppose that if k = 2, then s ≥ 3 is odd, and if
s = 2, then k ≥ 3 is odd.

Put Ak,s0 := D(2A)k,s(0) and Ak,s1 := D(2A)k,s(1).

Then, the factor rings Z(Ak,s0 )/T1(A
k,s
0 )⊥ and Z(Ak,s1 )/T1(A

k,s
1 )⊥

are not isomorphic as rings.
In particular, the algebras D(2A)k,s(0) and D(2A)k,s(1) are

not derived equivalent and are not stably equivalent of the Morita
type.
• For any given integers k ≥ 1 and s ≥ 1, consider the algebras of

semidihedral type SD(2B)k,s1 (c) for the scalars c = 0 and c = 1.
Suppose that k ≥ 2. Suppose that if k = 2, then s ≥ 3 is odd,
and if s = 2, then k ≥ 3 is odd.

Put Bk,s
0 := SD(2B)k,s1 (0) and Bk,s

1 := SD(2B)k,s1 (1).

Then, the factor rings Z(Bk,s
0 )/T1(B

k,s
0 )⊥ and Z(Bk,s

1 )/T1(B
k,s
1 )⊥

are not isomorphic as rings.

In particular, the algebras SD(2B)k,s1 (0) and SD(2B)k,s1 (1)
are not derived equivalent and are not stably equivalent of the
Morita type in these cases.
• For any given integers k ≥ 1 and s ≥ 1, consider the algebras of

semidihedral type SD(2B)k,s2 (c) for the scalars c = 0 and c = 1.

Suppose that k ≥ 2. Put Ck,s0 := SD(2B)k,s2 (0) and Ck,s1 :=

SD(2B)k,s2 (1).
If the parameters k and s are both odd, then the factor rings

Z(Ck,s0 )/T1(C
k,s
0 )⊥ and Z(Ck,s1 )/T1(C

k,s
1 )⊥ are not isomorphic

as rings.

In particular, the algebras SD(2B)k,s2 (0) and SD(2B)k,s2 (1)
are not derived equivalent and are not stably equivalent of the
Morita type in these cases.

Remark 6.2.

(1) We should mention that actually the dimension of the quotients
of the centers modulo the Külshammer ideals do not depend on
the scalar c. The algebraic structure of the quotient is needed.
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(2) It is worth noticing that these algebras are all symmetric and so
[56] applies directly. Moreover, the dimension of the center of the
algebra equals the dimension of the quotient of the algebra by the
commutator subspace. This immediate consequence of the fact
that the algebras are symmetric is not clear in case the algebra is
selfinjective only. Example 3.18 gives an easy example for how
complicated the situation might become already for very small
selfinjective algebras. For general selfinjective algebras, a rather
sophisticated theory needs to be developed in order to compute
the commutator subspace.

Remark 6.3. I would like to mention that in [23, Theorem 1.1] the
condition that k ≥ 2 in case of algebras of dihedral type in Theorem 6.1
is unfortunately missing. The condition is necessary. A recent result of
Bleher [8, Theorem 2] determines the parameter c in the relations for a
specific group by completely different methods. If k = 1 would be allowed,
then the parameter would be different than determined by Bleher. This
observation is due to Zhou.

In a recent work, Zhou and the author studied if the derived equiva-
lence classification of the Holm of dihedral, semidihedral and quaternion
type algebras also give a classification up to stable equivalence. Some
partial statements are already given in Theorem 6.1.

One has to deal with several additional problems for stable equiva-
lences of the Morita type.

The first problem is that the Auslander-Reiten conjecture is open,
that is, we might a priori have a stable equivalence of the Morita type
between two algebras of dihedral, semidihedral or quaternion type with
different numbers of simple modules. This does not happen for derived
equivalences, since there the rank of the Grothendieck group is an in-
variant.

The second problem is that a derived equivalence between an algebra
and a local algebra is in fact a Morita equivalence. This was shown by
Roggenkamp and the author [54, Section 5]. The statement is false for
stable equivalences of the Morita type. Given a finite group G and a
field K of characteristic p dividing the order of G, a KG-module M is
endotrivial if the KG-module EndK(M) has the property EndK(M) '
K⊕P for K being the trivial K-module and P a projective KG-module.
Every endotrivial module over a p-group gives a stable self-equivalence
of the Morita type for the group ring over this p-group. The set of
endotrivial modules over a fixed p-group up to some equivalence relation
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form a group, whose structure was completely determined by Carlson
and Thévenaz, and which is non trivial free abelian in most cases [15].

Since the statement of the result might be technical for the non spe-
cialist reader, we illustrate the result in a coarser form.

