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CLASSICAL QUASI-PRIMARY SUBMODULES

M. BEHBOODI*, R. JAHANI-NEZHAD AND M. H. NADERI

Communicated by Omid Ali Karamzadeh

ABSTRACT. In this paper we introduce the notion of classical quasi-
primary submodules that generalizes the concept of classical pri-
mary submodules. Then, we investigate decomposition-and min-
imal decomposition into classical quasi-primary submodules. In
particular, existence and uniqueness of classical quasi-primary de-
compositions in finitely generated modules over Noetherian rings
are proved. Moreover, we show that this decomposition and the de-
composition into classical primary submodules are the same when
R is a domain with dim(R) < 1.

1. Introduction

Throughout the paper all rings are commutative with an identity , and
all modules are unital. Let M be an R-module. If N is a submodule
(resp., proper submodule) of M, we write N < M (resp., N S M). For
every nonempty subset X of M and every submodule N of M, the ideal
{r € R | rX C N} will be denoted by (N : X). When X = {m}, where
m € M, we use (N : m) instead of (N : X). Note that (N : M) is
the annihilator of the module M/N. Also we denote the classical Krull
dimension of R by dim(R), and for an ideal I of R, VI := {r € R|r* € T
for some k € N}.
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We recall that a proper ideal Q of R is called a primary ideal if ab € Q,
where a,b € R, implies that either a € Q or b* € Q for some k € N (see
[2,15]). The decomposition of a nonzero ideal as (shortest) intersection of
a finite number of primary ideals, in a commutative Noetherian ring, was
established by Noether [14]. The notion of primary ideal was generalized
by Fuchs [10] through defining an ideal Q of a ring R to be it quasi-
primary if its radical is a prime ideal, i.e., if ab € Q, where a, b € R,
then either a* € Q or b* € Q for some k € N (see also [11]). There are
some extensions of these notions to modules. We recall that a proper
submodule @ of M is called a primary submodule, if am € @, where
a € R,m € M, then m € Q or a*M C Q for some k €N (see for
example [15]). Moreover, @Q is called quasi-primary if \/(Q M) is'a
prime ideal of R (see [1]).

We define a classical primary submodule in M as a proper submodule
Q of M such that if abN C @, where a,b € R'and N < M, then
either aN C Q or b*N C @ for some k € N.. Clearly, in case M = R,
where R is any commutative ring, classical primary submodules coincide
with primary ideals (see Proposition 2.1). The idea of decomposition of
submodules into classical primary submodules were introduced by Baziar
and Behboodi in [3]. Their definition of classical primary submodule was
slightly different than ours; they defined a classical primary submodule
in M as a proper submodule @ of M such that if abm € ), where a,b € R
and m € M, then either am € Q or b*m € Q for some k € N. One can
easily see that these two definitions coincide when M is a Noetherian
module (see Proposition 2.6); but these are different in general (see
Example 2.2 (e). Also,we define a classical quasi-primary submodule in
M as a proper submodule @ of M such that if abN C @, where a,b € R
and N < M, then either a*N C Q or b*N C Q for some k € N. Clearly,
every classical quasi-primary submodule is quasi-primary, but in general,
even in the case M =R, the converse need not be true (see Proposition
2.1). In [3], among other results, the existence and uniqueness of classical
primary decompositions in finitely generated modules over domains R
with dim(R) < 1 are proved.

In this article, we continue the study of this construction via classical
quasi-primary submodules. In Section 2, we study some properties of
classical primary submodules and classical quasi-primary submodules.
We prove that in modules over a domain R with dim(R) < 1, classical
primary submodules coincide with classical quasi-primary submodules.
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We call an R-module M primary compatible (resp., quasi-primary com-
patible) if its primary and its classical primary (resp., quasi-primary
and its classical quasi-primary) submodules are the same. A ring R
is said to be primary compatible (resp., quasi-primary compatible) if
every R-module is primary compatible (resp., quasi-primary compati-
ble). Primary compatible rings are characterized in Theorem 2.14 (see
also [3, Theorem 1.7). It is also shown that if dim(R) = 0, then R is
a quasi-primary compatible ring, and if R is quasi-primary compatible,
then R is a Gelfand ring (i.e., every prime ideal of R is contained in a
unique maximal ideal of R). Moreover, if also R is Noetherian; then for
each minimal prime ideal P of R, the factor ring R/P has at most one
nonzero prime ideal (consequently, dim(R) < 1).

In Section 3, we investigate decompositions of submedules into in-
tersections of classical quasi-primary submodules. In particular, the
existence and uniqueness of minimal classical quasi-primary decompo-
sitions in finitely generated modules over Noetherian rings are proved
(see Proposition 3.8 and Theorem 3.9).

2. Classical primary and classical quasi-primary submodules

Let R be a ring and Q be an ideal of R. We note that Q is a primary
(resp., quasi-primary, classical primary, classical quasi-primary) ideal of
R if and only if it is a primary (resp., quasi-primary, classical primary,
classical quasi-primary) submodule of rR.

It is well-known that in a Dedekind domain, the two concepts primary
and quasi-primary coincide; and are equal to powers of prime ideals (see
[11, p. 412]). In general, the above four concepts primary, classical
primary, quasi-primary, and classical quasi-primary ideals are different
in a ring R, but the following proposition more or less summarizes the
overall situation.

