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ON THE k-NULLITY FOLIATIONS IN FINSLER
GEOMETRY
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Abstract. Here, a Finsler manifold (M, F ) is considered with cor-
responding curvature tensor, regarded as 2-forms on the bundle of
non-zero tangent vectors. Certain subspaces of the tangent spaces
of M determined by the curvature are introduced and called k-
nullity foliations of the curvature operator. It is shown that if the
dimension of foliation is constant, then the distribution is involutive
and each maximal integral manifold is totally geodesic. Character-
ization of the k-nullity foliation is given, as well as some results
concerning constancy of the flag curvature, and completeness of
their integral manifolds, providing completeness of (M, F ). The
introduced k-nullity space is a natural extension of nullity space
in Riemannian geometry, introduced by Chern and Kuiper and en-
larged to Finsler setting by Akbar-Zadeh and contains it as a special
case.

1. Introduction

Foliations of manifolds occur naturally in various geometric contexts.
They arise in connections with some essential topics as vector fields
without singularities, integrable m-dimensional distributions, submer-
sions and fibrations, actions of Lie groups, direct constructions of folia-
tions such as Hopf fibrations, Reeb foliations and finally they appear in
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2 Rafie-Rad and Bidabad

the existence study of solution of certain differential equations. In the
latter case, Tanno in [15] applied the concept of the k-nullity spaces to
achieve a complete proof for the famous Obata Theorem which is a sub-
ject of numerous rigidity results in Riemannian geometry. The nullity
space of the Riemannian curvature tensor was first studied by Chern and
Kuiper [3] in 1952. They have shown that, if the index of nullity, µ, of a
Riemannian manifold is locally constant, then the manifold admits a lo-
cally integrable µ-dimensional distribution whose integral submanifolds
are locally flat. Kowalski and Sekizawa have proved that vanishing of
the index of nullity in some senses resulted in the tangent sphere bundle
being a space of negative scalar curvature [8].

The concept of nullity spaces are generalized to the k-nullity spaces
in Riemannian geometry in a number of works such as [4, 7] and [11].

In our work here, we answer the following natural questions: Is there
any extension for the concept of k-nullity space in Finsler geometry?
Is its maximal integral manifold totally geodesic? And finally, is its
maximal integral manifold complete, provided that (M,F ) is complete?
Fortunately, the answer to these questions is affirmative. More precisely,
we obtain the following results.

Theorem 1.1. Let (M,F ) be a Finsler manifold for which the index
of k-nullity µk be constant on an open subset U ⊆ M . Then, the local
k-nullity distribution on U is completely integrable.

Theorem 1.2. The k-nullity space of a Finsler manifold (M,F ) at a
point x ∈ M coincides with the kernel of the related curvature operator
of Ω.

Ferus has proved that the maximal integral manifolds of nullity folia-
tion are totally geodesic [6]. This result has been extended to the Finsler
case by Akbar-Zadeh [2]. Here, we prove the same result for k-nullity
foliation in Finsler manifolds.

Theorem 1.3. Let (M,F ) be a Finsler manifold. If the k-nullity space
is locally constant on the open subset U of M , then every k- nullity
integral manifold N in U is an auto-parallel Finsler submanifold with
a non-negative constant flag curvature k. Moreover, (N, F̃ ) is a P -
symmetric space.

The completeness of the nullity foliations is studied by Ferus [5]. The
similar result is carried out for Finsler manifolds by Akbar-Zadeh [2].
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On the k-nullity foliations in Finsler geometry 3

Theorem 1.4. Let (M,F ) be a complete Finsler manifold and G an
open subset of M on which µk is minimum. Then, every integral mani-
fold of the k-nullity foliation in G is a complete submanifold of M .

It is worth mentioning that Sekizawa and Tachibana have studied kth
nullity foliations as another generalization of Chern and Kuiper’s nullity
in Riemannian geometry by considering kth consecutive derivative of
the curvature tensor [13, 14].

2. Preliminaries and terminologies

2.1. Regular connections and Finsler manifolds. Let M be a con-
nected differentiable manifold of dimension n. We adopt here the no-
tations and terminologies of [1]. Denote the bundle of tangent vectors
of M by p : TM −→ M , the fiber bundle of non-zero tangent vec-
tors of M by π : TM0 −→ M and the pulled-back tangent bundle by
π∗TM −→ TM0. Any point of TM0 is denoted by z = (x, v), where
x = πz ∈ M and v ∈ TπzM . We denote by TTM0, the tangent bundle
of TM0 and by %, the canonical linear mapping

% : TTM0 −→ π∗TM,

where, % = π∗. For all z ∈ TM0, let VzTM be the set of vertical vectors
at z, that is, the set of vectors which are tangent to the fiber through
z. Equivalently, VzTM = kerπ∗ where π∗ : TTM0 −→ TM is the linear
tangent mapping.
Let ∇ be a linear connection on the vector bundle π∗TM −→ TM0. We
define a linear mapping

µ : TTM0 −→ π∗TM,

by µ(X̂) = ∇X̂v where, X̂ ∈ TTM0 and v is the canonical section of
π∗TM .

The connection ∇ is said to be regular, if µ defines an isomorphism
between V TM0 and π∗TM . In this case, there is the horizontal distri-
bution HTM such that we have the Whitney sum:

TTM0 = HTM ⊕ V TM.