Recall that we have the following rough classification of algebras up
to derived equivalences.

dihedral semidihedral quaternion
1 simple five types of algebras two types of algebras two types of algebras

depending on parameters depending on parameters depending on parameters
2 simples one type of algebras two types of algebras one type of algebras

depending on parameters depending on parameters depending on parameters
3 simples two types of algebras one type of algebras two types of algebras

depending on parameters depending on parameters depending on parameters

Theorem 6.4 below states mainly that the columns are preserved un-
der stable equivalences of the Morita type and that the rows are pre-
served under stable equivalences of the Morita type.

The actual statement is finer than this, but this scheme gives a rela-
tively good approximation of what is proven in Theorem 6.4.

The details we obtain are given in the following result.

Theorem 6.4. (Zhou and Zimmermann [52, Theorem 7.1]) Let K be
an algebraically closed field.

Suppose that A and B are indecomposable algebras which are stably
equivalent of the Morita type.

• If A is an algebra of dihedral type, then B is of dihedral type. If
A is of semidihedral type, then B is of semidihedral type. If A is
of quaternion type, then B is of quaternion type.
• If A and B are of dihedral, semidihedral or quaternion type, then
A and B have the same number of simple modules.
• Let A be an algebra of dihedral type.

(1) If A is local, then A is stably equivalent of the Morita type
to one and exactly one algebra in the following list:

– A1(n,m) with m ≥ n ≥ 2 and m+ n > 4;
– C1;
– D(1A)k1 with k ≥ 2;
– if p = 2, B1 and D(1A)k2(d) with k ≥ 2 and d ∈ {0, 1},

except that we do not know whether D(1A)k(0) and
D(1A)k(1) are stably equivalent of the Morita type or
not.
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(2) If A has two simple modules, then A is stably equivalent of
the Morita type to one and exactly one of the following al-
gebras: D(2B)k,s(0) with k ≥ s ≥ 1 or if p = 2, D(2B)k,s(1)
with k ≥ s ≥ 1.

(3) If A has three simple modules, then A is stably equivalent
of the Morita type to one and exactly one of the following
algebras: D(3K)a,b,c with a ≥ b ≥ c ≥ 1 or D(3R)k,s,t,u with
s ≥ t ≥ u ≥ k ≥ 1 and t ≥ 2.

• Let A be an algebra of semidihedral type.
(1) If A has one simple module, then A is stably equivalent of

the Morita type to one of the following algebras: SD(1A)k1,
for k ≥ 2 or SD(1A)k2(c, d), for k ≥ 2 and (c, d) 6= (0, 0)
if the characteristic of K is 2. Different parameters k yield
algebras in different stable equivalence classes of the Morita
type.

(2) If A has two simple modules, then A is stably equivalent of

the Morita type to SD(2B)k,s1 (c), for k ≥ 1, s ≥ 2, c ∈ {0, 1}
or to SD(2B)k,s2 (c), for k ≥ 1, s ≥ 2, c ∈ {0, 1}, k + s ≥ 4.

(3) If A has three simple modules, then A is stably equivalent
of the Morita type to one and only one algebra of the type
SD(3K)a,b,c, for a ≥ b ≥ c ≥ 1.

• Let A be an algebra of quaternion type.
(1) If A has one simple module, then A is stably equivalent of

the Morita type to one of the algebras Q(1A)k1, for k ≥ 2
or Q(1A)k2(c, d), for k ≥ 2, (c, d) 6= (0, 0) if characteristic of
the K is 2. Different parameters k yield algebras in different
stable equivalence classes of the Morita type.

(2) If A has two simple modules, then A is stably equivalent of

the Morita type to one of the algebras Q(2B)k,s1 (a, c), for
k ≥ 1, s ≥ 3, a 6= 0.

(3) If A has three simple modules, then A is stably equivalent
of the Morita type to one of the algebras Q(3K)a,b,c, for

a ≥ b ≥ c ≥ 1, b ≥ 2, (a, b, c) 6= (2, 2, 1) or Q(3A)2,21 (d), for
d ∈ K \ {0, 1}. Different parameters a, b, c yield algebras in
different stable equivalence classes of the Morita type.

One particularly nice consequence should be mentioned though.
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Corollary 6.5. (Zhou and Zimmermann [52, Corollary 7.3]) The Aus-
lander -Reiten conjecture 5.3 is true for algebras of dihedral, semidihedral
or quaternion type.

6.2. Bia lkowski-Erdmann-Skowroński deformation of preprojec-
tive algebras. Recently, Bia lkowski, Erdmann and Skowroński classi-
fied in [5] all selfinjective algebras with the property that for all simple
modules S the third syzygy of S is again isomorphic to S. A recent
survey on the circle around these questions was given by Erdmann and
Skowroński in [17].