Proposition 2.1. Consider the following statements for a proper ideal
Q of a ring R:

(1) Q is a primary ideal.

(2) Q is a classical primary ideal.

(3) (Q: 1) is a primary ideal, for each ideal I of R such that I Q.
(4) Q is a classical quasi-primary ideal.

(5)
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(6) Q is a quasi-primary ideal (i.e., vVQ = \/(Q: R) is a prime
ideal).
(7) Q is a power of a prime ideal.

Then, (1) < (2) < (3) = (4) < (5) = (6) < (7). Moreover,

(a) if dim(R) =0, then (6) = (1);
(b) if R is a Dedekind domain, then (6) = (7) = (1);
(¢c) if R is a domain with dim(R) < 1, then (5) = (1).

Proof. (1) = (2). Suppose Q is a primary ideal. Let abl C Q, where a,
b € R and [ is an ideal of R such that bl € Q. Then, there exists x € bl
such that x ¢ Q. Since Q is primary ideal and ax € Q, we conclude that
ak € Q for some k € N. Tt follows that a*I C Q. Thus, Q is a classical
primary ideal.

(2) = (3) is evident.

(3) = (1). Take I = R and so by (3), @ = (Q: R) is a primary ideal.
(3) = (5) is evident.

(4) = (5). Let I be an ideal of R such that I £ Q,andlet ab e /(Q: ),
where a, b € R. Then, (ab)kl C Q for some k£ € N. Since Q is a classical
quasi-primary ideal, there exists ¢t € N such that either a’*I C Q or
VEI C Q, i.e., either a € \/(Q: 1) orbe \/(Q:1). Thus, \/(Q:1)isa
prime ideal.

(5) = (4). Assume that abl C Q, where'a, b € R and [ is an ideal of R.
Then, ab € (Q : I) C \/(Q : I..Since by (5), \/(Q: I) is either R or a
prime ideal of R, depending on whether I C Q or not, we conclude that
either a € \/(Q: I)orb e /(Q:1),1ie., ak*T C Q or b*I C Q for some
k € N. Thus, Q is a classical quasi-primary ideal.

(5) = (6) and (7) = (6) are evident.

For Part (a), assume that dim(R) = 0 and Q is a quasi-primary ideal.
Thus, v/Q is a maximal ideal and so by [15, Proposition 4.9], Q is a
primary-ideal.

For Part (b); we note that in a Dedekind domain R, the two concepts
primary and quasi-primary coincide; and are equal to powers of prime
ideals of R (see [11, p. 412]). Thus, (6) = (7) = (1) when R is a
Dedekind domain.

For Part (c), assume that R is a domain with dim(R) < 1 and (5)
holds. Take I = R and then by (5), VO = /(Q: R) is a prime ideal.
Since R is a domain and dim(R) < 1, either v/OQ = (0) or v/Q is a
maximal ideal. If v/Q = (0), then Q = (0); therefore, Q is a prime ideal
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(so it is primary). If v/Q is a maximal ideal, then by [15, Proposition
4.9], Q is a primary ideal. O

Clearly, every (classical) primary ideal of a ring R is quasi-primary
but the converse need not be true in general (in fact, [15, Example 4.12]
shows that an ideal of a ring which has prime radical need not neces-
sarily be primary). Also every primary submodule of an R-module M
is classical (quasi) primary, but in general, the converse need not be
true (see Example 2.2 (a) and (b) below). On the other hand, every
classical quasi-primary submodule is quasi-primary, but in general, the
converse need not be true (see Example 2.2 (c) below). Example 2.2 (d)
below gives a submodule @) of a Noetherian R-module M such that @
is classical quasi primary which is not primary (Note; the main result
of this paper (Theorem 3.9) is about Noetherian modules). In partic-
ular, Example 2.2 (e) below shows that the notion of classical primary
submodule of this paper is different from that in [3].

Example 2.2.

(a) Assume that R is a domain and P is a nonzero prime ideal in
R. Let F = ®)caR be a free R-module, and let N = @ cp Ay
be a proper submodule of F such that for every A € A, either
Ay = P or Ay = (0). Then, N is a classical primary submodule.
But, one can easily‘check that if there exist A1, Ao € A such that
Ay, = P and Ay, = (0), then N is not a primary submodule of
M (see also [3, Example 1.2]).

(b) If p is a prime integer and Z(p™) = {Z% + Z | a,k are inte-
gers and k is positive}, then (0) S Z(p™) is a classical primary
Z-submodule but it is not a primary submodule. In fact, we con-
clude that every nonzero proper submodule of Z(p*°) is classical
primary but it is not primary.

(c) LettR = Z and M = Q. Then, each proper submodule N of
M is a quasi-primary submodule since /(N : M) = (0). Now,
if N:=7Z+ Z%, the submodule of M generated by {1, %}, then
2x3 < ﬁ >C N, but for each & > 1, 2F < ing >Z N
and 3% < ﬁ >¢ N. Thus, N is not a classical quasi-primary
submodule of M.

