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PROVING THE EFFICIENCY OF PRO-2-GROUPS OF
FIXED CO-CLASSES

A. ARJOMANDFAR* AND H. DOOSTIE

Communicated by Jamshid Moori

ABSTRACT. Among the six classes of pro-2-groups of finite and
fixed co-classes and trivial Schur Multiplicator which studied by
Abdolzadeh and Eick in 2009, there are two classes
Ss = (a,b| [b,a*] =1,a* = [b,a)% (b*)*b? =1)
and
Se = (a,t,b | a® =b%,[b,a]* = 1,t* = t7'[bya], b’ = aba)

that have been conjectured to have deficiency zero presentations. In
this paper we prove these conjectures. This.completes the efficiency
of all six classes of pro-2-groups of fixed co-classes.

1. Introduction

For detailed information on pro-p-groups one may see [6, 7, 8]. The
pro-2-groups of fixed co-classes were first investigated in [1] and the
Schur Multiplicator is used to get the appropriate presentations for such
clagses of groups. For a useful and prolific information on the Schur
Multiplicator of a group one may consult [10]. Briefly, for a finitely
presented finite group G = (X | R) the Schur Multiplicator of G is

defined to be the group M (G) = I[J};%Ei, where F' = F(X) is the free group
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of rank |X| and R is the normal closure of R (R C F). More detailed
consideration about the relationship between the Schur Multiplicator
and the deficiency of a presentation of a finitely presented group may be
found in [9]. It is a classical fact that the groups with a deficiency zero
presentation will have the trivial Schur Multiplicators. However, looking
for a deficiency zero presentation of a group which has the trivial Schur
Multiplicator, is a long-standing question and many attempts have been
made during the years on finite p-groups and even in infinite groups.
Our notations are merely standard, we use |G : H| for the index of a
subgroup H in a group G, [a,b] is used for the commutator a=*b~1ab
and we will use the Modified Todd-Coxeter coset enumeration algorithm
in the form as given in [2] to get a presentation for subgroups. More
application of this algorithm may be found in [3,4, 5]. Following [1} and
consider the groups:

Ss = (a,b | [b,a®] = 1,a® = [b,a)?, (B*) U2 = 1)
and
Se = (a,t,b| a® =b? [a,b]* = 1,t* =t b, a], b’ = aba).

Just proved in [1], these groups have trivial Schur Multiplicators and
the above presentations are the simplified presentations for them (see
the Lemmas 13 and 14 of [1]). We now recall the conjectures 14 and 16
of [1] as the following propositions:

Proposition 1.1. The group S5 has a deficiency zero presentation iso-
morphic to
(asb ] a® = b,a]?, (*)"1p* = 1).

Proposition 1.2. The group Sg has a deficiency zero presentation iso-
morphic to
(a,t,b|a® =0 t* =t71[b,a], b’ = aba).

2. The proofs

We give a suitable generating set for the derived subgroups of Sj
and Sg. Then, by using the Modified Todd-Coxeter coset enumeration
algorithm we get a presentation for the derived subgroups. Note that,
using GAP [11] we are able to get a presentation for the derived subgroup
in each case and then finding the image of the word [b, a] in the derived
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subgroup of the group S5 and the image of the word [a, b]? in the derived
subgroup of Sg are possible, however, checking that this image is the
identity element of the group (in each case) is not possible every time,
i.e; we checked it for S5 and it was not possible for Sg. For this reason
we are interested in to use the combinatorial method of Modified Todd-
Coxeter coset enumeration algorithm to give a clear and exact proof.

Lemma 2.1. Let G = (a,b | a® = [b,a]?, (b*)>4b? = 1). Then, G', the
derived subgroup of G, has a presentation isomorphic to

G/ = <a1, ...,06 | 1, ...,7“12>
where, the relations r1,...,7T12 are as follows:
r: alagz =1, ro (alagl)zal_lcu =1,
r3 ! alagQ =1, T4 (agag)zaglalagl =1

Ty a2a3a2a§1 =1, 7rg: a2a6a2a671 =1,

1

.42 2 —1 __ . —1\2 -1 -1 _
r7:azasazag =1, 1g:(aiag ) asas ay ajagaz =1,

1 -1

Tg a4a§a2_1agla3a5_ ag al_l =1,

TP —1_ N2 =lp —1 ~C1\ 1 —1y _
o : (ag agal as(ay az)’ay (ag asa; )a, (arazay ) =1,
-1 . P B |
T11 1G] a40105 Q203 Q205 Q10g° = 1,

719 (a;lal)agaglagl(a3a1_1a5)a1agla2agl =1.

Proof. It is easy to check that % ~ 75 x Z4. We now consider the
subgroup

K = (a®,b%,[b,a],[a"2,b71],[a L, 0], [0, a])
of G and define eight cosets as
1=K, ib=i+1, (i=1,2,3), la=5, 4a™ ' =6, 27 =7, 3a"1 =8

to see that K is of index 8 in G. Since a?,b* € G’ then K C G’ , which
together with |G : H| = 8 proves that K = G'.
We let

ay = a?, ay =b', a3 = [b,a], ag = [a72,b7Y], a5 = [a"1,b], ag = [b!,q]

and we use the Modified Todd-Coxeter coset enumeration algorithm
to get a presentation for K. In this way we have to adopt the name of
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a coset and its representative to get the following table of coset repre-
sentatives:

la =5, 16 = 2,

2a = ay ta1.7, 2b = 3,

3a = agaglagagl.& 3b =4,

4a = agaglalaglagl.ﬁ, 4b = as.1,

5a = aq.1, 5b:a1a6_1.7,
6a = 4, 6b = a2a3a1_1.5,
Ta = 2, b = a3a51.8,
8a = 3, 8b = agla; "6 .

