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Abstract. In this paper we introduce the notion of classical quasi-
primary submodules that generalizes the concept of classical pri-
mary submodules. Then, we investigate decomposition and min-
imal decomposition into classical quasi-primary submodules. In
particular, existence and uniqueness of classical quasi-primary de-
compositions in finitely generated modules over Noetherian rings
are proved. Moreover, we show that this decomposition and the de-
composition into classical primary submodules are the same when
R is a domain with dim(R) ≤ 1.

1. Introduction

Throughout the paper all rings are commutative with an identity , and
all modules are unital. Let M be an R-module. If N is a submodule
(resp., proper submodule) of M , we write N ≤ M (resp., N � M). For
every nonempty subset X of M and every submodule N of M , the ideal
{r ∈ R | rX ⊆ N} will be denoted by (N : X). When X = {m}, where
m ∈ M , we use (N : m) instead of (N : X). Note that (N : M) is
the annihilator of the module M/N . Also we denote the classical Krull
dimension of R by dim(R), and for an ideal I of R,

√
I := {r ∈ R | rk ∈ I

for some k ∈ N}.
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52 Behboodi, Jahani-Nezhad and Naderi

We recall that a proper idealQ of R is called a primary ideal if ab ∈ Q,
where a, b ∈ R, implies that either a ∈ Q or bk ∈ Q for some k ∈ N (see
[2,15]). The decomposition of a nonzero ideal as (shortest) intersection of
a finite number of primary ideals, in a commutative Noetherian ring, was
established by Noether [14]. The notion of primary ideal was generalized
by Fuchs [10] through defining an ideal Q of a ring R to be it quasi-
primary if its radical is a prime ideal, i.e., if ab ∈ Q, where a, b ∈ R,
then either ak ∈ Q or bk ∈ Q for some k ∈ N (see also [11]). There are
some extensions of these notions to modules. We recall that a proper
submodule Q of M is called a primary submodule, if am ∈ Q, where
a ∈ R, m ∈ M , then m ∈ Q or akM ⊆ Q for some k ∈ N (see for
example [15]). Moreover, Q is called quasi-primary if

√
(Q : M) is a

prime ideal of R (see [1]).
We define a classical primary submodule in M as a proper submodule

Q of M such that if abN ⊆ Q, where a, b ∈ R and N ≤ M , then
either aN ⊆ Q or bkN ⊆ Q for some k ∈ N. Clearly, in case M = R,
where R is any commutative ring, classical primary submodules coincide
with primary ideals (see Proposition 2.1). The idea of decomposition of
submodules into classical primary submodules were introduced by Baziar
and Behboodi in [3]. Their definition of classical primary submodule was
slightly different than ours; they defined a classical primary submodule
in M as a proper submodule Q of M such that if abm ∈ Q, where a, b ∈ R
and m ∈ M , then either am ∈ Q or bkm ∈ Q for some k ∈ N. One can
easily see that these two definitions coincide when M is a Noetherian
module (see Proposition 2.6); but these are different in general (see
Example 2.2 (e). Also, we define a classical quasi-primary submodule in
M as a proper submodule Q of M such that if abN ⊆ Q, where a, b ∈ R
and N ≤ M , then either akN ⊆ Q or bkN ⊆ Q for some k ∈ N. Clearly,
every classical quasi-primary submodule is quasi-primary, but in general,
even in the case M = R, the converse need not be true (see Proposition
2.1). In [3], among other results, the existence and uniqueness of classical
primary decompositions in finitely generated modules over domains R
with dim(R) ≤ 1 are proved.

In this article, we continue the study of this construction via classical
quasi-primary submodules. In Section 2, we study some properties of
classical primary submodules and classical quasi-primary submodules.
We prove that in modules over a domain R with dim(R) ≤ 1, classical
primary submodules coincide with classical quasi-primary submodules.
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Classical quasi-primary submodules 53

We call an R-module M primary compatible (resp., quasi-primary com-
patible) if its primary and its classical primary (resp., quasi-primary
and its classical quasi-primary) submodules are the same. A ring R
is said to be primary compatible (resp., quasi-primary compatible) if
every R-module is primary compatible (resp., quasi-primary compati-
ble). Primary compatible rings are characterized in Theorem 2.14 (see
also [3, Theorem 1.7). It is also shown that if dim(R) = 0, then R is
a quasi-primary compatible ring, and if R is quasi-primary compatible,
then R is a Gelfand ring (i.e., every prime ideal of R is contained in a
unique maximal ideal of R). Moreover, if also R is Noetherian, then for
each minimal prime ideal P of R, the factor ring R/P has at most one
nonzero prime ideal (consequently, dim(R) ≤ 1).

In Section 3, we investigate decompositions of submodules into in-
tersections of classical quasi-primary submodules. In particular, the
existence and uniqueness of minimal classical quasi-primary decompo-
sitions in finitely generated modules over Noetherian rings are proved
(see Proposition 3.8 and Theorem 3.9).

2. Classical primary and classical quasi-primary submodules

Let R be a ring and Q be an ideal of R. We note that Q is a primary
(resp., quasi-primary, classical primary, classical quasi-primary) ideal of
R if and only if it is a primary (resp., quasi-primary, classical primary,
classical quasi-primary) submodule of RR.

It is well-known that in a Dedekind domain, the two concepts primary
and quasi-primary coincide; and are equal to powers of prime ideals (see
[11, p. 412]). In general, the above four concepts primary, classical
primary, quasi-primary, and classical quasi-primary ideals are different
in a ring R, but the following proposition more or less summarizes the
overall situation.

Proposition 2.1. Consider the following statements for a proper ideal
Q of a ring R:

(1) Q is a primary ideal.
(2) Q is a classical primary ideal.
(3) (Q : I) is a primary ideal, for each ideal I of R such that I 6⊆ Q.
(4) Q is a classical quasi-primary ideal.
(5)

√
(Q : I) is a prime ideal, for each ideal I of R such that I 6⊆ Q.
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54 Behboodi, Jahani-Nezhad and Naderi

(6) Q is a quasi-primary ideal (i.e.,
√
Q =

√
(Q : R) is a prime

ideal).
(7) Q is a power of a prime ideal.