(d) Let R =72, M = Z ®Z and Q = pZ & (0), for some prime
number p. Then, @ is a classical quasi-primary submodule of
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the Noetherian R-module M but it is not a primary submodule
of M.
Let R := Zsx,y|, M = Zsx,y, 21, 22, . . .| and

Q=< {ryz :i e N))U {2’z :i e N} U{y'2 :i € N} >

as an ideal of the ring M. Clearly M is an R-module and @ S M.
We claim that @ is not a classical primary R-submodule of M
as the notion of this paper, but that is a classical primary R-
submodule of M as [3]. To see thislet N =< {z; : i € N} > asan
ideal of M. Then, N < M is an R-submodule with zy/N C Q.
Clearly z¥z9, ¢ Q and yFzq, & Q for each k > 1./ Tt follows
that zN ¢ Q and y*N ¢ Q for each k > 1. Thus, Q S M is
not a classical primary submodule as the notion of this paper.
Now, we assume that fgh € @, where f, g € R\ {0} and h €
M\ Q. Without loss of generality, we can assume that h €
Zolx,y,21,..., 2], for some n > 1. Moreover, we can assume
that h = h1 + ho, where hy € R, ho €-L, where L is the ideal
< {z; : 1 <i<mn} > of the ring Zs[x,y;21, 22, . .., 2n]. Clearly,
y*he € Q for some k > 1. Tt follows that y®fgh1 € Q N R. Since
QNR=(0),hy =0andsoh=hy€ L. If f=1+zf1+yf2 and
g = 1+xg1+yg2, where f1, fa;g1, 92 € R, then (1+z f1+yf2)(1+
rg1+yge)h = (1+zfs+yfa)h € Q, where f3, fs € R. Ifzf3 € Q
and yfs € @, then h € (), a contradiction. Thus, without loss of
generality we can assume z'h € Q but z'='h & Q for some t > 2
(since 2%h € Q for'some k> 1). Thus, 271 (1 + 2 f3 + yfa)h =
27 h 4 2t fsh 422y f1h € Q. Tt follows that 2'~'h € Q, a
contradiction. Thus; either f = zf1+yf2 or g = xg1 +yg2, where
f1, f2,91,92 € R. If g*h & Q for each k > 1, then g = 1491 +ygo
and so f = xfi +yfo. Thus, (zf1 +yf2)(1 + 291 +yg2)h € Q
and so (zfi+1yf2 + 22f191 + v*fag2)h € Q . We claim that
fh = (xfi + yf2)h € Q, for if not, then either xfih ¢ @ or
yfsh & Q. 1t a2fih € Q and y foh € Q, then (w1 + yfa)h € Q,
as 'we wish. Thus, without loss of generality we can assume that
22 fih € Q and hence there exists ¢ > 3 such that 2! fih € Q, but
21 f1h & Q. Therefore 2! =2 (2 f1 +yfo+ 2% fig1 + 1% f2g2)h € Q.
It follows that (z~!f1)h € Q, a contradiction. Thus, fh =
(zfi +yf2)h € Q and so @ is a classical primary submodule as

[3].
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Proposition 2.3. Let M be an R-module and Q) be a proper submodule
of M. Then,

(1) Q s classical primary if and only if for every submodule N of
M such that N € Q, (Q : N) is a primary ideal of R.

(2) Q is classical quasi-primary if and only if for every submodule
N of M such that N € Q, (Q : N) is a quasi-primary ideal of
R.

Proof. We only prove Part (2). The proof for Part (1) is similar.

(2) («<). Let abN C @, where a, b € R and N < M such that N ¢ Q.
Then, ab € (Q : N), and since (Q : N) is a quasi-primary ideal, either
b € (Q:N)ora e (Q:N) for some k € N. Thus, either bEN C @ or
a*N C Q; therefore, Q is a classical quasi-primary submodule.

(2) (=) is evident. O

If @Q is a classical primary (resp., classical quasi-primary) submodule
of an R-module M, then by Proposition 2.3, P = \/(Q : M) is a prime
ideal and we shall say that @ is classical P-primary (resp., classical
P-quasi-primary).

Theorem 2.4. Let R be a domain with dim(R) < 1, and let M be an
R-module. Then, a proper submodule @ of M 1is classical quasi-primary
if and only if it is classical

Proof. Assume that R is a domain with dim(R) < 1 and M is an
R-module. By Proposition 2.3, every classical primary submodule of
M is classical quasi-primary. Now, let () be a classical quasi-primary
submodule of M and N < M such that N ¢ Q. Then, by Proposition
2.3 (2), (@ : N)is a quasi-primary ideal of R. Since R is a domain
with-dim(R) < 1, by Proposition 2.1 (c), every classical quasi-primary
ideal of R'is primary. Thus, (Q : N) is a primary ideal of R. Now, by
Proposition 2.3 (1), @ is a classical primary submodule of M. O

Corollary 2.5. Let M be an R-module and @ be a classical primary
(or classical quasi-primary) submodule. Then,

{\/ (Q: N)‘ Nis a finitely generated submodule of M such that NQQ}

is a chain of prime ideals of R.
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Proof. First, we show that {\/(Q : m) | m € M\ @Q} is a chain of prime
ideals of R. For each my, ma € M\Q we have 1/(Q : m1)N+/(Q : m2) C
V(Q : my +mg). Since by Proposition 2.3, \/(Q : mj + msg) is either
R or a prime ideal of R, depending on whether m; + mo belongs to
Q or not, we conclude that either \/(Q :m;1) C /(Q:mj +ma) or
V(Q :m2) € 1/(Q : my +my). It follows that 1/(Q : m1) € 1/(Q : m2)
or \/(Q : m3) € /(Q :my); hence, {1/(Q : m) | m € M\ Q} is a chain
of prime ideals of R.