This decomposition permits to write a vector X̂ ∈ TTM0 into the form
X̂ = HX̂ + V X̂ uniquely. In the sequel, we denote all vector fields
on TM0 by X̂, Ŷ , etc. and the corresponding sections of π∗TM by
X = %(X), Y = %(Y ), etc., respectively, unless otherwise specified.
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4 Rafie-Rad and Bidabad

The structural equations of the regular connection ∇ are given by:

τ(X̂, Ŷ ) = ∇X̂Y −∇Ŷ X − %[X̂, Ŷ ],

Ω(X̂, Ŷ )Z = ∇X̂∇Ŷ Z −∇Ŷ∇X̂Z −∇[X̂,Ŷ ]Z,

where, X = %(X̂), Y = %(Ŷ ), Z = %(Ẑ) and X̂, Ŷ and Ŷ are vector
fields on TM0. The tensors τ and Ω are called Torsion and Curvature
tensors of ∇, respectively. They determine two torsion tensors denoted
here by S and T and three curvature tensors denoted by R, P and Q,
defined by:

S(X, Y ) = τ(HX̂,HŶ ), T (Ẋ, Y ) = τ(V X̂,HŶ ),

R(X, Y ) = Ω(HX̂,HŶ ), P (X, Ẏ ) = Ω(HX̂, V Ŷ ),

Q(Ẋ, Ẏ ) = Ω(V X̂, V Ŷ ),

where, X = %(X̂), Y = %(Ŷ ), Ẋ = µ(X̂) and Ẏ = µ(Ŷ ). The tensors R,
P and Q are called hh−, hv− and vv−curvature tensors, respectively.
Using the Jacobi identity for three vector fields X̂, Ŷ and Ẑ, one obtains
the Bianchi identities for a regular connection ∇ with curvature 2-forms
Ω as follows:

σΩ(X̂, Ŷ )Z = σ∇Ẑτ(X̂, Ŷ ) + στ(Ẑ, [X̂, Ŷ ]),

σ∇ẐΩ(X̂, Ŷ ) + σΩ(Ẑ, [X̂, Ŷ ]) = 0,

where, σ denotes the circular permutation in the set {X̂, Ŷ , Ẑ}.
Let (xi) be a local chart with the domain U ⊆ M and (xi, vi) be the

induced local coordinates on π−1(U), where v = vi ∂
∂xi ∈ TπzM , with i

running over the range 1, 2, ..., n. A Finsler metric is a function F on TM
satisfying the following conditions: (1) F (x, y) > 0, for every (x, y) ∈
TM0 and C∞ on TM0, (2) F (x, λv) = λF (x, v), for every λ > 0 and
(3) gij(x, v) = 1

2
∂2F 2

∂vi∂vj is positive definite. The pair (M,F ) is called a
Finsler manifold.
There is a unique regular connection associated with F such that:

∇Ẑg = 0,

S(X, Y ) = 0,

g(τ(V X̂, Ŷ ), Z) = g(τ(V X̂, Ẑ), Y ),

where, X = %(X̂), Y = %(Ŷ ) and Z = %(Ẑ), for all X̂, Ŷ , Ẑ ∈ TTM0.
The regular connection ∇ is called the Cartan connection. Given an
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On the k-nullity foliations in Finsler geometry 5

induced natural coordinates on π−1(U), the coefficients of ∇ can be
written as follows:

∇∂j
∂i = Γk

ij∂k, ∇•
∂j

∂i = Ck
ij∂k,

where, ∂i = ∂
∂xi ,

•
∂i = ∂

∂vi and Γk
ij and Ck

ij are smooth functions
defined on π−1(U). One can observe that components of the second
torsion tensor T coincides with components of the Cartan tensor C in

this coordinates, that is, Tijk = 1
2

•
∂kgij , where, Tijk = girT

r
jk. It can

be shown that the set {δj}, defined by δj = ∂j − Γk
0j

•
∂k, forms a local

frame field for the horizontal space HTM . Assume that ∇δj
∂i =

∗
Γk

ij∂k.

One can easily see that
∗
Γk

ij is symmetric with respect to the indices
i and j. The curvature operator Ω(X̂, Ŷ ) of the Cartan connection is
anti-symmetric in the following sense:

(2.1) g(Ω(X̂, Ŷ )Z,W ) = −g(Ω(X̂, Ŷ )W,Z),

where, X̂, Ŷ ∈ χ(TM0), Z = %(Ẑ) and W = %(Ŵ ). The hv−curvature
tensor P and the vv− curvatures tensor Q of the Cartan connection ∇
are given respectively by

P i
jkl = ∇iTjkl −∇jT

i
kl + T i

kr∇0T
r
jl − T r

kj∇0T
i
rl,(2.2)

Qi
jkl = T i

rlT
r
jk − T i

rkT
r
jl.

Among the Finsler manifolds, there are some classes determined by
non-Riemannian quantities. One of them which is appearers in the
present work is the P -symmetric Finsler manifolds requiring a kind of
partial symmetry in the indices of P . This class of Finsler manifolds,
was introduced by Matsumoto and Shimada [9] and Matsumoto [10],
and has been extensively studied by several authors.