Then, (1) ⇔ (2) ⇔ (3) ⇒ (4) ⇔ (5) ⇒ (6) ⇐ (7). Moreover,

(a) if dim(R) = 0, then (6) ⇒ (1);
(b) if R is a Dedekind domain, then (6) ⇒ (7) ⇒ (1);
(c) if R is a domain with dim(R) ≤ 1, then (5) ⇒ (1).

Proof. (1) ⇒ (2). Suppose Q is a primary ideal. Let abI ⊆ Q, where a,
b ∈ R and I is an ideal of R such that bI 6⊆ Q. Then, there exists x ∈ bI
such that x 6∈ Q. Since Q is primary ideal and ax ∈ Q, we conclude that
ak ∈ Q for some k ∈ N. It follows that akI ⊆ Q. Thus, Q is a classical
primary ideal.
(2) ⇒ (3) is evident.
(3) ⇒ (1). Take I = R and so by (3), Q = (Q : R) is a primary ideal.
(3) ⇒ (5) is evident.
(4) ⇒ (5). Let I be an ideal of R such that I 6⊆ Q, and let ab ∈

√
(Q : I),

where a, b ∈ R. Then, (ab)kI ⊆ Q for some k ∈ N. Since Q is a classical
quasi-primary ideal, there exists t ∈ N such that either atkI ⊆ Q or
btkI ⊆ Q, i.e., either a ∈

√
(Q : I) or b ∈

√
(Q : I). Thus,

√
(Q : I) is a

prime ideal.
(5) ⇒ (4). Assume that abI ⊆ Q, where a, b ∈ R and I is an ideal of R.
Then, ab ∈ (Q : I) ⊆

√
(Q : I). Since by (5),

√
(Q : I) is either R or a

prime ideal of R, depending on whether I ⊆ Q or not, we conclude that
either a ∈

√
(Q : I) or b ∈

√
(Q : I), i.e., akI ⊆ Q or bkI ⊆ Q for some

k ∈ N. Thus, Q is a classical quasi-primary ideal.
(5) ⇒ (6) and (7) ⇒ (6) are evident.

For Part (a), assume that dim(R) = 0 and Q is a quasi-primary ideal.
Thus,

√
Q is a maximal ideal and so by [15, Proposition 4.9], Q is a

primary ideal.
For Part (b), we note that in a Dedekind domain R, the two concepts

primary and quasi-primary coincide; and are equal to powers of prime
ideals of R (see [11, p. 412]). Thus, (6) ⇒ (7) ⇒ (1) when R is a
Dedekind domain.

For Part (c), assume that R is a domain with dim(R) ≤ 1 and (5)
holds. Take I = R and then by (5),

√
Q =

√
(Q : R) is a prime ideal.

Since R is a domain and dim(R) ≤ 1, either
√
Q = (0) or

√
Q is a

maximal ideal. If
√
Q = (0), then Q = (0); therefore, Q is a prime ideal
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(so it is primary). If
√
Q is a maximal ideal, then by [15, Proposition

4.9], Q is a primary ideal. �

Clearly, every (classical) primary ideal of a ring R is quasi-primary
but the converse need not be true in general (in fact, [15, Example 4.12]
shows that an ideal of a ring which has prime radical need not neces-
sarily be primary). Also every primary submodule of an R-module M
is classical (quasi) primary, but in general, the converse need not be
true (see Example 2.2 (a) and (b) below). On the other hand, every
classical quasi-primary submodule is quasi-primary, but in general, the
converse need not be true (see Example 2.2 (c) below). Example 2.2 (d)
below gives a submodule Q of a Noetherian R-module M such that Q
is classical quasi primary which is not primary (Note; the main result
of this paper (Theorem 3.9) is about Noetherian modules). In partic-
ular, Example 2.2 (e) below shows that the notion of classical primary
submodule of this paper is different from that in [3].

Example 2.2.
(a) Assume that R is a domain and P is a nonzero prime ideal in

R. Let F = ⊕λ∈ΛR be a free R-module, and let N = ⊕λ∈ΛAλ

be a proper submodule of F such that for every λ ∈ Λ, either
Aλ = P or Aλ = (0). Then, N is a classical primary submodule.
But, one can easily check that if there exist λ1, λ2 ∈ Λ such that
Aλ1 = P and Aλ2 = (0), then N is not a primary submodule of
M (see also [3, Example 1.2]).

(b) If p is a prime integer and Z(p∞) = { a
pk + Z | a, k are inte-

gers and k is positive}, then (0) � Z(p∞) is a classical primary
Z-submodule but it is not a primary submodule. In fact, we con-
clude that every nonzero proper submodule of Z(p∞) is classical
primary but it is not primary.

(c) Let R = Z and M = Q. Then, each proper submodule N of
M is a quasi-primary submodule since

√
(N : M) = (0). Now,

if N := Z + Z1
5 , the submodule of M generated by {1, 1

5}, then
2 × 3 < 1

2×3 >⊆ N , but for each k ≥ 1, 2k < 1
2×3 >6⊆ N

and 3k < 1
2×3 >6⊆ N . Thus, N is not a classical quasi-primary

submodule of M .
(d) Let R = Z, M = Z ⊕ Z and Q = pZ ⊕ (0), for some prime

number p. Then, Q is a classical quasi-primary submodule of
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the Noetherian R-module M but it is not a primary submodule
of M .