Now, let N = Rmq+Rmo+---+Rmy, and N' = Rmq'+Rmo/ +-- -+
Rmy’, where k, l € Nand m;, m;/ € M for 1 <i<kand1<j<I be
two finitely generated submodules of M such that N ¢ Q and N’ € Q.
Since {/(Q : m) | m € M \ Q} is a chain of prime ideals of R, without
loss of generality we can assume that /(Q :mi1) € +/(Q :m;) for all
1 <i < k. Thus,

V(@

V(Q :miR+maR+ -+ myR)

VI(Q:mi) N (Q:ma) ---<Q:mk>

VIQ:m) N V(@ m2) M0 V(Q )
(Q:ma).

We now apply this argument again with N’ replaced by N, to ob-

tain \/(Q: N') = 1/(Q:m}). Now, by the first part of the proof,

V(Q :mq) and /(Q : my’) are comparable prime ideals; therefore, ei-
ther \/(Q: N) C /(Q:N') or \/(Q:N') C /(Q:N), which com-

pletes the proof. O

Proposition 2.6. Let M. be a Noetherian R-module and Q) be a proper
submodule of M.

(a) The following statements are equivalent:
(1) Q s a classical primary submodule.
(2) For every a,b € R and m € M, abm € Q implies that either
am € Q or b*m € Q for some k € N.
(3) For everym e M\ Q, (Q : m) is a primary ideal of R.

(b) The following statements are equivalent:
(1) Q is a classical quasi-primary submodule.
(2) For everya,b € R and m € M, abm € Q implies that either
a*m e Q or b*m € Q for some k € N.
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(3) For everym € M\ Q, (Q : m) is a quasi-primary ideal of
R.

Proof. We only prove Part (a). The proof for Part (b) is similar.

(a) (1) = (2) and (a) (2) & (3) are clear.

(a) (2) = (1). Suppose N is a submodule of M such that N € Q. Let
€ (

ab Q : N), where a, b € R, but b ¢ (Q : N), i.e,, abN C @ and
bN ¢ Q. Thus, bn ¢ Q, for some n € N. Since abn € Q, by assumption,
akfn € Q for some k € N. If

A={neN|bmeQ}, B:={ncN|dnecQ forsomek c N}, then

one can easily see that A and B are submodules of N and N = AUB. It
follows that N = Aor N = B. If N = A, then bN C @, a contradiction.
Therefore N = B. Since N is finitely generated, a*N.-C @ for some
k € N; hence, b* € (Q : N). Thus, Q is a classical primary submodule
of M by Proposition 2.3(1). O

Now, by Proposition 2.1 and Proposition 2.6, we have the following
corollary.

Corollary 2.7. Let R be a Dedekind domain and M be a Noetherian
R-module. For a proper submodule Q) of M, the following statements
are equivalent:

(1) Q is a classical primary submodule.
(2) Q is a classical quasi-primary submodule.
(3) For everym € M\ Q, (Q :m) is a power of a prime ideal of R.

We recall that an. R-module M is a multiplication module if each
submodule/of M is of the form IM, where I is an ideal of R. The
following proposition shows that every multiplication module is primary
compatible, but in general, it need not be quasi-primary compatible (see
Proposition 2.1).

Proposition 2.8. Let M be a multiplication R-module and Q be a
proper submodule of M .

(a) The following statements are equivalent:
(1) Q is a classical primary submodule.
(2) Q is a primary submodule.
(3) Q= (Q: M) is a primary ideal of R.
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(4) Q@ = QM , where Q is a primary ideal which is mazimal with
respect to this property (i.e., IM = @Q implies that I C Q).

(b) The following statements are equivalent:
(1) Q is a classical quasi-primary submodule.
(2) Q= (Q: M) is a classical quasi-primary ideal of R.
(3) Q@ = QM, where Q is a classical quasi-primary ideal which
is mazximal with respect to this property (i.e., IM = Q im-
plies that I C Q).

Proof. We only prove Part (a). The proof for Part (b) is similar.

(a) (1) = (2). Let @ be a classical primary submodule of multiplication
R-module M. Assume that am € @, where a € R'and m € M\ Q.
Since M is a multiplication module, Rm = IM for some ideal I of R.
Hence aIM C Q and IM ¢ Q, ie.,al C(Q:M)and I ¢ (@ : M). By
Proposition 2.3 (1), (Q : M) is a primary ideal of R; hence, a*M C Q
for some k € N. Thus, @ is a primary submodule.

(a) (2) = (3) is clear.

(a) (3) = (4). Since M is a multiplication module, Q = IM for some
ideal of R. Since QM C Q, I C (Q : M) =Qand so Q =IM C QM.
Thus, Q = QM, Q is a primary ideal and JM = @ implies that J C O.
(a) (4) = (1). Let abN C @, where a,b € R and N < M such that
bN ¢ Q. Since M is a multiplication module, N = I'M for some ideal I
of R. Thus, abIM C Q, i.es, abl €(Q : M) C Q. Since bN € Q, bl € Q
and so a¥ € Q for somek € N. This implies that a*N C QM = Q@ and
so @ is a classical primary submodule of M. ]

It is clear that every wector space is a (quasi) primary compatible
module and every field is a (quasi) primary compatible ring. Also, if R
is a (quasi) primary compatible ring, so is any factor ring of R. Next,
we will show that every primary compatible ring is quasi-primary com-
patible (see Proposition 2.9 and Theorem 2.14). But, we have not found
any examples of a quasi-primary compatible ring R that is not primary
compatible. On the other hand, every cyclic R-module is primary com-
patible and not necessarily a quasi-primary compatible (take M = R
and see [15, Example 4.12]).