The curvature tensor P i
jkl can be decomposed into the sum of two

symmetric and anti-symmetric tensors with respect to the indices k and
l, that is to say P = sP + aP . By means of (2.2), the symmetric tensor
sP can be written in the following form:

sP i
jkl = ∇iTjkl +

1
2

{
T i

kr∇0T
r
jl − T r

kj∇0T
i
rl(2.3)

+T i
lr∇0T

r
jk − T r

lj∇0T
i
rk

}
.
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6 Rafie-Rad and Bidabad

A Finsler manifold is said to be P-symmetric if P (X, Y ) = P (Y, X),
∀X, Y ∈ Γ(π∗TM). P -symmetric spaces are closely related to the
Finsler manifolds of isotropic sectional curvature. In this relation, the
following result is well-known.

Proposition 2.1. [9] A Finsler manifold is P -symmetric if and only if
∇v̂Q = 0.

Next, we consider the Berwald connection D which is not metric-
compatible but a torsion free regular connection relative to F . There is
the following relation between the connections ∇ and D:

(2.4) DHX̂Y = ∇HX̂Y + (∇v̂T )(X, Y ), DV X̂Y = (V X̂.Y i)∂i

where, the vector field v̂ = viδi is the canonical geodesic spray of F . If
we assume Dδj

∂i = Gk
ij∂k, then (2.4) can be written in the following

local form:
Gi

jk =
∗
Γi

jk +∇0T
i
jk, D•

∂j

∂i = 0.

It is clear from (2.4) that the connections D and ∇ associate with the
same geodesic spray, since we have ∇X̂v = DX̂v. The metric tensor
g related to the Finsler structure F is parallel along any geodesic of
the Berwald connection, which is equivalent to Dv̂g = 0. The Berwald
connection D admits the hh−curvature tensors H and the hv−curvature
tensors G with the components H i

jkl and Gi
jkl. Gi

jkl and H i
jkl can be

determined by:

Gi
jkl =

•
∂l

•
∂k

•
∂jG

i =
•
∂lG

i
jk,

H i
jkl = (∂kG

i
jl −Gi

ljsG
s
k)− (∂lG

i
jk −Gi

kjsG
s
l)

+Gi
rkG

i
jl −Gi

rlG
i
jk.

2.2. Some extensions of sectional curvature in Finsler setting.
Let z ∈ TM0 and P(v, X) ⊆ TπzM be a plane, generated by v and a
linearly independent vector X in TπzM . The flag curvature at the point
z ∈ TM0 with respect to P(v, X) is denoted by K(z, P(v, X)) as follows:

K(z, P(v, X)) =
g(R(X,v)v, X)

g(X, X)F 2 − g(X,v)2
,

where, R denotes the hh−curvature of the Cartan connection [12]. Note
that the flag curvature K(z, P(v, X)) does not depend on the choice of
the Berwald and Cartan connection. In fact, one can easily show that

(2.5) H(X,v)v = R(X,v)v.
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On the k-nullity foliations in Finsler geometry 7

The Finsler manifold (M,F ) is said to be of scalar flag curvature at the
point z ∈ TM0, if K(z, P(v, X)) does not depend on the choice of the
plane P(v, X) and it is said to be of scalar flag curvature, if it is of scalar
flag curvature at all points z ∈ TM0. In this case, we have

R(X,v)v = K(z){F 2X − g(X,v)v}, ∀X ∈ Γ(π∗TM).

The flag curvature extends the notion of sectional curvature in Rie-
mannian geometry. Notice that in the Finsler geometry, there is also
another generalization of sectional curvature proposed by Akbar-Zadeh.
Let G2(M) −→ M be the Grassmannian fibre bundle of 2-planes on M.
Consider the pulled-back bundle π∗G2(M) −→ TM0. Let z ∈ TM0 and
P(X, Y ) be a 2-plane defined by two linearly independent tangent vectors
X, Y ∈ TπzM . One can directly assume a function K̂ : π∗G2(M) −→ R
defined by

K̂(z, P(X, Y )) :=
g(R(X, Y )Y, X)

g(X, X)g(Y, Y )− g(X, Y )2
.

It is easy to check that K(z, P(v, X)) = K̂(z,P(v, X)), for every 2-plane
defined by v, X ∈ TπzM . This extension of sectional curvature is more
fragile than the flag curvature.

Theorem 2.2. [1] Let (M,F ) be a Finsler manifold and dimM ≥ 3.
The function K̂ is independent of the plane P if and only if K̂ is constant
and

R(X, Y )Z = K̂{g(Y, Z)X − g(X, Z)Y }, X, Y, Z ∈ Γ(π∗TM).

If K̂ 6= 0, then (M,F ) is P-symmetric and Q = 0.

2.3. Finsler submanifolds. Let S be a k-dimensional embedded sub-
manifold of the Finsler manifold (M,F ), defined by embedding i : S −→
M . We identify a point x̃ ∈ S and a tangent vector X̃ ∈ Tx̃S by i(x̃) and
i∗X̃, respectively. Hence, Tx̃S can be considered as a subspace of Tx̃M .
The embedding i induces a map ĩ = i∗ : TS0 −→ TM0. If we identify
a point z̃ ∈ TS0 with its image ĩ(z̃), then TS0 can be considered as a
sub-fiber bundle of TM0. Restricting the map π : TM0 −→ M to TS0,
we obtain the mapping q : TS0 −→ M . Denote by T̂ S = i∗TM , the
pulled back bundle of TM . The Finsler metric g on M induces a Finsler
metric on S which is denoted by g̃. Given any point x̃ = q(z̃) ∈ S, where
z̃ ∈ TS0, we denote by Nq(ez) the orthogonal complementary subspace of
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8 Rafie-Rad and Bidabad

Tq(ez)M in T̂q(ez)S. Therefore, we have the Whitney sum:

(2.6) T̂q(z̃)S = Tq(z̃)S ⊕Nq(z̃).