The problem of classifying algebras so that Ω2(S) ' S, for all simple
modules, was completely solved before and the next most interesting
case is Ω3(S) ' S, for all simple modules. In order to formulate the
result of Bia lkowski, Erdmann and Skowroński [5], we need to introduce
deformed preprojective algebras as defined in [5].

The preprojective algebra of type An is given by the quiver

•
-

�

a1

a1

•
-

�

a2

a2

•
-

�

a3

a3

•
-

�

a4

a4

. . . . . .
-

�

an−1

an−1

•

subject to the relations

a1a1 = an−1an−1 = 0 and aiai = ai+1ai+1, ∀ i ∈ {1, 2, . . . , n− 2}.

The deformed preprojective algebra of type Dn+1 is given by the
quiver

•
�
����
��	

a1
a1

•
@
@@R
@
@@Ia0a0

•
-

�

a2

a2

•
-

�

a3

a3

•
-

�

a4

a4

. . . . . .
-

�

an−1

an−1

•

subject to the relations

a0a0 = a1a1 = an−1an−1 = a1a1 + a0a0 + a2a2 + f(a0a0, a1a1)

= (a1a1 + a0a0)
n−2 = 0

and

aiai = ai+1ai+1∀ i ∈ {2, . . . , n− 2},
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for an element

f(X,Y ) ∈ rad2(K < X,Y > /(X2, Y 2, (X + Y )n−1).

The algebra of type Ln, for n ≥ 2, was already displayed in Exam-
ple 3.19 and is given by the quiver

•
0

•
1

•
2

•
3

•
n− 2

•
n− 1

· · · · · · · · ·
- - - -

������
��

?

ε
a0 a1 a2 an−2

a0 a1 a2 an−2

subject to the relations

aiai + ai−1ai−1 = 0 for all i ∈ {1, . . . , n− 2} ,
an−2an−2 = 0 , ε2n = 0 , ε2 + a0a0 + ε3p(ε) = 0

for a polynomial p(X) ∈ K[X]. Denote by Lpn the deformed preprojec-
tive algebra of type L with deformation polynomial p(X) and abbreviate

Ljn := LX
2j

n , for simplicity, when no confusion may occur.
The deformed preprojective algebra of type En for n ∈ {6, 7, 8} is

given by the quiver

•
-

�

a0

a0

•
-

�

a1

a1

•

6

?

a2 a2

•

-

�

a3

a3

•
-

�

a4

a4

. . . . . .
-

�

an−2

an−2

•

subject to the relations

a0a0 = an−2an−2 = a2a2 = 0, aiai = ai+1ai+1∀ i ∈ {5, . . . , n− 2}
a1a1 + a2a2 + a3a3 + f(a1a1, a2a2) = (a1a1 + a2a2)

n−3 = 0

for
f ∈ rad2(K < X,Y > /(X3, Y 2, (X + Y )n−3)

so that
(X + Y + f(X,Y ))n−3 = 0.

For all deformed preprojective algebras, we number the vertices by
the condition that the vertex ai starts at vi and ends at a vertex of
higher label. This convention numbers the vertices in a unique way.
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Remark 6.6. Observe that in [17, page 238], for type E only “admissible
deformations” may be applied, which is the condition that (X + Y +
f(X,Y ))n−3 = 0. However, one relation is missing in [17], for type
D and type E, whereas the relation is correctly displayed in [5]. I am
grateful to Karin Erdmann for a clarifying email on this subject.

The result is the following.

Theorem 6.7. (Bia lkowski, Erdmann and Skowroński [5, Theorem 1.2])
Let A be a finite dimensional selfinjective K-algebra. Then, Ω3(S) ' S,
for every simple A-module, if and only if A is preprojective of type An,

for n ≥ 1, or deformed preprojective of type Df
n, for n ≥ 4, Ef6 , Ef7 , Ef8

or Lpn, for n ≥ 1.

It is a non trivial task to determine when deformations f actually lead
to non isomorphic algebras. In a lecture at the ICRA XIV conference in
Tokyo in August 2010, Bia lkowski annonced that in characteristic 2 the

deformed preprojective algebras of type LX
2j

n , for j ∈ {0, 1, . . . , n − 1},
form a complete set of the Morita equivalence classes of these algebras,
a fact that Skowroński pointed out in an email to the author on March
2007. Skowroński announced in another email to the author in Oc-
tober 2008 that all algebras Lpn are symmetric and that moreover, in
characteristic different from 2 the algebra Lpn is Morita equivalent to

LX
n−1

n , the non deformed preprojective algebra of type Ln. The content
of Bia lkowski’s ICRA lecture are available in the conference abstract
volume.