(e) Let R := Z2[x, y], M = Z2[x, y, z1, z2, . . .] and

Q =< {xyzi : i ∈ N}) ∪ {xizi : i ∈ N} ∪ {yizi : i ∈ N} >

as an ideal of the ring M . Clearly M is an R-module and Q � M .
We claim that Q is not a classical primary R-submodule of M
as the notion of this paper, but that is a classical primary R-
submodule of M as [3]. To see this let N =< {zi : i ∈ N} > as an
ideal of M . Then, N ≤ M is an R-submodule with xyN ⊆ Q.
Clearly xkz2k 6∈ Q and ykz2k 6∈ Q for each k ≥ 1. It follows
that xN 6⊆ Q and ykN 6⊆ Q for each k ≥ 1. Thus, Q � M is
not a classical primary submodule as the notion of this paper.
Now, we assume that fgh ∈ Q, where f , g ∈ R \ {0} and h ∈
M \ Q. Without loss of generality, we can assume that h ∈
Z2[x, y, z1, . . . , zn], for some n ≥ 1. Moreover, we can assume
that h = h1 + h2, where h1 ∈ R, h2 ∈ L, where L is the ideal
< {zi : 1 ≤ i ≤ n} > of the ring Z2[x, y, z1, z2, . . . , zn]. Clearly,
ykh2 ∈ Q for some k ≥ 1. It follows that ykfgh1 ∈ Q∩R. Since
Q∩R = (0), h1 = 0 and so h = h2 ∈ L. If f = 1+xf1 +yf2 and
g = 1+xg1+yg2, where f1, f2, g1, g2 ∈ R, then (1+xf1+yf2)(1+
xg1+yg2)h = (1+xf3+yf4)h ∈ Q, where f3, f4 ∈ R. If xf3 ∈ Q
and yf4 ∈ Q, then h ∈ Q, a contradiction. Thus, without loss of
generality we can assume xth ∈ Q but xt−1h 6∈ Q for some t ≥ 2
(since xkh ∈ Q for some k ≥ 1). Thus, xt−1(1 + xf3 + yf4)h =
xt−1h + xtf3h + xt−1yf4h ∈ Q. It follows that xt−1h ∈ Q, a
contradiction. Thus, either f = xf1+yf2 or g = xg1+yg2, where
f1, f2, g1, g2 ∈ R. If gkh 6∈ Q for each k ≥ 1, then g = 1+xg1+yg2

and so f = xf1 + yf2. Thus, (xf1 + yf2)(1 + xg1 + yg2)h ∈ Q
and so (xf1 + yf2 + x2f1g1 + y2f2g2)h ∈ Q . We claim that
fh = (xf1 + yf2)h ∈ Q, for if not, then either xf1h 6∈ Q or
yf2h 6∈ Q. If x2f1h ∈ Q and y2f2h ∈ Q, then (xf1 + yf2)h ∈ Q,
as we wish. Thus, without loss of generality we can assume that
x2f1h 6∈ Q and hence there exists t ≥ 3 such that xtf1h ∈ Q, but
xt−1f1h 6∈ Q. Therefore xt−2(xf1 +yf2 +x2f1g1 +y2f2g2)h ∈ Q.
It follows that (xt−1f1)h ∈ Q, a contradiction. Thus, fh =
(xf1 + yf2)h ∈ Q and so Q is a classical primary submodule as
[3].
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Proposition 2.3. Let M be an R-module and Q be a proper submodule
of M . Then,

(1) Q is classical primary if and only if for every submodule N of
M such that N * Q, (Q : N) is a primary ideal of R.

(2) Q is classical quasi-primary if and only if for every submodule
N of M such that N * Q, (Q : N) is a quasi-primary ideal of
R.

Proof. We only prove Part (2). The proof for Part (1) is similar.
(2) (⇐). Let abN ⊆ Q, where a, b ∈ R and N ≤ M such that N * Q.
Then, ab ∈ (Q : N), and since (Q : N) is a quasi-primary ideal, either
bk ∈ (Q : N) or ak ∈ (Q : N) for some k ∈ N. Thus, either bkN ⊆ Q or
akN ⊆ Q; therefore, Q is a classical quasi-primary submodule.
(2) (⇒) is evident. �

If Q is a classical primary (resp., classical quasi-primary) submodule
of an R-module M , then by Proposition 2.3, P =

√
(Q : M) is a prime

ideal and we shall say that Q is classical P-primary (resp., classical
P-quasi-primary).

Theorem 2.4. Let R be a domain with dim(R) ≤ 1, and let M be an
R-module. Then, a proper submodule Q of M is classical quasi-primary
if and only if it is classical

Proof. Assume that R is a domain with dim(R) ≤ 1 and M is an
R-module. By Proposition 2.3, every classical primary submodule of
M is classical quasi-primary. Now, let Q be a classical quasi-primary
submodule of M and N ≤ M such that N * Q. Then, by Proposition
2.3 (2), (Q : N) is a quasi-primary ideal of R. Since R is a domain
with dim(R) ≤ 1, by Proposition 2.1 (c), every classical quasi-primary
ideal of R is primary. Thus, (Q : N) is a primary ideal of R. Now, by
Proposition 2.3 (1), Q is a classical primary submodule of M . �

Corollary 2.5. Let M be an R-module and Q be a classical primary
(or classical quasi-primary) submodule. Then,{√

(Q : N)
∣∣∣ N is a finitely generated submodule of M such that N *Q

}
is a chain of prime ideals of R.
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Proof. First, we show that {
√

(Q : m) | m ∈ M \Q} is a chain of prime
ideals of R. For each m1, m2 ∈ M \Q we have

√
(Q : m1)∩

√
(Q : m2) ⊆√

(Q : m1 + m2). Since by Proposition 2.3,
√

(Q : m1 + m2) is either
R or a prime ideal of R, depending on whether m1 + m2 belongs to
Q or not, we conclude that either

√
(Q : m1) ⊆

√
(Q : m1 + m2) or√

(Q : m2) ⊆
√

(Q : m1 + m2). It follows that
√

(Q : m1) ⊆
√

(Q : m2)
or

√
(Q : m2) ⊆

√
(Q : m1); hence, {

√
(Q : m) | m ∈ M \Q} is a chain

of prime ideals of R.
Now, let N = Rm1+Rm2+ · · ·+Rmk and N ′ = Rm1

′+Rm2
′+ · · ·+

Rml
′, where k, l ∈ N and mi, mj

′ ∈ M for 1 ≤ i ≤ k and 1 ≤ j ≤ l, be
two finitely generated submodules of M such that N * Q and N ′ * Q.
Since {

√
(Q : m) | m ∈ M \Q} is a chain of prime ideals of R, without

loss of generality we can assume that
√

(Q : m1) ⊆
√

(Q : mi) for all
1 ≤ i ≤ k. Thus,√

(Q : N) =
√

(Q : m1R + m2R + · · ·+ mkR)

=
√

(Q : m1) ∩ (Q : m2) ∩ · · · (Q : mk)

=
√

(Q : m1) ∩
√

(Q : m2) ∩ · · · ∩
√

(Q : mk)

=
√

(Q : m1).