The above decomposition defines the two projection maps P1 and P2 as
follows:

P1 : T̂ S −→ TS,

P2 : T̂ S −→ N,

where, N =
⋃

z̃∈TS0
Nq(z̃). We have q∗T̂ S = q∗TS ⊕ N . N is called

the normal fiber bundle. We denote by ρ, the canonical linear mapping
TTS0 −→ q∗TS, that is, ρ = q∗. Let X̃ and Ỹ be two vector fields on
TS0. Given z̃ ∈ TS0, (∇

eX
Y )z̃ belongs to T̂q(z̃)S. Therefore, using the

decomposition (2.6), we get

(2.7) ∇
eX
Y = ∇̃

eX
Y + α(X̃, Y ),

where, ∇ is the Cartan connection, Y = ρ(Ỹ ), ∇̃
eX
Y ∈ Tq(z̃)S and

α(X̃, Y ) ∈ Nq(z̃). α is called the second fundamental form of S. From
(2.7), it follows that ∇̃ is a covariant derivative in the vector bundle
q∗TS −→ TS0 and satisfies ∇̃g̃ = 0. ∇̃ is called the tangential covariant
derivation. α(X̃, ρ(Ỹ )) is a bilinear form possessing its values in N . Let
us denote by τ̃ the torsion tensor of ∇̃. Then, we have

P1τ(X̃, Ỹ ) = τ̃(X̃, Ỹ ) = ∇̃
eX
Y − ∇̃

eY
X − ρ[X̃, Ỹ ],

P2τ(X̃, Ỹ ) = α(X̃, Y )− α(Ỹ ,X),

where, X = ρ(X̃) and Y = ρ(Ỹ ). The submanifold S is said to be
totally geodesic at a point x̃ ∈ S, if for every tangent vector X̃ ∈ Tx̃S,
the geodesic γ(t) of M in the direction of X̃ lies in S for small values of
the parameter t. If S is totally geodesic at every point of S, it is called
a totally geodesic submanifold of M .

Theorem 2.3. [1] Let S be a submanifold of the Finsler manifold (M,F )
with the second fundamental form α. Then, S is a totally geodesic sub-
manifold if and only if α(X̃,v) = 0, for all X̃ ∈ χ(TS0).

The submanifold S is also said to be an auto-parallel submanifold of
M , if the second fundamental form α vanishes identically. Note that, in
the Riemannian manifolds, the concepts of auto-parallel and totally ge-
odesic submanifolds coincide. Clearly, every auto-parallel submanifold
is also totally geodesic. Notice that, on an auto-parallel submanifold S,
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On the k-nullity foliations in Finsler geometry 9

the induced connection ∇̃ coincides with the Cartan connection of the
induced Finsler structure F̃ = ĩ∗F .

2.4. Nullity space of curvature operator in the Finsler geome-
try. Let (M,F ) be a Finsler manifold and ∇ be the Cartan connection
related to F . Given any point z ∈ TM0, consider the subspace of HzTM
defined by

Nz := {X̂ ∈ HzTM | Ω(X̂, Ŷ ) = 0, ∀Ŷ ∈ HzTM},
where, Ω is the curvature operator of ∇. For any point z ∈ TM0, where,
πz = x, the subspace Nx = %(Nz) ⊂ TxM is linearly isomorphic to Nz.
Nx is called the nullity space of the curvature operator on the Finsler
manifold (M,F ) at the point x ∈ M , while N denotes the field of nullity
spaces. Its orthogonal complementary space in TxM is called the co-

nullity space at x and is denoted by
⊥
Nx. Every element of Nx is called a

nullity vector. The non-negative integer valued function µ0 : M −→ IN
defined by µ0(p) = dim Np is called the index of nullity at the point
p ∈ M . Nullity space is called locally constant, if given any x ∈ M ,
there is a neighborhood U of x such that the function µ0 is constant on
U . In this case, the correspondence x ∈ U 7→ Nx is a distribution called
the nullity distribution on U . In the sequel, we assume 0 < µ0 < n
unless otherwise specified.

Let kerx Ω be the kernel of the operator Ω, that is,

kerx Ω = {Z ∈ TxM | Ω(X̂, Ŷ )Z = 0, ∀X̂, Ŷ ∈ NzTM}.
Akbar-Zadeh [2] proved that Nx = kerx Ω, and moreover, if the nul-
lity space is locally constant on U , then the nullity distribution on U
is completely integrable. This is an extension of the similar result in
Riemannian manifolds, established by Maltz [11] and Gray [7]. Akbar-
Zadeh proved the following result.

Theorem 2.4. Let (M,F ) be a complete Finsler manifold and G be an
open subset in M on which µ0 is minimum. Then, every nullity manifold
is a geodesically complete submanifold of M .