For type Df
n, Bia lkowski, Erdmann and Skowroński [5, Proposition

6.2] show that the algebrasD
(XY )j

n are not Morita equivalent for different
values of j.

No statement is known for type E preprojective algebras.

In a joint work with Holm, we computed the Külshammer ideals for

the algebras LX
2j

n . One main difficulty was to determine the commu-
tator subspace. It is not very difficult to get a generating set for the
quotient of the algebra modulo the commutator space, but it is much
more complicated to prove that the commutators one found really gen-
erate the commutator space. In order to do so, we apply the method
described in Section 3.3 and Section 3.4.

A first step is the following lemma.
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Lemma 6.8. [24, Lemma 3.9] Let K be any field. Then, Lpn+1/[L
p
n+1,

Lpn+1] has a K-linear generating set

{e0, e1, . . . , en, ε, ε3, ε5, ε7, . . . , ε2n+1}.
We first need to fix a basis.

Proposition 6.9. [24, Proposition 3.1] Let K be any field. A K-basis
of Lpn is given by the following paths between the vertices i and j, where
i, j ∈ {0, 1, . . . , n− 1}.
(1) aiai+1 . . . aj−1 for i < j

(2) aiai+1 . . . aj−1aj . . . a`a`a`−1 . . . aj for i < j

and some j ≤ ` ≤ n− 2
(3) ai−1ai−2 . . . aj for i ≥ j
(4) aiai+1 . . . a`a`a`−1 . . . ai . . . aj for i ≥ j

and some i ≤ ` ≤ n− 2

(5) ai−1ai−2 . . . a0εa0a1 . . . aj−1 for any i, j

(6) ai−1ai−2 . . . a0εa0a1 . . . a`−1a`a`a`−1 . . . aj for i < j

and some j ≤ ` ≤ n− 2

(7) aiai+1 . . . a`a`a`−1 . . . a1a0εa0a1 . . . aj−1 for i ≥ j
and some i ≤ ` ≤ n− 2.

Now, we may define a Frobenius form with respect to this basis using
Proposition 3.15. It turns out that this form is in fact symmetric, non
degenerate and associative.

Theorem 6.10. [24, Theorem 3.5] Let K be any field. Then, the algebra
Lpn is symmetric.

We get many elements in the center of Lpn by following lemma.

Lemma 6.11. [24, Lemma 3.13] Let K be any field. Then,

Z(Lpn) 3 ε2 + ε3p(ε) +

n−2∑
j=0

(−1)j+1ajaj .

Hence,{(
ε2 + ε3p(ε) +

n−2∑
j=0

(−1)j+1ajaj

)` ∣∣∣ ` ∈ {0, 1, . . . , n− 1}
}
⊆ Z(Lpn)
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is a K-free subset. Moreover, soc(Z(Lpn)) ⊆ Z(Lpn).

Lemma 6.11 provides a large space in Z(Lpn) of dimension 2n. Lemma
6.8 shows that Lpn/[L

p
n, L

p
n] has dimension at most 2n, whereas Proposi-

tion 3.12 shows that the two vector spaces are isomorphic. Hence, the
elements displayed in Lemma 6.8 form a basis of Lpn/[L

p
n, L

p
n].

Using this result, it is then possible to show the following result.

Theorem 6.12. (Holm and Zimmermann [24, Theorem 4.1]) Let K be
a perfect field of characteristic 2. Then, for 0 ≤ j < n, we get

dim
(
Ti(L

X2j

n )
)
− dim

(
[LX

2j

n , LX
2j

n ]
)

=

n−max

(⌈
2n− (2i+1 − 2)j − (2i+1 − 1)

2i+1

⌉
, 0

)
.

The attentive reader may remark that for the theorem one needs to
suppose that the field K is perfect, whereas this was not supposed in
the auxiliary steps. The reason for this assumption comes from the
technicalities in the proof of Theorem 6.12. We need to find elements x
so that x2

n ∈ [Lpn, L
p
n]. By what preceded, and rather easy arguments,

it is necessary to consider this question only for x being a K-linear
combination of odd powers of ε. Now, the 2n powers of x will give an
element which is expressed in 2n th powers of the original coefficients,
and from there it is not hard to imagine that one needs to take 2n th
roots of the solutions, in order to get the original coefficients from some
expression one obtains from some solution one got by a linear algebra
argument.

Moreover, we remark that the Morita equivalence classification of
the algebras Lpn is finer than what can be done by the Külshammer
ideals. However, the Külshammer ideals distinguish algebras up to de-
rived equivalences and even up to stable equivalences of the Morita type
(cf. Theorem 5.13).