We now apply this argument again with N ′ replaced by N , to ob-

tain
√

(Q : N ′) =
√

(Q : m
′
1). Now, by the first part of the proof,√

(Q : m1) and
√

(Q : m1
′) are comparable prime ideals; therefore, ei-

ther
√

(Q : N) ⊆
√

(Q : N ′) or
√

(Q : N ′) ⊆
√

(Q : N), which com-
pletes the proof. �

Proposition 2.6. Let M be a Noetherian R-module and Q be a proper
submodule of M .

(a) The following statements are equivalent:
(1) Q is a classical primary submodule.
(2) For every a, b ∈ R and m ∈ M , abm ∈ Q implies that either

am ∈ Q or bkm ∈ Q for some k ∈ N.
(3) For every m ∈ M \Q, (Q : m) is a primary ideal of R.

(b) The following statements are equivalent:
(1) Q is a classical quasi-primary submodule.
(2) For every a, b ∈ R and m ∈ M , abm ∈ Q implies that either

akm ∈ Q or bkm ∈ Q for some k ∈ N.
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(3) For every m ∈ M \ Q, (Q : m) is a quasi-primary ideal of
R.

Proof. We only prove Part (a). The proof for Part (b) is similar.
(a) (1) ⇒ (2) and (a) (2) ⇔ (3) are clear.
(a) (2) ⇒ (1). Suppose N is a submodule of M such that N * Q. Let
ab ∈ (Q : N), where a, b ∈ R, but b /∈ (Q : N), i.e., abN ⊆ Q and
bN * Q. Thus, bn /∈ Q, for some n ∈ N . Since abn ∈ Q, by assumption,
akn ∈ Q for some k ∈ N. If

A := {n ∈ N | bn ∈ Q}, B := {n ∈ N | akn ∈ Q for some k ∈ N}, then

one can easily see that A and B are submodules of N and N = A∪B. It
follows that N = A or N = B. If N = A, then bN ⊆ Q, a contradiction.
Therefore N = B. Since N is finitely generated, akN ⊆ Q for some
k ∈ N; hence, bk ∈ (Q : N). Thus, Q is a classical primary submodule
of M by Proposition 2.3(1). �

Now, by Proposition 2.1 and Proposition 2.6, we have the following
corollary.

Corollary 2.7. Let R be a Dedekind domain and M be a Noetherian
R-module. For a proper submodule Q of M , the following statements
are equivalent:

(1) Q is a classical primary submodule.
(2) Q is a classical quasi-primary submodule.
(3) For every m ∈ M \Q, (Q : m) is a power of a prime ideal of R.

We recall that an R-module M is a multiplication module if each
submodule of M is of the form IM , where I is an ideal of R. The
following proposition shows that every multiplication module is primary
compatible, but in general, it need not be quasi-primary compatible (see
Proposition 2.1).

Proposition 2.8. Let M be a multiplication R-module and Q be a
proper submodule of M .

(a) The following statements are equivalent:
(1) Q is a classical primary submodule.
(2) Q is a primary submodule.
(3) Q = (Q : M) is a primary ideal of R.
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(4) Q = QM , where Q is a primary ideal which is maximal with
respect to this property (i.e., IM = Q implies that I ⊆ Q).

(b) The following statements are equivalent:
(1) Q is a classical quasi-primary submodule.
(2) Q = (Q : M) is a classical quasi-primary ideal of R.
(3) Q = QM , where Q is a classical quasi-primary ideal which

is maximal with respect to this property (i.e., IM = Q im-
plies that I ⊆ Q).

Proof. We only prove Part (a). The proof for Part (b) is similar.
(a) (1) ⇒ (2). Let Q be a classical primary submodule of multiplication
R-module M . Assume that am ∈ Q, where a ∈ R and m ∈ M \ Q.
Since M is a multiplication module, Rm = IM for some ideal I of R.
Hence aIM ⊆ Q and IM * Q, i.e., aI ⊆ (Q : M) and I * (Q : M). By
Proposition 2.3 (1), (Q : M) is a primary ideal of R; hence, akM ⊆ Q
for some k ∈ N. Thus, Q is a primary submodule.
(a) (2) ⇒ (3) is clear.
(a) (3) ⇒ (4). Since M is a multiplication module, Q = IM for some
ideal of R. Since QM ⊆ Q, I ⊆ (Q : M) = Q and so Q = IM ⊆ QM .
Thus, Q = QM , Q is a primary ideal and JM = Q implies that J ⊆ Q.
(a) (4) ⇒ (1). Let abN ⊆ Q, where a, b ∈ R and N ≤ M such that
bN * Q. Since M is a multiplication module, N = IM for some ideal I
of R. Thus, abIM ⊆ Q, i.e., abI ⊆ (Q : M) ⊆ Q. Since bN * Q, bI * Q
and so ak ∈ Q for some k ∈ N. This implies that akN ⊆ QM = Q and
so Q is a classical primary submodule of M . �

It is clear that every vector space is a (quasi) primary compatible
module and every field is a (quasi) primary compatible ring. Also, if R
is a (quasi) primary compatible ring, so is any factor ring of R. Next,
we will show that every primary compatible ring is quasi-primary com-
patible (see Proposition 2.9 and Theorem 2.14). But, we have not found
any examples of a quasi-primary compatible ring R that is not primary
compatible. On the other hand, every cyclic R-module is primary com-
patible and not necessarily a quasi-primary compatible (take M = R
and see [15, Example 4.12]).

Proposition 2.9. Let R be a ring with dim(R) = 0. Then, R is a
quasi-primary compatible ring.
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Proof. Let dim(R) = 0 and M be an R-module. Suppose Q is a quasi-
primary submodule of M i.e., P :=

√
(Q : M) is a maximal ideal of R.