3. k-Nullity space of the Cartan connection curvature
operator

Let (M,F ) be an n-dimensional Finsler manifold endowed with the
Cartan connection ∇. The aim of this section is to associate to (M,F )
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10 Rafie-Rad and Bidabad

a k-nullity space of the Cartan connection’s curvature operator. We
first introduce the concept of k-nullity space as a natural extension of
nullity space in the Finsler geometry containing nullity space as a special
case k = 0. Furthermore, we study fundamental properties of k-nullity
spaces. Given any non-negative real number k, we define the tensors ηk

and Ω̄ as follows:

ηk(X̂, Ŷ )Z = k{g(Y, Z)X − g(X, Z)Y }+ aP (X, Ẏ )Z,

(3.1) Ω̄(X̂, Ŷ )Z = Ω(X̂, Ŷ )Z − ηk(X̂, Ŷ )Z,

where, X̂, Ŷ , Ẑ ∈ χ(TM0), X = %(X̂), Y = %(Ŷ ), Z = %(Ẑ) and aP is
the anti-symmetric part of hv−curvature tensor P (X, Y ). We refer to
Ω̄ as the related curvature operator of Ω. The local representation of
Ω̄(HX̂,HŶ ) is given by

Ω̄i
jkl = Ri

jkl − k{gjkδ
i
l − gjlδ

i
k},

and we have from (3.1),

(3.2) Ω̄(HX̂, V Ŷ ) = sP (X, Ẏ ),

where, Ẏ = µ(Ŷ ). Notice that, (2.3) yields:

(3.3) Ω̄(HX̂, V Ŷ )v = sP (X, Ẏ )v = 0,

where, v is the canonical section of π∗TM , given by v = vi∂i. Given
any point z ∈ TM0, we define the subspace Nk

z of HzTM by

Nk
z := {X̂ ∈ HzTM | Ω̄(X̂, Ŷ ) = 0, ∀Ŷ ∈ HzTM}.

For any point z ∈ TM0 and πz = x, we consider the subspace Nk
x =

%(Nk
z ) ⊂ TxM . Clearly, the subspace Nk

x = %(Nk
z ) ⊂ TxM is linearly

isomorphic to Nk
z , since % is a linear isomorphism between HTM and

π∗TM .
Now, we are in a position to define a k-nullity space on Finsler man-

ifolds.

Definition 3.1. Let (M,F ) be a Finsler manifold. Nk
x is called the k-

nullity space of the curvature operator on the Finsler manifold (M,F )
at the point x ∈ M , while Nk denotes the field of k-nullity spaces. Its
orthogonal complementary space in TxM is denoted by

⊥
Nk

x. Every ele-
ment of Nk

x is called a k-nullity vector. The non-negative integer valued
function µk : M −→ IN defined by µk(p) = dim Nk

p is called the index of
k-nullity at the point p ∈ M . k-nullity space is called locally constant, if
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On the k-nullity foliations in Finsler geometry 11

given any x ∈ M , there is a neighborhood U of x such that the function
µk is constant on U . In this case, the correspondence x ∈ U 7→ Nk

x is a
distribution called the k-nullity distribution on U .

The function µk : M −→ IN is upper semi-continuous. In the sequel,
we assume that 0 < µk < n unless otherwise specified.
Observe that the following relations hold for ηk:

(3.4) σηk(X̂, Ŷ )Z = 0, ∇Ẑηk = 0, ∀X̂, Ŷ , Ẑ ∈ HTM,

where, σ is a circular permutation on the set {X̂, Ŷ , Ẑ}. Thus, it is clear
that we have

(3.5) σΩ̄(X̂, Ŷ )Z = σΩ(X̂, Ŷ )Z, ∀X̂, Ŷ , Ẑ ∈ HTM.

The tensor Ω̄ has somehow the same algebraic properties as Ω. The
following properties of Ω̄ are easily verified.

Lemma 3.2. The following statements hold for Ω̄:
(1) σΩ̄(X̂, Ŷ )Z = σ∇Ẑτ(X̂, Ŷ ) + στ(Ẑ, [X̂, Ŷ ]),
(2) σ∇ẐΩ̄(X̂, Ŷ ) + σΩ̄(Ẑ, [X̂, Ŷ ]) = 0,

(3) g(Ω̄(X̂, Ŷ )Z,W ) = −g(Ω̄(X̂, Ŷ )W,Z), where, X̂, Ŷ , Ẑ, Ŵ ∈ HTM

and σ is a circular permutation in the set {X̂, Ŷ , Ẑ}.

Proof. The proof is a simple application of Bianchi identities, (2.1), (3.4)
and (3.5). �

Proof of Theorem 1.1. Let X̂, Ŷ and Ẑ be three horizontal vector
fields on TM0 such that X̂, Ŷ ∈ Nk

z . Taking into account (3.3) and
(2.5), by a straightforward computation we have

%[X̂, Ŷ ] = [X, Y ]π,

(3.6) µ([X̂, Ŷ ]) = −Ω(X̂, Ŷ )v = −ηk(X̂, Ŷ )v,

(3.7) H[X̂, Ŷ ] = [X̂, Ŷ ] + ηk(X̂, Ŷ )vr
•
∂r.

In this case, the relation (2) in Lemma 3.2 reduces to:

Ω̄(X̂, [Ŷ , Ẑ]) + Ω̄(Ŷ , [Ẑ, X̂]) + Ω̄(Ẑ, [X̂, Ŷ ]) = 0.