Proposition 2.9. Let R be a ring with dim(R) = 0. Then, R is a
quasi-primary compatible ring.
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Proof. Let dim(R) = 0 and M be an R-module. Suppose @ is a quasi-
primary submodule of M i.e., P :=+/(Q : M) is a maximal ideal of R.
Let N < M such that N Z Q. Then, P C /(Q : N) and since P is a
maximal ideal, P = 1/(Q : N). Thus, by [15, Proposition 4.9], (@ : N)
is a primary ideal of R. Now, by Proposition 2.3 (2), @ is a classical
quasi-primary submodule of M. ]

A ring R is called Gelfand provided that, for any distinct maximal
ideals P; and Ps of R, there exist elements a € R\ P; and b € R\ P
such that ab = 0. Simmons in [16] proved that a ring R is Gelfand if and
only if every prime ideal of R is contained in a unique maximal ideal of
R. Clearly each ring R with dim(R) = 0 is Gelfand. Next, we show that
every quasi-primary compatible ring is Gelfand.

Theorem 2.10. Let R be a quasi-primary compatible ring. Then, R is
a Gelfand ring.

Proof. Let R be a quasi-primary compatible ring and P be a prime ideal
of R. Then, the ring R’ := R/P is also quasi-primary compatible. Now,
let P; and Ps be two maximal ideals of R/, and let M = R'/Pi® R /Py®
R’ as an R’-module. Since R’ is adomain and 1/((0) : M) = ((0) : M) =
(0), we conclude that (0) S M is a‘quasi-primary R’-submodule. Now,
by our hypothesis (0) S M is a classical quasi-primary R’-submodule.
Clearly P1P2(R'/P1®R'/Pa@®(0)) = (0), but R'/P1®&R'/P2&(0) # (0).
If P; # Ps, then there exist b € Py \ P; and a € Py \ Pe. Since
ab(R'/P1 & R'/Py & (0)) = (0), there exists k € N such that either
a*(R'/P1 ® R /Py ®(0)) = (0) or b*(R'/P1 @ R' /Py @ (0)) = (0). It
follows that either a € Py or b € Py, a contradiction. Thus, we must
have P; =+Po, i.e., the prime ideal P of R is contained in a unique
maximal ideal of R. g

Proposition 2.11. Let R be a quasi-primary compatible domain. Then,
any two prime ideals of R are comparable (i.e., Spec(R) is a chain).

Proof. Let R be a quasi-primary compatible domain, and let P; and Po
be two prime ideals of R such that P; € P>. Suppose that M = RORDR
and N =P; & P2 @ (0). Clearly, /(N : M) = (0) and so N is a quasi-
primary submodule of M. Now, by our hypothesis N is a classical
quasi-primary submodule of M. Clearly, Pi1P2(R & R @ (0)) C N, but
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R®R® (0) Z N. Now, let a € Py \ P2. Then, ab(R® R& (0)) C N for
each b € Py, but a*(R® R ® (0)) € N for each k € N. Thus, for each
b € P there exists k € N such that b*(R® R® (0)) C N. It follows that
b € Py for each b € Py, i.e., Py C P;. O

Theorem 2.12. Let R be a Noetherian ring. If R is quasi-primary
compatible, then for each minimal prime ideal P of R, the ring R’ =
R/P has at most one nonzero prime ideal. Consequently, dim(R) < 1.

Proof. Let R be a quasi-primary compatible Noetherian ring and M
be a maximal ideal of R. Suppose P is a minimal prime ideal such that
P C M. It suffices to show that there is no prime ideal of R strictly
between P and M. Clearly, we can assume that P ; M therefore; by
[15, Exercise 15.3], if there exists one prime ideal of R strictly between P
and M, then there are infinitely many. On the other hand, the domain
R’ := R/P is also quasi-primary compatible, and so by Proposition 2.11,
Spec(R') is a chain. Since R’ is a Noetherian domain, we conclude that
Spec(R’) is finite, i.e., the set of prime ideals of R between P and M is
finite. Thus, there is no prime ideal of R strictly between P and M. U

Lemma 2.13. (See [3, Proposition1.5]). Let M be an R-module and

Q be a submodule of M. If \/(Q.: M)= P, where P is a mazimal ideal
of R, then Q s a primary submodule of M .

Next, we characterize primary compatible rings (see also [3, Theorem
1.7] in which the primary compatibility property is slightly different than
ours).

Theorem 2.14. Let R be a ring. Then, the following are equivalent:
(1) R is a primary compatible ring.
(2) The R-module R @ R is primary compatible.
(3) Every prime ideal of R is mazximal (i.e., dim(R) = 0).

Proof. (1) = (2) is evident.