Let N ≤ M such that N 6⊆ Q. Then, P ⊆
√

(Q : N) and since P is a
maximal ideal, P =

√
(Q : N). Thus, by [15, Proposition 4.9], (Q : N)

is a primary ideal of R. Now, by Proposition 2.3 (2), Q is a classical
quasi-primary submodule of M . �

A ring R is called Gelfand provided that, for any distinct maximal
ideals P1 and P2 of R, there exist elements a ∈ R \ P1 and b ∈ R \ P2

such that ab = 0. Simmons in [16] proved that a ring R is Gelfand if and
only if every prime ideal of R is contained in a unique maximal ideal of
R. Clearly each ring R with dim(R) = 0 is Gelfand. Next, we show that
every quasi-primary compatible ring is Gelfand.

Theorem 2.10. Let R be a quasi-primary compatible ring. Then, R is
a Gelfand ring.

Proof. Let R be a quasi-primary compatible ring and P be a prime ideal
of R. Then, the ring R′ := R/P is also quasi-primary compatible. Now,
let P1 and P2 be two maximal ideals of R′, and let M = R′/P1⊕R′/P2⊕
R′ as an R′-module. Since R′ is a domain and

√
((0) : M) = ((0) : M) =

(0), we conclude that (0) � M is a quasi-primary R′-submodule. Now,
by our hypothesis (0) � M is a classical quasi-primary R′-submodule.
Clearly P1P2(R′/P1⊕R′/P2⊕(0)) = (0), but R′/P1⊕R′/P2⊕(0) 6= (0).
If P1 6= P2, then there exist b ∈ P2 \ P1 and a ∈ P1 \ P2. Since
ab(R′/P1 ⊕ R′/P2 ⊕ (0)) = (0), there exists k ∈ N such that either
ak(R′/P1 ⊕ R′/P2 ⊕ (0)) = (0) or bk(R′/P1 ⊕ R′/P2 ⊕ (0)) = (0). It
follows that either a ∈ P2 or b ∈ P1, a contradiction. Thus, we must
have P1 = P2, i.e., the prime ideal P of R is contained in a unique
maximal ideal of R. �

Proposition 2.11. Let R be a quasi-primary compatible domain. Then,
any two prime ideals of R are comparable (i.e., Spec(R) is a chain).

Proof. Let R be a quasi-primary compatible domain, and let P1 and P2

be two prime ideals of R such that P1 6⊆ P2. Suppose that M = R⊕R⊕R
and N = P1 ⊕ P2 ⊕ (0). Clearly,

√
(N : M) = (0) and so N is a quasi-

primary submodule of M . Now, by our hypothesis N is a classical
quasi-primary submodule of M . Clearly, P1P2(R ⊕ R ⊕ (0)) ⊆ N , but
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R⊕R⊕ (0) 6⊆ N . Now, let a ∈ P1 \ P2. Then, ab(R⊕R⊕ (0)) ⊆ N for
each b ∈ P2, but ak(R ⊕ R ⊕ (0)) 6⊆ N for each k ∈ N. Thus, for each
b ∈ P2 there exists k ∈ N such that bk(R⊕R⊕ (0)) ⊆ N . It follows that
b ∈ P1 for each b ∈ P2, i.e., P2 ⊆ P1. �

Theorem 2.12. Let R be a Noetherian ring. If R is quasi-primary
compatible, then for each minimal prime ideal P of R, the ring R′ :=
R/P has at most one nonzero prime ideal. Consequently, dim(R) ≤ 1.

Proof. Let R be a quasi-primary compatible Noetherian ring and M
be a maximal ideal of R. Suppose P is a minimal prime ideal such that
P ⊆ M. It suffices to show that there is no prime ideal of R strictly
between P and M. Clearly, we can assume that P $ M; therefore, by
[15, Exercise 15.3], if there exists one prime ideal of R strictly between P
and M, then there are infinitely many. On the other hand, the domain
R′ := R/P is also quasi-primary compatible, and so by Proposition 2.11,
Spec(R′) is a chain. Since R′ is a Noetherian domain, we conclude that
Spec(R′) is finite, i.e., the set of prime ideals of R between P and M is
finite. Thus, there is no prime ideal of R strictly between P and M. �

Lemma 2.13. (See [3, Proposition 1.5]). Let M be an R-module and
Q be a submodule of M . If

√
(Q : M) = P, where P is a maximal ideal

of R, then Q is a primary submodule of M .

Next, we characterize primary compatible rings (see also [3, Theorem
1.7] in which the primary compatibility property is slightly different than
ours).

Theorem 2.14. Let R be a ring. Then, the following are equivalent:
(1) R is a primary compatible ring.
(2) The R-module R⊕R is primary compatible.
(3) Every prime ideal of R is maximal (i.e., dim(R) = 0 ).

Proof. (1) ⇒ (2) is evident.
(2) ⇒ (3). Let P1 be a prime ideal in R and P2 be a maximal ideal with
P1 ⊆ P2. We claim that Q = P1⊕P2 is a classical primary R-submodule
of M = R ⊕ R. To see this, let a, b ∈ R and N be a submodule of M
such that N * P1 ⊕ P2 and abN ⊆ P1 ⊕ P2. We will show that either
aN ⊆ P1 ⊕ P2 or bN ⊆ P1 ⊕ P2. Since N * P1 ⊕ P2, there exists an
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element (x0, y0) ∈ N such that (x0, y0) /∈ P1 ⊕ P2; hence, we just need
only consider two the cases:
Case 1. x0 /∈ P1. Since abN ⊆ P1 ⊕ P2, abx0 ∈ P1 and since P1 is
a prime ideal of R, we conclude that either a ∈ P1 or b ∈ P1. Now,
P1 ⊆ P2 yields that aN ⊆ P1 ⊕ P2 or bN ⊆ P1 ⊕ P2.
Case 2. For each (x, y) ∈ N , x ∈ P1. Thus, y0 6∈ P2. Since abN ⊆
P1⊕P2, aby0 ∈ P2 and since P2 is a prime ideal of R, we conclude that
either a ∈ P2 or b ∈ P2. It follows that aN ⊆ P1⊕P2 or bN ⊆ P1⊕P2.