6.3. Algebras of polynomial growth and domestic weakly sym-
metric algebras. Let K be an algebraically closed field and let A be
a finite dimensional K-algebra.

• The algebra A is called to be of finite representation type if A
admits only a finite number of indecomposable A-modules up to
isomorphism.
• The algebra A is called to be of tame representation type if A is

not of finite representation type and if for every positive integer
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d there are a finite number of A⊗KK[X]-modules M1(d),M2(d),
. . . , Mn(d)(d), which are free as K[X]-modules and so that for
each d, all but a finite number of d-dimensional indecomposable
A-modules are isomorphic to a module of the form Mi(d) ⊗K
K[X]/ (X − λ), for some λ ∈ K and some i ∈ {1, . . . , n(d)}.

– The tame algebra A is called to be of domestic represen-
tation type if, taking n(d) as small as possible, there is an
integer m so that n(d) ≤ m, for all d.

– The tame algebra A is called to be of polynomial growth if,
taking n(d) as small as possible, there is an integer m so
that

lim
n→∞

n(d)

dm
= 0.

• The algebra A is called to be of wild representation type if for
every algebra B there is a functor B−mod −→ A−mod which is
exact, preserves isomorphism classes and carries indecomposable
objects to indecomposable objects.

Of course, tame domestic algebras are polynomial growth tame alge-
bras.

A fundamental result of Drozd says that A is either tame or wild or
of finite representation type. There is intensive research aiming at a
possible classification of algebras of tame representation type, though
the goal seems still to be very far. Nevertheless, Bocian, Holm and
Skowroński classified tame domestic weakly symmetric algebras [9, 10,
21] and tame weakly symmetric algebras of polynomial growth [6, 7, 22]
up to derived equivalences in a series of papers.

We present some of the details.

Definition 6.13. A selfinjective algebra of tame representation type is
called standard if its basic algebra admits simply connected Galois cov-
erings. Otherwise, a selfinjective algebra is called non standard.

Theorem 6.14. [9, Theorem 1] For an algebra A, the following state-
ments are equivalent:

(1) A is a representation-infinite domestic selfinjective algebra hav-
ing simply connected Galois coverings and the Cartan matrix CA
is singular.

(2) A is derived equivalent to the trivial extension T (C) of a canon-
ical algebra C of Euclidean type.
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(3) A is stably equivalent to the trivial extension T (C) of a canonical
algebra C of Euclidean type.

Moreover, the trivial extensions T (C) and T (C ′) of two canonical al-
gebras C and C ′ of Euclidean type are derived equivalent (respectively,
stably equivalent) if and only if the algebras C and C ′ are isomorphic.

In order to be able to formulate the Bocian, Holm and Skowroński’s
result for weakly symmetric algebras of domestic representation type
with nonsingular Cartan matrices, we need to define the following alge-
bras.

"!
# 

"!
# 

6•6β α

A(λ)

λ ∈ K\{0}
α2 = 0, β2 = 0, αβ = λβα

�
�
��

β1
@

@
@I

β2H
HHYβ3

�

β4
����

βq−3H
HHj

βq−2
-
βq−1
��
�*

βq

�
�
��

α1

@
@
@I

α2

HH
HY

α3

�

α4

����

αp

αp−1 αp−2
αp−3

�
��*

-
HHHj

p p p p p p p
p p p
p p p p p p p p p p

ppppppp
ppp
pppppppppp

A(p, q)

1 ≤ p ≤ q

p+ q ≥ 3

α1α2 · · ·αpβ1β2 · · ·βq = β1β2 · · ·βqα1α2 · · ·αp

αpα1 = 0, βqβ1 = 0

αiαi+1 · · ·αpβ1 · · ·βqα1 · · ·αi−1αi = 0, 2 ≤ i ≤ p

βjβj+1 · · ·βqα1 · · ·αpα1 · · ·βi−1βi = 0, 2 ≤ j ≤ q
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p p p p p p p p
p p
p p p p p p p p p p

β1
@

@
@I

β2H
HHYβ3

�

β4
�
���

βn−3H
HHj

βn−2
-
βn−1
��
�*

βn

�
�
����
���

α

Λ(n)

n ≥ 2

α2 = (β1β2 · · ·βn)2, αβ1 = 0, βnα = 0

βjβj+1 · · ·βnβ1 · · ·βnα1 · · ·βi−1βi = 0, 2 ≤ j ≤ n

p p p p p p p p
p p
p p p p p p p p p p

β1
@

@
@I

β2H
HHYβ3

�

β4
����

βn−3HHHj
βn−2
-
βn−1
��
�*

βn

�
�
��

�
�
����
�
���
A
A
AAUA
A
AAK γ1

α2

γ2

α1

Γ(n)

n ≥ 1

α1α2 = (β1β2 · · ·βn)2 = γ1γ2,

α2β1 = 0, γ2β1 = 0, βnα1 = 0

βnγ1 = 0, α2γ1 = 0, γ2α1 = 0

βjβj+1 · · ·βnβ1 · · ·βnα1 · · ·βi−1βi = 0, 2 ≤ j ≤ n.