(2) = (3). Let P; be a prime ideal in R and P; be a maximal ideal with
P1 C Py. We claim that QQ = P; @& Ps is a classical primary R-submodule
of M = R& R. To see this, let a, b € R and N be a submodule of M
such that N ¢ Py & P2 and abN C P; & Pa. We will show that either
aN C Py @ Py or DN C Py @ Py. Since N ¢ Py ¢ Ps, there exists an
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element (xg,yp) € N such that (zg,y0) ¢ P1 @ Pa; hence, we just need
only consider two the cases:
Case 1. xyp ¢ P;. Since abN C P; @ P2, abry € P; and since P; is
a prime ideal of R, we conclude that either a € P; or b € P;. Now,
P1 C Py yields that alN C P; & Py or bN C P @ Ps.
Case 2. For each (z,y) € N, z € P;. Thus, yo € Pe2. Since abN C
P1 @ P2, abyy € Py and since Ps is a prime ideal of R, we conclude that
either a € Py or b € Py. It follows that alN C P; @ Py or bN C P; @ Ps.
Thus, P; @ Ps is a classical primary submodule. Now, by our hypoth-
esis () is a primary submodule of M. Clearly, P2(0,1) C Py @ Pa; but
(0,1) ¢ P1 @ P2. Thus, for each a € P there exists k& €N such that
a*(R® R) C P; @ P», and hence, we must have a* € P;. Now, since
Py is prime, a € P;. Therefore, Py C P; and so Py = Po. Thus, every
prime ideal of R is a maximal ideal i.e., dim(R) = 0.
(3) = (1) is evident by Proposition 2.3 (1) and Lemma 2.13. O

3. Decomposition into classical quasi-primary submodules

The decomposition into classical primary submodules was introduced
in detail in [3] and some results of the study are applied frequently in
this paper. The purpose of this section is to investigate decomposition
of submodules into classical quasi-primary submodules. In particular,
we introduce and study minimal classical quasi-primary decomposition
of submodules in Noetherian modules.

First, we need the following lemmas which are crucial in our investi-
gation.

Lemma 3:1. Let M be an R-module, and let Q@ = Q1N Q2N ---NQy be
a primary decomposition of ), where each Q; is a P;-primary submodule
of M. If P, TPy C--- CP,, then Q is a classical P1-quasi-primary
submodule.

Proof. Assume that abN C @, where a, b€ R, N < M and N ¢ Q.
Thus, N ¢ Q; for some i (1 < i < n). Assume that ¢ (1 < ¢ < n)
is the smallest number such that N ¢ @Q¢. Thus, N C Qi N---N
Qt—1- On the other hand, abN C @Q; and @Q; is Ps-primary; hence,
(ab)klM C @ for some k1 € N, i.e., ab € P;. Thus, a € P; or b € Py.
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Now, since P; € Piyq C -+ C Py, a*M C QN Qi1 N---NQ, or
M C Q NQ¢r1N---NQ, for some k € N. It follows that akN C
QiNQaN---NQpor* N CQiNQaN---NQ,. Thus, Q is a classical
quasi-primary submodule of M. Now, it is clear that \/(Q: M) =
V(@QiNQ2N---NQy: M) = Py; therefore, Q is a classical P;-quasi-
primary submodule. O

The following example shows that Lemma 3.1 is not necessarily true if
Q1,- -+ ,Qyn are only assumed to be classical (quasi) primary submodules
(even if all Q; are classical P-primary submodules for a prime ideal P
of R).

Example 3.2. Let R =7Z, M = 7y ® Zs ®Z, Q1 = Za D (0) &(0),
and Q2 = (0) ® Z3 @ (0). Then, one can easily see that ()1 and Q2 are
classical (quasi) primary submodules of M. Moreover; (0) = Q1 N Q2
and \/(Q1 : M) = \/(Q2 : M) = (0). Clearly, 2 x 3(Zes ®Zs®(0)) = (0),
but for each k > 1, 2¥(Zy © Z3 @ (0)) € (0) and3*(Zy & Z3 @ (0)) £ (0).
Thus, (0) S M is not a classical (quasi) primary submodule.

We will show that the converse of Lemma 3.1 is also true when the
decomposition Q) = @1 N --- N Q, is'a minimal primary decomposition.

Lemma 3.3. Let M be an R-module and N be a proper submodule of
M. Let N = Q1 N---NQywith P, = \/(Q;i: M), 1 <i<mn, bea
minimal primary decomposition of N. Then, for each P € Spec(R), the
following statements are equivalent:

(1) P="P; for somei (1. <i<n).

(2) There exists m € M\ N such that (N : m) is a P-primary ideal.

(3) There ezists m € M \ N such that /(N :m) =P.

Proof. The proof is similar to [15, Theorem 4.17] and so the details are
left to the reader. O

Proposition 3.4. Let M be an R-module and Q be a proper submodule
of M. Let Q = Q1N---NQy with Py = \/(Q;: M), 1 <i<mn, be a
minimal primary decomposition of Q. Then, @ is a classical quasi-
primary submodule if and only if {P1,---,Pn} is a chain of prime
ideals. In that case, the radical of (Q : M) is the smallest of the primes
Pl Pn.
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Proof. (=). Since Q = Q1N ---NQ, is a minimal primary decompo-
sition of @, by Lemma 3.3, for each ¢ (1 < i < n), P; = /(Q : m;) for
some m; € M \ Q. Assume that P; Z P; and P; Q P; for some i # j.
Let a € P; \ 'Pj and b € Pj \ P;. Then, there exist positive integers k;
and k; such that afib* (Rm; + Rm;) C @, and since Q is a classical
quasi-primary submodule, a®(m; +m;) € Q or b*(m; +m;) € Q for
some k > k; + k;. It follows that either a*m; € Q i.e., a® € (Q : m;) or
bEm,; € Q ie., bk € (@ : m;); hence, a € P;j or b € 737,, a contradiction.
Thus, {Py,- -, Py} is a chain of prime 1deals