Thus, P1⊕P2 is a classical primary submodule. Now, by our hypoth-
esis Q is a primary submodule of M . Clearly, P2(0, 1) ⊆ P1 ⊕ P2, but
(0, 1) /∈ P1 ⊕ P2. Thus, for each a ∈ P2 there exists k ∈ N such that
ak(R ⊕ R) ⊆ P1 ⊕ P2, and hence, we must have ak ∈ P1. Now, since
P1 is prime, a ∈ P1. Therefore, P2 ⊆ P1 and so P1 = P2. Thus, every
prime ideal of R is a maximal ideal i.e., dim(R) = 0.
(3) ⇒ (1) is evident by Proposition 2.3 (1) and Lemma 2.13. �

3. Decomposition into classical quasi-primary submodules

The decomposition into classical primary submodules was introduced
in detail in [3] and some results of the study are applied frequently in
this paper. The purpose of this section is to investigate decomposition
of submodules into classical quasi-primary submodules. In particular,
we introduce and study minimal classical quasi-primary decomposition
of submodules in Noetherian modules.

First, we need the following lemmas which are crucial in our investi-
gation.

Lemma 3.1. Let M be an R-module, and let Q = Q1∩Q2∩ · · · ∩Qn be
a primary decomposition of Q, where each Qi is a Pi-primary submodule
of M . If P1 ⊆ P2 ⊆ · · · ⊆ Pn, then Q is a classical P1-quasi-primary
submodule.

Proof. Assume that abN ⊆ Q, where a, b ∈ R, N ≤ M and N * Q.
Thus, N * Qi for some i (1 ≤ i ≤ n). Assume that t (1 ≤ t ≤ n)
is the smallest number such that N * Qt. Thus, N ⊆ Q1 ∩ · · · ∩
Qt−1. On the other hand, abN ⊆ Qt and Qt is Pt-primary; hence,
(ab)k1M ⊆ Qt for some k1 ∈ N, i.e., ab ∈ Pt. Thus, a ∈ Pt or b ∈ Pt.
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Now, since Pt ⊆ Pt+1 ⊆ · · · ⊆ Pn, akM ⊆ Qt ∩Qt+1 ∩ · · · ∩Qn or
bkM ⊆ Qt ∩Qt+1 ∩ · · · ∩Qn for some k ∈ N. It follows that akN ⊆
Q1 ∩Q2 ∩ · · · ∩Qn or bkN ⊆ Q1 ∩Q2 ∩ · · · ∩Qn. Thus, Q is a classical
quasi-primary submodule of M . Now, it is clear that

√
(Q : M) =√

(Q1 ∩Q2 ∩ · · · ∩Qn : M) = P1; therefore, Q is a classical P1-quasi-
primary submodule. �

The following example shows that Lemma 3.1 is not necessarily true if
Q1, · · · , Qn are only assumed to be classical (quasi) primary submodules
(even if all Q,

i are classical P-primary submodules for a prime ideal P
of R).

Example 3.2. Let R = Z, M = Z2 ⊕ Z3 ⊕ Z, Q1 = Z2 ⊕ (0) ⊕ (0),
and Q2 = (0) ⊕ Z3 ⊕ (0). Then, one can easily see that Q1 and Q2 are
classical (quasi) primary submodules of M . Moreover, (0) = Q1 ∩Q2

and
√

(Q1 : M) =
√

(Q2 : M) = (0). Clearly, 2×3(Z2⊕Z3⊕ (0)) = (0),
but for each k ≥ 1, 2k(Z2⊕Z3⊕ (0)) 6⊆ (0) and 3k(Z2⊕Z3⊕ (0)) 6⊆ (0).
Thus, (0) � M is not a classical (quasi) primary submodule.

We will show that the converse of Lemma 3.1 is also true when the
decomposition Q = Q1 ∩ · · · ∩Qn is a minimal primary decomposition.

Lemma 3.3. Let M be an R-module and N be a proper submodule of
M . Let N = Q1 ∩ · · · ∩ Qn with Pi =

√
(Qi : M), 1 ≤ i ≤ n, be a

minimal primary decomposition of N . Then, for each P ∈ Spec(R), the
following statements are equivalent:

(1) P = Pi for some i (1 ≤ i ≤ n).
(2) There exists m ∈ M \N such that (N : m) is a P-primary ideal.
(3) There exists m ∈ M \N such that

√
(N : m) = P.

Proof. The proof is similar to [15, Theorem 4.17] and so the details are
left to the reader. �

Proposition 3.4. Let M be an R-module and Q be a proper submodule
of M . Let Q = Q1 ∩ · · · ∩Qn with Pi =

√
(Qi : M), 1 ≤ i ≤ n, be a

minimal primary decomposition of Q. Then, Q is a classical quasi-
primary submodule if and only if {P1, · · · ,Pn} is a chain of prime
ideals. In that case, the radical of (Q : M) is the smallest of the primes
P1, · · · ,Pn.
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Proof. (⇒). Since Q = Q1 ∩ · · · ∩Qn is a minimal primary decompo-
sition of Q, by Lemma 3.3, for each i (1 ≤ i ≤ n), Pi =

√
(Q : mi) for

some mi ∈ M \ Q. Assume that Pi * Pj and Pj * Pi for some i 6= j.
Let a ∈ Pi \ Pj and b ∈ Pj \ Pi. Then, there exist positive integers ki

and kj such that akibkj (Rmi + Rmj) ⊆ Q, and since Q is a classical
quasi-primary submodule, ak(mi + mj) ∈ Q or bk(mi + mj) ∈ Q for
some k ≥ ki + kj . It follows that either akmj ∈ Q i.e., ak ∈ (Q : mj) or
bkmi ∈ Q i.e., bk ∈ (Q : mi); hence, a ∈ Pj or b ∈ Pi, a contradiction.
Thus, {P1, · · · ,Pn} is a chain of prime ideals.
(⇐) follows from Lemma 3.1. �

We note that Proposition 3.4 is not necessarily true if the primary
decomposition Q = Q1 ∩ · · · ∩Qn is not minimal. See the following
example:

Example 3.5. Let R = Z, M = Z⊕Z, Q1 = 2Z⊕Z, Q2 = Z⊕3Z, Q3 =
Z⊕ (0), and Q4 = (0)⊕Z. Clearly, Q1, · · · , Q4 are primary submodules
of M with

√
(Q1 : M) = 2Z,

√
(Q2 : M) = 3Z, and

√
(Q3 : M) =√

(Q4 : M) = (0). Also (0) = Q1 ∩ Q2 ∩ Q3 ∩ Q4 and (0) is a classical
quasi-primary submodule of M . But, {(0), 2Z, 3Z} is not a chain of
prime ideals of R.