The last equation can be written in the following form:

(3.8) Ω̄(X̂, V [Ŷ , Ẑ]) + Ω̄(Ŷ , V [Ẑ, X̂]) + Ω̄(Ẑ, [X̂, Ŷ ]) = 0.

Following (3.2) and (3.6), first and second terms of (3.8) become:

(3.9) Ω̄(X̂, V [Ŷ , Ẑ]) = sP (X, µ[Ŷ , Ẑ]) = −sP (X, ηk(Ŷ , Ẑ)v)
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= kg(Z,v)sP (X, Y )− kg(Y,v)sP (X, Z),

(3.10) Ω̄(Ŷ , V [Ẑ, X̂]) = sP (Y, µ[Ẑ, X̂]) = −sP (Y, ηk(Ẑ, X̂)v)

= kg(X,v)sP (Y, Z)− kg(Z,v)sP (Y, X).
By means of (3.9), (3.10) and the symmetry property sP (X, Y ) =
sP (Y, X), (3.8) can be written in the following form:

Ω̄(Ẑ, [X̂, Ŷ ] + ηk(X̂, Ŷ )vr
•
∂r) = 0,

Following (3.7), the last equation becomes:

Ω̄(Ẑ, H[X̂, Ŷ ]) = 0, Ẑ ∈ HzTM.

Indeed H[X̂, Ŷ ] ∈ Nk
z and [X, Y ] = %[X̂, Ŷ ] = %(H[X̂, Ŷ ]) ∈ Nk

x. There-
fore, k-nullity distribution is involutive or completely integrable. �
Considering the kernel of the operator Ω̄,

kerx Ω̄ = {Z ∈ TxM | Ω̄(X̂, Ŷ )Z = 0, X̂, Ŷ ∈ HzTM},
we shall show that Nk

x = kerx Ω̄.
Proof of Theorem 1.2. Let X̂, Ŷ and Ẑ be three horizontal vector fields
on TM0 such that X̂, Ŷ /∈ Nk

z but Ẑ ∈ Nk
z . In this case, the relation (1)

in Lemma 3.2 reduces to:

Ω̄(X̂, Ŷ )Z = τ(X̂, [Ŷ , Ẑ]) + τ(Ŷ , [Ẑ, X̂]) + τ(Ẑ, [X̂, Ŷ ]).

On the other hand, for every vector field Ŵ ∈ χ(TM0), we have

g(Ω̄(X̂, Ŷ )Z,W ) = g(τ(X̂, [Ŷ , Ẑ]),W ) + g(τ(Ŷ , [Ẑ, X̂]),W )(3.11)

+g(τ(Ẑ, [X̂, Ŷ ]),W ).

Considering (3.6), we have the following relations for the torsion tensor
τ :
(3.12)

τ(X̂, [Ŷ , Ẑ]) = T (X̂, µ[Ŷ , Ẑ]) = kg(Y,v)T (X, Z)− kg(Z,v)T (X, Y ),

(3.13)
τ(Ŷ , [Ẑ, X̂]) = T (Ŷ , µ[Ẑ, X̂]) = kg(Z,v)T (Y, X)− kg(X,v)T (Y, Z),

(3.14)
τ(Ẑ, [X̂, Ŷ ]) = T (Ẑ, µ[X̂, Ŷ ]) = kg(X,v)T (Z, Y )− kg(Y,v)T (Z,X).

Replacing (3.12),(3.13) and (3.14) in (3.11), we obtain

g(Ω̄(X̂, Ŷ )Z,W ) = 2k{g(Y,v)g(T (X, Z),W ) + g(Z,v)g(T (Y, X),W )

+g(X,v)g(T (Z, Y ),W )}.
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As a consequence of the relation (3) in Lemma 3.2, the left hand side
of the previous equation is anti-symmetric with respect to W and Z.
Thus, it follows that

2k{g(Y,v)g(T (X, Z),W ) + g(X,v)g(T (Z, Y ),W )} = 0.

Since W is arbitrarily chosen, we have the following relation:

(3.15) g(Y,v)T (X, Z) + g(X,v)T (Z, Y ) = 0.

From (3.6), one can conclude that

τ(Ẑ, [X̂, Ŷ ]) = τ(Ẑ, V [X̂, Ŷ ]) = T (Z, µ[X̂, Ŷ ])
= kg(X,v)T (Z, Y )− kg(Y,v)T (Z,X).

By anti-symmetry property of the tensor T and (3.15), we get

τ(Ẑ, V [X̂, Ŷ ]) = kg(X,v)T (Z, Y ) + kg(Y,v)T (X, Z) = 0.

Plugging (3.12), (3.13) and (3.14) into (3.11), results in

g(Ω̄(X̂, Ŷ )Z,W ) = g(τ(X̂, [Ŷ , Ẑ]),W ) + g(τ(Ŷ , [Ẑ, X̂]),W )

+g(τ(Ẑ, [X̂, Ŷ ]),W ) = 0.

Therefore, we have

g(Ω̄(X̂, Ŷ )Z,W ) = g(τ(Ẑ, [X̂, Ŷ ]),W ) = 0.

Finally, since W is arbitrarily chosen, we obtain the following equation:

(3.16) Ω̄(X̂, Ŷ )Z = τ(Ẑ, [X̂, Ŷ ]) = T (Z, µ[X̂, Ŷ ]) = 0.