These coset representatives have been obtained by using the eight de-
fined cosets as la = 5,16 =2,20 =3,3b=4,4a ' =6,2a ' =7,3a ! =
8, and by using the subgroup tables of the coset-enumeration algorithm.
Indeed,

la? = a;.1 = 5a=aq.1,

10* = as.1 = 4b = as.1,

1[b,a] = = 6b = asaza; .5,

1[a™t ] =as.1 = da=asa; 'ajaz a6,
1a=2,b7 =@yl = 2a=a; a7,

1[b~Ya] = ag.1 = 5b = ajag .7,

1Ry =1 = 7b = aza; .8,

2Ry = 2 = 8b = ag ‘a; .6,

3R =3 = 3a = (a3a2_1)2.8.

where, R =a’[a,b)? and Ry =

(b2)[b,a} b2

To get a presentation for K we examine all of the equations:

iRy =1, (1=1,2,4,5,6,7,8),
and
iRy =1, (1=3,4,5,6,7,8).
Many of them give us complicated relations, however, by using the new
results in each step we will simplify the relations to get the desired
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presentation for K. A comprehensive and detailed computation may be
given as follows:
The equation 1R, = 1 gives us 71 : a1a§2 = 1, and the equation 2Ry = 2
yields the trivial relation. The equation 7R; = 7 yields the relation
ro (alagl)Qaf1a4 =1.
The equations bR; = 5, 4R; = 4, 3Re = 3 and 4Ry = 4 yield the
relations:

T3 : a1a5_2 =1,

. 2 —1_ -1 _
r4: (aga)’as; “ajas =1,
s agagagagl =1,

T6 - aQaGagagl =1,

respectively. The preliminary relation [(ag 1a3)2a2_ 1ag 1]Qa;:,al_l% =1is
a result of the equation 6 R; = 6, and using the relations 4 and r5 this

becomes to:

7 a%%a%aﬁ_l =1.

The equation 8R; = 8 gives us the relation afalagagla;lalaga;l =1
that becomes to the simpler relation

. “1\2,  —1 -1 _
rg : (a1ag )“asag ay ajasaz =1

by using the relations r9 and r5. The equation 5Rs = 5 gives the relation

—1y2. -1 -1 -1 -1 -1
as(azay ") ag - aza; a; ajag a; =1

that becomes to rg : a4a§a2_1ag1a3a5_1aglal_l = 1 by using the relations

r3 and 75. Finally, the equations 6 Ry = 6,7Ry = 7 and 8Rs = 8 will
give us the relations 119, 711 and 719, respectively. This completes the
proof. O

Proof of Proposition 1.1. By considering the presentation of K, we
prove that a4 = 1 holds in K. This will tends to establishing the relation
[a?,b] =1 in'GG and so, the group S5 has a deficiency zero presentation.

Proving a4 = 1 is by using the relation r19 of K and we proceed as
follows. First, we use the relations r5 to get [a3,as] = 1 and then the
relations r3, 74 and r7 to simplify the relations ryg, i.e;

(aglagal_l)%(a;lagaglag)agl(aﬁ_lagal_l)af(a1a3a2_1) =1
= (ag'azasa;t).adayt (ag tazarY).ay tar.azay b = 1, (by 73),

= (ag 'agazagaz).aiay tagtazart (ag  ar).azazt = 1, (by rad),
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= ag(agajay ').ag taza;t.(ay tar)az = 1,
(aga3ag 'az)ay ' (ay ar)ag = 1, (by [a3, a9] = 1),
Yartaras = 1, (by ),

-1 -1 —
=>a3 a; Gy

= a4 = 1.
O
Lemma 2.2. Let G = {a,t,b| a? = b*,t* = t~1[b,a],b' = aba). Then,

G' = (A, B,C), where A= a? B =t? and C = [a,b]. Moreover, C* =1
holds in G'.

Proof. Obviously, % > 7o X Zoy X Zy and letting K = (A, B,C) and
defining eight cosets as

K=1 la=2, 1t=3, 1b=4, 5b=2, 3b =6, 3a=17, 6a=8

shows that |G : H| = 8. Since a?,t*> € G’ then K C G/; %0, G' & K.
To prove the equation C? = 1 we use the Modified Todd-Coxeter coset
enumeration algorithm as well as in Lemma 2.1 and get the coset rep-
resentatives as,

la =2, 1b = 4, 1t = 3,

20 = A.l, 2b = A5, 2t = CB~1.7,

3a =1, 3b = 6, 3t = B.1,

4a = AC~L.5, 4b = A1, 4t = BC~'AB7 16,
5a = C 4, 5b = 2, 5t=C1A6B7138,
6a = 8, 6b = BA3B1.3, 6t = BAC 4,

Ta=BA3B™'3, Tb=BC 'A2B7'8 Tt=BA’B1A-'C~12,
8a = BA3B~'6, 8b= BA’CB~'7, 8t = BASB~1AC2.5.

To get a presentation for G’ we have to consider all of the equations
iRj=1i, (i=1,2,..,8, j=1,2,3)

where, Ry = a?b~2, Ry = t%[a,b]t and R3 = bta~'b~'a~1't~1. To prove
the relation C? = 1 we do not need to calculate all of the relations of G/
we just examine the suitable equation 5R3 = 5 to get the result. Indeed,
by using the above coset representatives we get:

S5bta= b~ ta 1t 1=5 = CB LBA 3B 1.BA 3B 1.BASC =1
= (C?=1.

This completes the proof. ]
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Proof of Proposition 1.2. Using the result of Lemma 2.2 and substi-
tuting for C' will conclude the validity of the relation [a,b]> = 1 in the
group G. O
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