(<) follows from Lemma 3.1. O

We note that Proposition 3.4 is not necessarily true if the primary
decomposition Q = Q1 N---NQ, is not minimal. -See the following
example:

Example 3.5. Let R=7Z, M = Z®Z, Q1 = 2287, Qs = 2ZD3Z, Q3 =
Z® (0), and Q4 = (0) ®Z. Clearly, Q1,--,Qu are primary submodules

of M with \/(Q1: M) = 2Z, \/(Qa: M) = 3Z, and /(Q3: M) =

(Qa: M) =(0). Also (0) = Q1N Q2N Q3N Qs and (0) is a classical
quasi-primary submodule of M. But, {(0),27Z,3Z} is not a chain of
prime ideals of R.

Definition 3.6. (see also [3, Definition 2.1]) Let N be a proper sub-
module of an R-module M. A classical primary (resp., classical quasi-
primary) decomposition of N is an expression N = N, Q;, where each
Q; is a classical primary (resp., classical quasi-primary) submodule of
M. The decomposition is called reduced if it satisfies the following two
conditions:

(1)'no Qi N ---NQ;, is a classical primary (resp., classical quasi-
primary) submodule, where {iy,--- i} C {1,--- ,n}, for t > 2
with 41 <o < -+ < iy

(2) for each j, Qj ;_b mi;ﬁjQi-

Corresponding to the above definition, by Proposition 2.3, we have a list

of prime ideals /(Q; : A (Qn e Among reduced classical

primary (resp., classmal qua81—pr1mary decompos1t10ns any one that
has the least number of distinct primes will be called minimal.
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It is clear that every primary decomposition of a submodule N of
M is classical primary. But, the converse is not true in general (see
[3, Example 2.2]). On the other hand, every classical quasi-primary
decomposition is a quasi-primary decomposition (an expression N =
N, Q;, where each Q; is a quasi-primary submodule of M). That the
converse is not true in general is shown in the following example. Also,
Theorem 2.4 together with [3, Example 2.2] show that not all reduced
classical primary (quasi-primary) decomposition is necessarily minimal.

Example 3.7. Let R =7 and M = Zy & Z3 & Z. Clearly, (0) S M is a
quasi-primary submodule and so (0) is a quasi-primary decomposition
of (0). But, (0) is not a classical quasi-primary submodule of M. Now,
by Theorem 2.4 and [3, Example 2.2], (0) = Z2@ (0) & (0)N(0) & Z35(0)
is a minimal classical (quasi) primary decomposition of (0).

We recall that if NV is a proper submodule.of a Noetherian R-module
M, then N has a primary decomposition, hence a minimal primary de-
composition (see [15, Exercise 9.31], and alse [3, Corollary 2.6] for the
existence of classical primary decomposition of N). Now, by Proposi-
tion 3.4, and the fact that every primary submodule is classical quasi-
primary, we have the following proposition:

Proposition 3.8. Let M be a Noetherian R-module. Then, every proper
submodule N of M has<a classical quasi-primary decomposition; hence,
it has a minimal classical quasi-primary decomposition.

Let R be a ring. For an ideal I of R, we denote the set of all minimal
prime ideals of I by min(/). Let M be a finitely generated R-module
and N < M. In [3, Theorem 3.6], it is shown that if R is a Noetherian
domain with dim(R) < 1 and

N=@1N--+NQ, with \/(Q;:M)="P;, fori=1,2,---,n
is a minimal classical primary decomposition of N, then
{P; |i=1,2,--- ;n} =min(N : M).
Consequently, the set {P; | i =1,2,--- ,n} is uniquely determined. Now,
by Theorem 2.4, this uniqueness property is also true when we replace
“classical primary” with “classical quasi-primary” (in fact, these two

decompositions are the same when R is a domain with dim(R) < 1).
Here we extend this uniqueness property for finitely generated modules
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over a Noetherian ring R without the assumption that R is a domain or
dim(R) < 1.

Theorem 3.9. [First Uniqueness Theorem]. Let R be a Noetherian ring
and M be a finitely generated R-module. Let N be a proper submodule
of M and

N=0Q1N---NQy, with\/(QiZM)Z'PZ‘, fori=1,2,---.n

be a minimal classical quasi-primary decomposition of N. Then,
{Pi|i=1,2,-+- ,n} =min(N : M).
Consequently, the set {P; | i =1,2,--- ,n} is uniquely determined.

Proof. First, we show that min(N : M) C {P; |4 =1,2,--- ,n}. Let
P be a minimal prime of (N : M). Then, by [15, Lemma 9.20], P is
a minimal member of Supp(M/N) and so by [15, Theorem 9.39], P €
Ass(M/N). Thus, P = (N : m) for some 0.7 m € M\ N. Renumber
the Qs such that m ¢ @Q; for 1 <i < jandm € Q; for j+1 <i < n.
Since P; = /(Q; : M) and P; is finitely generated, PR M C Q; for
some k; > 1 (1 < i < n). Therefore (ﬂgzlﬂ'ki)m CN',Qi = N and
SO ﬂgzlﬂki C (N :m) =P. Since P.is prime, P, C P for some t < j.
Since (N : M) C /(N : M) € /(Qi: M) = P; and P is a minimal
prime of (N : M), we conclude that P = P;.