The last equation shows that Z ∈ kerx Ω̄, that is, Nk
x ⊆ kerx Ω̄ and

ker Ω̄⊥ ⊆
⊥
Nk

x. Now, let W ∈
⊥
Nk

x and U ∈ Nk
x, then we have

g(Ω̄(X̂, Ŷ )W,U) = −g(Ω̄(X̂, Ŷ )U,W ) = 0.

The previous equation shows that Ω̄(X̂, Ŷ )W ∈
⊥
Nk

x, that is, ImxΩ̄ ⊆
⊥
Nk

x.
For every k-nullity vector U ∈ Nk

x, (3.6) yields:

g(µ([X̂, Ŷ ])+ηk(X̂, Ŷ )v, U) = −g(Ω̄(X̂, Ŷ )v, U) = g(Ω̄(X̂, Ŷ )U,v) = 0.

By definition of ηk and the fact that X, Y ∈
⊥
Nk

x, we obtain g(ηk(X̂, Ŷ )v, U) =
0. Therefore,

(3.17) µ([X̂, Ŷ ]) ∈
⊥
Nk

x,
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from which, g(µ([X̂, Ŷ ]), U) = 0. Consider the following homomorphism
of vector spaces:

Ψ :
TxM

kerx Ω̄
∼= ImxΩ̄ −→

⊥
Nk

x,

defined by W +kerx Ω̄ 7→ Ω̄(X̂, Ŷ )W . It is clear that Ψ is one-to-one and
thus onto, and therefore

⊥
Nk

x = kerx Ω̄⊥ and Nk
x = kerx Ω̄. This completes

the proof. �

4. Auto-parallel k-nullity maximal integral manifold

Proof of Theorem 1.3. The method used here is inspired by Akbar-
Zadeh’s technique [2]. Let N be an integral manifold of k-nullity distri-
bution in U . For all vector fields X̃, W̃ ∈ χ(TN0), we have by means of
(2.7):

(4.1) ∇
fW

X = ∇̃
fW

X + α(W̃ , X),

where, ∇̃ denotes the induced connection on TN0, X = ρ(X̃) and
α(W̃ , X) is the second fundamental form of N .

Let X̃, Ỹ ∈ HTN such that X, Y ∈
⊥
Nk

x and U ∈ Nk
x. By means of

Theorem 1.2, we have Ω̄(X̂, Ŷ )U = 0. Suppose that Z̃ ∈ Nk
z . It fol-

lows immediately from (4.1) that the covariant derivative of Ω̄ along Z̃
becomes:

(∇
eZ
Ω̄(X̃, Ỹ ))U = ∇

eZ
Ω̄(X̃, Ỹ )U − Ω̄(X̃, Ỹ )∇

eZ
U

= −Ω̄(X̃, Ỹ )∇
eZ
U

= −Ω̄(X̃, Ỹ )(∇̃
eZ
U + α(Z̃, U))

= −Ω̄(X̃, Ỹ )α(Z̃, U).

Therefore,
(∇

eZ
Ω̄(X̃, Ỹ ))U + Ω̄(X̃, Ỹ )α(Z̃, U) = 0.

Using the identity (2) in Lemma 3.2 and the above equation, we obtain:

(4.2) Ω̄(X̃, Ỹ )α(Z̃, U) = Ω̄(Z̃, [X̃, Ỹ ])U = sP (Z̃, µ[X̃, Ỹ ])U.

If we assume µ[X̃, Ỹ ] = 0, then we have Ω̄(X̃, Ỹ )α(Z̃, U) = 0. On

the other hand, α(Z̃, U) ∈
⊥
Nk

x. Then, it follows that α(Z̃, U) = 0.
In this case, the integral manifold N is an auto-parallel submanifold.
Otherwise, assume that µ[X̃, Ỹ ] 6= 0. Consider a basis {e1, e2, ..., en} for
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TxM such that the first r vectors form a basis for Nk
x and the remaining

(n − r) vectors is a basis for
⊥
Nk

x. In virtue of (3.17), without loss of
generality, one can assume that the vector µ[X̃, Ỹ ] is an element of the
basis {er−1, ..., en}. In the sequel, assume that the following indices run
over the indicated ranges:

a, b = 1, 2, ..., n, α, β = 1, 2, ..., r, i, j = r − 1, ..., n.

(3.16) states that, in this basis, we have

(4.3) Taαj = 0.

Plugging (4.3) into (2.3), we get

sP iaβj = ∇iTaβj +
1
2
{Tiβr∇0T

r
aj − T r

βa∇0Tirj

+Tijr∇0T
r
aβ − T r

ja∇0Tirβ} = 0.

From the last equation, it results that sP (Z̃, µ[X̃, Ỹ ])U = 0. (4.2) im-
plies that Ω̄(X̃, Ỹ )α(Z̃, U) = 0, that is to say α(Z̃, U) ∈ ker Ω̄ = Nk

x. It
follows α(Z̃, U) = 0 and N is an auto-parallel submanifold.