Definition 3.6. (see also [3, Definition 2.1]) Let N be a proper sub-
module of an R-module M . A classical primary (resp., classical quasi-
primary) decomposition of N is an expression N = ∩n

i=1Qi, where each
Qi is a classical primary (resp., classical quasi-primary) submodule of
M . The decomposition is called reduced if it satisfies the following two
conditions:

(1) no Qi1 ∩ · · · ∩ Qit is a classical primary (resp., classical quasi-
primary) submodule, where {i1, · · · , it} ⊆ {1, · · · , n}, for t ≥ 2
with i1 < i2 < · · · < it.

(2) for each j, Qj + ∩i6=jQi.

Corresponding to the above definition, by Proposition 2.3, we have a list
of prime ideals

√
(Q1 : M), · · · ,

√
(Qn : M). Among reduced classical

primary (resp., classical quasi-primary) decompositions, any one that
has the least number of distinct primes will be called minimal.
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It is clear that every primary decomposition of a submodule N of
M is classical primary. But, the converse is not true in general (see
[3, Example 2.2]). On the other hand, every classical quasi-primary
decomposition is a quasi-primary decomposition (an expression N =
∩n

i=1Qi, where each Qi is a quasi-primary submodule of M). That the
converse is not true in general is shown in the following example. Also,
Theorem 2.4 together with [3, Example 2.2] show that not all reduced
classical primary (quasi-primary) decomposition is necessarily minimal.

Example 3.7. Let R = Z and M = Z2⊕Z3⊕Z. Clearly, (0) � M is a
quasi-primary submodule and so (0) is a quasi-primary decomposition
of (0). But, (0) is not a classical quasi-primary submodule of M . Now,
by Theorem 2.4 and [3, Example 2.2], (0) = Z2⊕(0)⊕(0)∩(0)⊕Z3⊕(0)
is a minimal classical (quasi) primary decomposition of (0).

We recall that if N is a proper submodule of a Noetherian R-module
M , then N has a primary decomposition, hence a minimal primary de-
composition (see [15, Exercise 9.31], and also [3, Corollary 2.6] for the
existence of classical primary decomposition of N). Now, by Proposi-
tion 3.4, and the fact that every primary submodule is classical quasi-
primary, we have the following proposition:

Proposition 3.8. Let M be a Noetherian R-module. Then, every proper
submodule N of M has a classical quasi-primary decomposition; hence,
it has a minimal classical quasi-primary decomposition.

Let R be a ring. For an ideal I of R, we denote the set of all minimal
prime ideals of I by min(I). Let M be a finitely generated R-module
and N � M . In [3, Theorem 3.6], it is shown that if R is a Noetherian
domain with dim(R) ≤ 1 and

N = Q1 ∩ · · · ∩Qn with
√

(Qi : M) = Pi, for i = 1, 2, · · · , n

is a minimal classical primary decomposition of N , then

{Pi | i = 1, 2, · · · , n} = min(N : M).

Consequently, the set {Pi | i = 1, 2, · · · , n} is uniquely determined. Now,
by Theorem 2.4, this uniqueness property is also true when we replace
“classical primary” with “classical quasi-primary” (in fact, these two
decompositions are the same when R is a domain with dim(R) ≤ 1).
Here we extend this uniqueness property for finitely generated modules
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over a Noetherian ring R without the assumption that R is a domain or
dim(R) ≤ 1.

Theorem 3.9. [First Uniqueness Theorem]. Let R be a Noetherian ring
and M be a finitely generated R-module. Let N be a proper submodule
of M and

N = Q1 ∩ · · · ∩Qn with
√

(Qi : M) = Pi, for i = 1, 2, · · · , n

be a minimal classical quasi-primary decomposition of N . Then,

{Pi | i = 1, 2, · · · , n} = min(N : M).

Consequently, the set {Pi | i = 1, 2, · · · , n} is uniquely determined.

Proof. First, we show that min(N : M) ⊆ {Pi | i = 1, 2, · · · , n}. Let
P be a minimal prime of (N : M). Then, by [15, Lemma 9.20], P is
a minimal member of Supp(M/N) and so by [15, Theorem 9.39], P ∈
Ass(M/N). Thus, P = (N : m) for some 0 6= m ∈ M \ N . Renumber
the Qi

,s such that m /∈ Qi for 1 ≤ i ≤ j and m ∈ Qi for j + 1 ≤ i ≤ n.
Since Pi =

√
(Qi : M) and Pi is finitely generated, Pi

kiM ⊆ Qi for
some ki ≥ 1 (1 ≤ i ≤ n). Therefore (∩j

i=1Pi
ki)m ⊆ ∩n

i=1Qi = N and
so ∩j

i=1Pi
ki ⊆ (N : m) = P. Since P is prime, Pt ⊆ P for some t ≤ j.

Since (N : M) ⊆
√

(N : M) ⊆
√

(Qt : M) = Pt and P is a minimal
prime of (N : M), we conclude that P = Pt.

Now, it is sufficient to show that each Pi (1 ≤ i ≤ n) is a minimal
prime of (N : M). Without loss of generality, we may take i = 1.
Clearly,

(N : M) ⊆
√

(N : M) =
√

(Q1 ∩ · · · ∩Qn : M) = ∩n
i=1

√
(Qi : M) ⊆ P1.