Now, it is sufficient to show that each P; (1 < i < n) is a minimal
prime of (N : M). Without loss of generality, we may take i = 1.
Clearly,

(N:M)C /(N M)y=/(QiN---NQp:M)=n"1/(Qi: M) C Py.

On the contrary, suppose that P; is not a minimal prime of (N : M).
Thus, there exists an i € {1,2--- ,n} such that P; is a minimal prime
of (N2 M) with P; C Py (since min(N : M) C{P; |i=1,2,--- ,n}).

Again, without loss of generality, we may take i = 2. Thus, (V: M) C
Py & P1. By [15, Exercise 9.31], each @Q; has a minimal primary de-
composition. Suppose that Q1 = Q11 N --- N Qs with \/(Q1;: M) =
Plj (1 <3< 8) and QQ = Q21 n--- ﬂQQt with \/(ng:M) = 7)2]'
(1 < j <t) are minimal primary decompositions of @; and Q2, respec-
tively. By Proposition 3.4, {P1; |1 < j < s} and {Py; |1 < j < t}
are chain of prime ideals. Without loss of generality, we can assume
that P11 € P1o € -+ C Py and Pop € Pog C --- C Pop. We thus get
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P1 = P11 and Py = Poy since

Pr=+(Q1:M)=(@Qun--NQi: M) =ni_/(Qu : M) =Pu,

P2=/(Q2: M) = /(Qu - NQa : M) =Ny v/(Qui : M) = Pan.

It follows that Po; C P11 € P1a C -+ C Py and so by Proposition 3.4,
Q1 = Q21N Q11 N---NQ1s is a classical quasi-primary submodule of M
with 1/(Q] : M) = P21 = P2. On the other hand,

N=Q1N---NQp=(QuiN---NQ1s) N (Q21N---NQ2%) NQ3N=NQp
=(QRnNQuN-NQ)N(Qar N---NQ2u) NQ3N---NQn
=Q1NQ2NQ3N - NQy.

Thus, N = Q] NQ2N---NQ, is a classical quasi-primary decomposition

of N with \/(Q]: M) = /(Q2: M) = Py and /(Q; : M) = P; for

i =3,---,n. We note that if there exists another @; (3 < 7 < n) such

that \/(Q; : M) = P; = P1, then by a similar argument. we can replace

it by Q. such that /(QF: M) = \/(Q2: M).= P,. Now by using this
decomposition we can obtain a minimal classical quasi-primary decom-
position N = Q{ N Q5 N--- N QY such that Py & {/(QY : M) | i =
1L,--- ,k} CA{Pili = 2,--- ,n}, contrary with the minimality of the de-

composition N = Q1 NQ2N---NQ, with {\/(Q; : M)|i=1,--- ,n} =
{Pi|i=1,---,n}. Thus, {P; |¢=1,2,.-- ,n} =min(N : M). O

Let M be an R-module. A proper submodule P of M is called a
prime submodule of M if for each a € R and m € M, am € P implies
that either m € P'or aM C P. Prime submodules of modules over com-
mutative rings have been studied by various authors (see for examples,
[7,9,12,13]). Also, a proper submodule P of M is called a classical prime
submodule of M if, for every a, b € R and m € M, abm € P implies that
either am € P or bm € P. This notion of classical prime submodule
has been extensively studied in [4-6,8]. The classical prime radical (resp.
prime radical) of a submodule N of M, denoted by VN (resp. {/N),
is defined to be the intersection of all classical prime submodules (resp.
prime submodules) of M containing N. We note that for each proper
ideal I of R, /T = I =+/1.1f Q is a (quasi) primary ideal of a ring,
it is well-known that 1/Q is a prime ideal. However, in the module case,
if Q is a (quasi) primary submodule, then /@ is not necessarily a prime
submodule (see [17, Theorem 1.9 and Example 1.11] for more details).
Also for a submodule N of M, we define
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WN ={m|m=)>_,am for some a; € R, m; € M and r € N,
such that a;*m; € N (1 <i <r) for some k € N}.

This is called (Baers) lower nilradical of N. Clearly, "V/N is a sub-
module of M and N C "V/N C ¥/N (see [6, Definition 1.4 and Lemma
2.6]).

In [3, Theorem 1.9], it is shown that for every classical primary sub-
module @ of a module M over a domain R with dim(R) <1, "/Q is a
classical prime submodule and also "/Q = $/Q. Thus, by Theorem 2.4,
this fact is also true when we replace “classical primary” with “classical
quasi-primary”.

We conclude this paper with the following fundamental conjecture:

Conjecture 3.10. [Second Uniqueness Theorem]. Let R be a Noether-
ian ring and let N be a submodule of the finitely generated R-module M .
Let

N=@Q1N---NQ, with \/(Q;: M)y=P;  fori=1,2,---,n

and

N=Q\n-nQ, with Q. +M)=P, fori=12--,m
be two minimal classical quasi-primary decompositions of N. Then, n =

m, and also YQ1, -+, YQn are n different classical prime submodules
of M.

Remark 3.11. We note that the above conjecture is true when R is
a Noetherian domain with dim(R) < 1. In fact, since dim(R) < 1, by
Theorem 24, classical quasi-primary submodules of any module coincide
with classical primary submodules. Now, apply [3, Theorem 3.9].
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