Denote the curvature 2-forms of ∇̃ by Ω̃. Since N is an auto-parallel
submanifold of M , its curvature tensors are given by

Ω̃(HX̃,HỸ )Z = Ω(HX̃,HỸ )Z = k{g̃(Y, Z)X − g̃(X, Z)Y },
Ω̃(HX̃, V Ỹ )Z = Ω(HX̃, V Ỹ )Z = sP (X, Ẏ )Z,

Ω̃(V X̃, V Ỹ )Z = Ω(V X̃, V Ỹ )Z = Q(Ẋ, Ẏ )Z,

where, X̃, Ỹ ∈ χ(TN0) and Z ∈ Γ(π∗TN). The above relation shows
that N is a P -symmetric space. Indeed, components of the hh−curvature
R̃α

βγθ of (N, F̃ ) are given by

R̃α
βγθ = k{g̃βγδα

θ − g̃βθδ
α
γ},

where, g̃ denotes the induced metric on (N, F̃ ). Following (2.5), we have

H̃(X,v)v = R̃(X,v)v = k{g̃(v,v)Y − g̃(Y,v)v},

which shows that N is of constant flag curvature k. �
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4.1. Completeness of the k-nullity foliation. Proof of Theorem 1.4.
Let (M,F ) be an n-dimensional Finsler manifold and γ : [0, c) −→ N be
a geodesic on the integral manifold N of the k-nullity foliation in G. We
shall prove that γ can be extended to a geodesic γ̃ : [0,∞) −→ N on N .
We shall proceed the proof with the contrary assumption, by supposing
that such a geodesic does not exist. Following Theorem 1.3, every k-
nullity manifold is auto-parallel and hence is totally geodesic. Therefore,
γ is a geodesic on M and has an extension γ̃ : [0,∞) −→ M such that
γ = γ̃ ∩N . It follows that p = γ̃(c) /∈ G. Suppose that p0 = γ(0) = γ̃(0)
and put r0 = µk(p0), the dimension of the k-nullity space at p0. The
function µk : M −→ M attains its minimum on G and it results in
µk(p) > r0. Consider a basis B0 = {e1, e2, ..., er0 , er0+1, ..., en} for Tp0

M

such that {e1, e2, ..., er0} is a basis for Nk
p0

and e1 is the tangent vector
to γ at the point p0 = γ(0). Using the system of differential equations

∇Ei

dt
= 0, Ei(0) = ei,

where i = 1, 2, ..., n, one can translate the basis B0 into the parallel
frame B = {E1,E2, ...,Er0 ,Er0+1, ...,En} along γ̃. There is a neighbor-
hood U of p on M such that the subset {E1,E2, ...,Er0} is a basis for
the k-nullity space at every point γ̃(t) in G ∩ U . Since µk(p) > r0,
there is a vector field Ea along γ̃, for a fixed number a in the range

r0 + 1, ..., n, such that for every t ∈ [0, c), we have Ea(t) ∈
⊥
Nk

γ(t) and

Ea(c) ∈ Nk
p. Now, let ˆ̃γ = (γ̃, ˙̃γ) be the natural lift of γ̃ to TM0 and

B̂ = {Ê1, Ê2, ..., Êr0 , Êr0+1, ..., Ên} be the basis for Hˆ̃γ(t)TM such that

%(Êi) = Ei. Assume that the coefficients fija are defined as follows:

(4.4) Ω̄(Êi, Êj)Ea = fija.

Using the relation (2) in Lemma 3.2, the Cartan horizontal derivative
of both sides of (4.4) along ˆ̃γ in π−1(G ∩ U) and using the fact that
Ω̄(Ê1, V [Êj , Êi]) = 0, we obtain

(4.5) f ′ija + Ω̄(Êj , [Êi, Ê1]) + Ω̄(Êi, [Ê1, Êj ]) = 0,

where, i, j = r0 + 1, ..., n. Plugging Êj , Êi and Ê1 instead of X̂, Ŷ and
Ẑ into (3.9) and (3.10), respectively, we obtain:

Ω̄(Êj , V [Êi, Ê1]) + Ω̄(Êi, V [Ê1, Êj ]) = 0.
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Therefore, (4.5) becomes:

(4.6) f ′ija + Ω̄(Êj ,H[Êi, Ê1]) + Ω̄(Êi,H[Ê1, Êj ]) = 0.

But, the horizontal part of [Êj , Ê1] can be written in the basis B̂ in the
form

H[Ê1, Êj ] = Wk
j Êk + Wa

j Êa,

for some functions Wk
j defined on ˆ̃γ in π−1(U), where the index k runs

over the range 1, ..., â, ...n and the hat over a indicates that the index a
is omitted. Plugging the terms H[Êj , Ê1] and H[Ê1, Êi] into Eq.(4.6),
we obtain the homogenous system of ODEs,

f ′ija + Wk
i fjka −Wk

j fika = 0.

Since Ea is a k-nullity vector field at p, by means of (4.4), we have clearly
for the fixed index a, flma(c) = 0, where, l,m = r0 +1, ..., n. Solving the
system of ODEs above with the initial value flma(c) = 0 implies that
flma ≡ 0. (4.4) implies that Ea is a k-nullity vector at every point of γ̃ in
G∩U and specially, it is a k-nullity vector at every point of γ in G∩U .
Obviously, this is merely a contradiction to the contrary hypothesis and
γ can be extended to a geodesic γ̃ : [0,∞) −→ N . �

Remark 4.1. Relaxing the constant k to be zero in the (3.1) leads to a
notion of nullity space in the Finsler geometry which is a special case of
the nullity space in [2].
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