On the contrary, suppose that P1 is not a minimal prime of (N : M).
Thus, there exists an i ∈ {1, 2 · · · , n} such that Pi is a minimal prime
of (N : M) with Pi ( P1 (since min(N : M) ⊆ {Pi | i = 1, 2, · · · , n}).
Again, without loss of generality, we may take i = 2. Thus, (N : M) ⊆
P2 $ P1. By [15, Exercise 9.31], each Qi has a minimal primary de-
composition. Suppose that Q1 = Q11 ∩ · · · ∩ Q1s with

√
(Q1j : M) =

P1j (1 ≤ j ≤ s) and Q2 = Q21 ∩ · · · ∩ Q2t with
√

(Q2j : M) = P2j

(1 ≤ j ≤ t) are minimal primary decompositions of Q1 and Q2, respec-
tively. By Proposition 3.4, {P1j |1 ≤ j ≤ s} and {P2j |1 ≤ j ≤ t}
are chain of prime ideals. Without loss of generality, we can assume
that P11 ⊆ P12 ⊆ · · · ⊆ P1s and P21 ⊆ P22 ⊆ · · · ⊆ P2t. We thus get
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P1 = P11 and P2 = P21 since

P1 =
√

(Q1 : M) =
√

(Q11 ∩ · · · ∩Q1s : M) = ∩s
i=1

√
(Q1i : M) = P11,

P2 =
√

(Q2 : M) =
√

(Q21 ∩ · · · ∩Q2t : M) = ∩t
i=1

√
(Qti : M) = P21.

It follows that P21 ⊆ P11 ⊆ P12 ⊆ · · · ⊆ P1s and so by Proposition 3.4,
Q′

1 = Q21 ∩Q11 ∩ · · · ∩Q1s is a classical quasi-primary submodule of M

with
√

(Q′
1 : M) = P21 = P2. On the other hand,

N = Q1 ∩ · · · ∩Qn = (Q11 ∩ · · · ∩Q1s)∩ (Q21 ∩ · · · ∩Q2t)∩Q3 ∩ · · · ∩Qn

= (Q21 ∩Q11 ∩ · · · ∩Q1s) ∩ (Q21 ∩ · · · ∩Q2t) ∩Q3 ∩ · · · ∩Qn

= Q′
1 ∩Q2 ∩Q3 ∩ · · · ∩Qn.

Thus, N = Q′
1∩Q2∩· · ·∩Qn is a classical quasi-primary decomposition

of N with
√

(Q′
1 : M) =

√
(Q2 : M) = P2 and

√
(Qi : M) = Pi for

i = 3, · · · , n. We note that if there exists another Qi (3 ≤ i ≤ n) such
that

√
(Qi : M) = Pi = P1, then by a similar argument we can replace

it by Q′
i such that

√
(Q′

i : M) =
√

(Q2 : M) = P2. Now by using this
decomposition we can obtain a minimal classical quasi-primary decom-
position N = Q′′

1 ∩ Q′′
2 ∩ · · · ∩ Q′′

k such that P1 6∈ {
√

(Q′′
i : M) | i =

1, · · · , k} ⊆ {Pi|i = 2, · · · , n}, contrary with the minimality of the de-
composition N = Q1 ∩Q2 ∩ · · · ∩Qn with {

√
(Qi : M)| i = 1, · · · , n} =

{Pi | i = 1, · · · , n}. Thus, {Pi | i = 1, 2, · · · , n} = min(N : M). �

Let M be an R-module. A proper submodule P of M is called a
prime submodule of M if for each a ∈ R and m ∈ M , am ∈ P implies
that either m ∈ P or aM ⊆ P . Prime submodules of modules over com-
mutative rings have been studied by various authors (see for examples,
[7,9,12,13]). Also, a proper submodule P of M is called a classical prime
submodule of M if, for every a, b ∈ R and m ∈ M , abm ∈ P implies that
either am ∈ P or bm ∈ P . This notion of classical prime submodule
has been extensively studied in [4-6,8]. The classical prime radical (resp.
prime radical) of a submodule N of M , denoted by cl

√
N (resp. p

√
N),

is defined to be the intersection of all classical prime submodules (resp.
prime submodules) of M containing N . We note that for each proper
ideal I of R, cl

√
I = p

√
I =

√
I. If Q is a (quasi) primary ideal of a ring,

it is well-known that
√
Q is a prime ideal. However, in the module case,

if Q is a (quasi) primary submodule, then p
√

Q is not necessarily a prime
submodule (see [17, Theorem 1.9 and Example 1.11] for more details).
Also for a submodule N of M , we define
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nil
√

N = {m | m =
∑r

i=1 aimi for some ai ∈ R, mi ∈ M and r ∈ N,
such that ai

kmi ∈ N (1 ≤ i ≤ r) for some k ∈ N}.

This is called (Baers) lower nilradical of N . Clearly, nil
√

N is a sub-
module of M and N ⊆ nil

√
N ⊆ cl

√
N (see [6, Definition 1.4 and Lemma

2.6]).

In [3, Theorem 1.9], it is shown that for every classical primary sub-
module Q of a module M over a domain R with dim(R) ≤ 1, nil

√
Q is a

classical prime submodule and also nil
√

Q = cl
√

Q. Thus, by Theorem 2.4,
this fact is also true when we replace “classical primary” with “classical
quasi-primary”.

We conclude this paper with the following fundamental conjecture:

Conjecture 3.10. [Second Uniqueness Theorem]. Let R be a Noether-
ian ring and let N be a submodule of the finitely generated R-module M .
Let

N = Q1 ∩ · · · ∩Qn with
√

(Qi : M) = Pi for i = 1, 2, · · · , n

and

N = Q′
1 ∩ · · · ∩Q′

m with
√

(Q′
i : M) = P ′i for i = 1, 2, · · · ,m

be two minimal classical quasi-primary decompositions of N . Then, n =
m, and also cl

√
Q1, · · · , cl

√
Qn are n different classical prime submodules

of M .

Remark 3.11. We note that the above conjecture is true when R is
a Noetherian domain with dim(R) ≤ 1. In fact, since dim(R) ≤ 1, by
Theorem 2.4, classical quasi-primary submodules of any module coincide
with classical primary submodules. Now, apply [3, Theorem 3.9].
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