Theorem 6.15. (Bocian, Holm and Skowroński [9, Theorem 2]) For a
domestic standard selfinjective algebra A, the following statements are
equivalent:

(1) A is weakly symmetric and the Cartan matrix CA is nonsingular.
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(2) A is derived equivalent to an algebra of the form A(λ), A(p, q),
Λ(n),Γ(n).

(3) A is stably equivalent to an algebra of the form A(λ), A(p, q),
Λ(n),Γ(n).

Moreover, two algebras of the forms A(λ), A(p, q),Λ(n),Γ(n) are de-
rived equivalent (respectively, stably equivalent) if and only if they are
isomorphic.

For algebras of non standard type, we need to introduce the following
algebra Ω(n). The quiver with relations of Ω(n) is as follows.

p p p p p p p p
p p
p p p p p p p p p p

β1
@

@
@I

β2H
HHYβ3

�

β4
����

βn−3HHHj
βn−2
-
βn−1
�
��*

βn

�
�
����
���

α

Ω(n)

n ≥ 1

α2 = αβ1β2 · · ·βn, αβ1β2 · · ·βn + β1β2 · · ·βnα = 0,

βnβ1 = 0, βjβj+1 · · ·βnβ1 · · ·βnα1 · · ·βi−1βi = 0, 2 ≤ j ≤ n.

Theorem 6.16. (Bocian, Holm and Skowroński [10, Theorem 1]) Any
nonstandard representation infinite selfinjective algebra of domestic type
is derived equivalent (respectively stably equivalent) to an algebra Ω(n)
with n ≥ 1. Moreover, two algebras Ω(n) and Ω(m) are derived equiva-
lent (respectively, stably equivalent) if and only if m = n.

Bocian, Holm and Skowroński showed that standard and non stan-
dard domestic algebras could not be derived equivalent. We are able to
improve the result partially.

Lemma 6.17. (Zhou and Zimmermann [53, Lemma 2.3]) A standard
weakly symmetric algebra of domestic type cannot be stably equivalent to
a nonstandard one.

The method of proof is to compare stable the Auslander-Reiten quiv-
ers and to use the fact that the class of special biserial algebras is closed
under stable equivalences, a result due to Pogorza ly [42, Theorem 7.3].
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Observe that a Morita equivalence classification of standard self-
injective domestic algebras is not given in the results of Bocian, Holm
and Skowroński. This is the reason why we suppose that the domestic
algebras are weakly symmetric and not only selfinjective.

We show the following.

Theorem 6.18. (Zhou and Zimmermann [53, Theorem 2.5])

(1) Two weakly symmetric algebras of domestic representation type
are derived equivalent if and only if they are stably equivalent.

(2) The class of weakly symmetric algebras of domestic representa-
tion type is closed under stable equivalences.

Bocian, Holm and Skowroński give a classification of symmetric alge-
bras of polynomial growth up to derived equivalences [6], [7], [22]. They
get a finite list of algebras which are defined by quivers and relations,
and where the relations involve some parameters. We are not completely
able to distinguish the algebras with the same quiver and relations and
different parameters. We call this problem the scalar problem.

As for symmetric algebras of polynomial growth, we get the following
result.

Theorem 6.19. (Zhou and Zimmermann [53, Theorem 3.5]) The clas-
sification of indecomposable non-domestic weakly symmetric algebras of
polynomial growth up to stable equivalences of the Morita type coincide
with the derived equivalence classification, modulo the scalar problems.

The method of proof uses, among other general arguments, a compu-
tation of the Külshammer ideals.

Concerning the Auslander-Reiten conjecture we get the following re-
sult.

Corollary 6.20. (Zhou and Zimmermann [53, Corollary 2.7, Theorem
3.6, Theorem 3.7])

• Let A be an indecomposable algebra stably equivalent to an in-
decomposable symmetric algebra B of domestic type. Then, A
and B have the same number of isomorphism classes of simple
modules.
• Let A be an indecomposable algebra stably equivalent to an in-

decomposable weakly symmetric standard algebra B of domestic
type. Then, A and B have the same number of isomorphism
classes of simple modules.

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

334 A. Zimmermann

• Let A and B be indecomposable algebras which are stably equiv-
alent of the Morita type. If A is tame symmetric with only Ω-
periodic modules, then A and B have the same number of iso-
morphism classes of simple modules.
• Let A be an indecomposable algebra and suppose that A is stably

equivalent of the Morita type to an indecomposable non-domestic
symmetric algebra B of polynomial growth. Then, A and B have
the same number of isomorphism classes of simple modules.
• Let A and B be two indecomposable algebras which are standard

non-domestic weakly symmetric algebra of polynomial growth or
non-standard non-domestic selfinjective algebra of polynomial
growth. If they are stably equivalent of the Morita type, then A
and B have the same number of isomorphism classes of simple
modules.

7. Hochschild’s (co-)homology

It is well-known (cf. e.g., Loday [37, Paragraphs 1.1.6 and 1.5.2]), and
actually we already used this fact implicitly in Section 3.3 and Section
5.3, that A/[A,A] = HH0(A) is the degree 0 Hochschild’s homology
and Z(A) = HH0(A) is the degree 0 Hochschild’s cohomology. A nat-
ural question becomes now to generalise Külshammer’s ideals to higher
Hochschild’s (co-)homology. This was done by the author in [57] and
[58].

The symmetrising form on A induces a non degenerate pairing HH0(A)
×HH0(A) −→ K. Hence, in order to generalize to higher Hochschild’s
(co-)homology, we first need to produce a non degenerate bilinear form,

HHn(A)×HHn(A) −→ K,

for symmetric algebras induced by the symmetrising form. Let BA be
the bar resolution (i.e., a specific projective resolution; and actually
projective resolution will do at this place) of A as A⊗K Aop-modules:

HomK(HHn(A),K) = HomK(Hn(BA⊗A⊗Aop A),K)

= Hn(HomK(BA⊗A⊗Aop A,K))

= Hn(HomA⊗KAop(BA,HomK(A,K))

' Hn(HomA⊗KAop(BA,A))

= HHn(A),

where the second last isomorphism is induced by the symmetrising form
A ' HomK(A,K), as A⊗K Aop modules.
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This isomorphism yields a non degenerate bilinear form,

〈 , 〉n : HHn(A)×HHn(A) −→ K,

which extends the symmetrising form on A.
In order to define Külshammer’s ideals, we used the p-power map on

HH0(A) = A/[A,A]. However, how to get a p-power map on HH∗(A)
is not completely clear. Nevertheless, the multiplicative structure on
HH∗(A), defined by the cup product, can be used instead. By adjoint-
ness with respect to the bilinear form, we then get an analogue of the
Külshammer ideal structure on Hochschild’s homology instead of coho-
mology. This dual construction on A/[A,A] = HH0(A) was studied by
Külshammer [33] as well.

For the pn-power mapping by the cup product HHm(A,A)−→HHpnm

(A,A), one gets a right adjoint, κ
(m),A
n : HHpnm(A,A) −→ HHm(A,A),

with respect to 〈 , 〉m and 〈 , 〉pnm. Observe that if p is odd, then the
cup product square is 0 in odd degree cohomology. Hence, for p odd,
the p-power map as well as the adjoint is 0 in odd degree cohomology.

Proposition 7.1. [57, Lemma 2.6, the beginning remarks of Section 3]
Let A be a finite dimensional symmetric K algebra over a perfect field K
of characteristic p > 0. Then, for all n ∈ N and for all x ∈ HHpnm(A,A),

there is a unique κ
(m)
n (x) ∈ HHm(A,A) so that for all f ∈ HHm(A,A),

one has 〈
fp

n
, x
〉
pnm

=
(〈
f, κ(m)

n (x)
〉
m

)pn
.

Using the mapping κ
(m)
n , one gets the compatibility with derived

equivalences.

Theorem 7.2. [57, Theorem 1] Let A be a finite dimensional symmet-
ric K-algebra over a perfect field K of characteristic p > 0. Let B be a
second algebra so that Db(A) ' Db(B), as triangulated categories. Let
p be a prime and let m ∈ N. Then, there is a standard equivalence
F : Db(A) ' Db(B), and any such standard equivalence induces an iso-
morphism HHm(F ) : HHm(A,A) −→ HHm(B,B) of all Hochschild’s
homology groups satisfying

HHm(F ) ◦ κ(m),A
n ◦HHpnm(F )−1 = κ(m),B

n .

The proof is very much like the in degree 0 for Hochschild’s cohomol-
ogy. Nevertheless, a clear definition of an isomorphism on Hochschild’s
homology induced by a standard derived equivalence was not published
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explicitly before. The construction was somewhat implicit in Rickard’s
work, but an explicit clarification seems to appear in [57, Section 1.2]
for the first time.

One should notice however that a derived equivalence may be non
standard, and then it is not clear how to define an induced mapping
on the category of bimodules, and in the sequel on the Hochschild’s
homology. One needs the standard equivalence in order to control the
way it acts on Hochschild’s homology.

What happens if A is not symmetric? Already for the non degenerate
pairing between Hochschild’s homology and cohomology it is not clear
how to to define it properly. We may again use trivial extension algebras.
Then, there are ring homomorphisms A −→ TA and TA −→ A by
projection, injection from and to the second component. Hochschild’s
homology is functorial, contrary to Hochschild’s cohomology. Hence, we
get mappings

HHn(ιA) : HHn(A) −→ HHn(TA)

and

HHn(πA) : HHn(TA) −→ HHn(A).

Now, defining

κ̂(m)
n := HHm(πA) ◦ κ(m)

n ◦HHpnm(ιA) : HHpnm(A) −→ HHm(A),

one obtains an invariant under derived equivalences.

Theorem 7.3. [58, Theorem 2] Let K be a perfect field of characteris-
tic p > 0, A and B be finite dimensional K-algebras and suppose that
Db(A) ' Db(B) as triangulated categories. Let F be an explicit standard
equivalence between Db(A) and Db(B). Then, F induces a sequence of
isomorphisms HHm(F ) : HHm(A) −→ HHm(B) so that

HHm(F ) ◦ κ̂(m);A
n = κ̂(m);B

n ◦HHpnm(F ).

Obviously, Theorem 7.3 generalizes Theorem 7.2 to non symmetric
algebras. Since Hochschild’s homology is often better understood than
Hochschild’s cohomology, we expect that this generalization will bear
use in future.

Nevertheless, there is a p-power map available in some cases com-
ing from the Gerstenhaber’s structure on Hochschild’s homology. The
construction is due to Stasheff and Quillen.

Let

Coder(B(A),B(A)) := {D ∈ EndA⊗Aop(B(A))|∆ ◦D
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= (idB(A) ⊗D +D ⊗ idB(A)) ◦∆}

be the coderivations. Since B(A) is graded, Coder(B(A),B(A)) is
graded as well. Denote by Codern(B(A),B(A)), the degree n coderiva-
tions. The vector space Coder(B(A),B(A)) is a graded Lie algebra with
Lie bracket being the commutator. Moreover, (cf. Stasheff [48, Propo-
sition]),

Coder(B(A),B(A)) ' HomA⊗Aop(B(A), A)[1] .

The key observation is the following.

Lemma 7.4. [57, Lemma 4.1] (Keller, personal communications)

• Suppose K is a field. Then,

D ∈ Coder2n+1(B(A),B(A))⇒ D2 ∈ Coder2·(2n+1)(B(A),B(A)).

• Suppose K is a field of characteristic p > 0. Then,

D ∈ Coder2n(B(A),B(A))⇒ Dp ∈ Coder2pn(B(A),B(A)).

This p-power structure carries over to Hochschild’s cohomology.

Lemma 7.5. [57, Lemma 4.2] Let K be a field of characteristic p > 0
and D ∈ Codern(B(A),B(A)).

(1) If p = 2 and n ∈ N, then the mapping D 7→ D2 induces a
mapping

HHn+1(A,A) −→ HH2n+1(A,A).

(2) If p > 2 and n = 2m ∈ 2N, then the mapping D 7→ Dp induces
a mapping

HH2m+1(A,A) −→ HH2pm+1(A,A).

Hence, for p = 2, the Hochschild’s cohomology becomes a 2-restricted
Lie algebra with the Gerstenhaber’s bracket and the 2-power map. For
p > 2, the odd degree Hochschild’s cohomology becomes a p-restricted
Lie algebra with the Gerstenhaber’s bracket and the p-power mapping.

Using these constructions we get the following result.

Theorem 7.6. [57, Proposition 4.4] Let A and B be K-algebras over a
field K. Suppose Db(A) ' Db(B), as triangulated categories.

• If the characteristic of K is 2, then HH∗(A,A) and HH∗(B,B)
are isomorphic, as restricted Lie algebras.
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• If the characteristic of K is p > 2, then the Lie algebras consist-
ing of odd degree Hochschild cohomologies

⊕
n∈NHH

2n+1(A,A)

and
⊕

n∈NHH
2n+1(B,B) are isomorphic, as restricted Lie al-

gebras.

However, we fail to prove that the so-defined Gerstenhaber’s p-power
map is additive, neither semilinear. Hence, it does not seem to be clear
how a Külshammer’s structure could be built from there.
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