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Abstract. Let A be a Banach algebra and M be a Banach A-
bimodule. We say that a linear mapping δ : A →M is a generalized
σ-derivation whenever there exists a σ-derivation d : A →M such
that δ(ab) = δ(a)σ(b) + σ(a)d(b), for all a, b ∈ A. Giving some
facts concerning generalized σ-derivations, we prove that if A is
unital and if δ : A → A is a generalized σ-derivation and there
exists an element a ∈ A such that d(a) is invertible, then δ is
continuous if and only if d is continuous. We also show that if M
is unital, has no zero divisor and δ : A → M is a generalized σ-
derivation such that d(1) 6= 0, then ker(δ) is a bi-ideal of A and
ker(δ) = ker(σ) = ker(d), where 1 denotes the unit element of A.

1. Introduction

Let A be a Banach algebra and M be a Banach A-bimodule. Let
σ : A → A be a linear mapping. A linear mapping d : A → M is
a σ-derivation if d(ab) = d(a)σ(b) + σ(a)d(b), for all a, b ∈ A (see [7],
[8]). A σ-derivation d is said to be inner if there exists an element
u ∈ M such that d(a) = uσ(a) − σ(a)u, for all a ∈ A. Suppose M
is a Banach right A-module. A linear mapping δ : M → M is called
a generalized derivation if there is a derivation d : A → A such that
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δ(xa) = δ(x)a + xd(a) (x ∈ M, a ∈ A) (for more details see [1], [5]).
Generalized inner derivation is defined in [5], [6] as follows:
A linear mapping δ : A → A is a generalized inner derivation if δ(x) =
bx − xa, for some a, b ∈ A. Getting idea from generalized derivation,
we define a generalized σ-derivation. Now, suppose M is a Banach A-
bimodule, then a linear mapping δ : A →M is a generalized σ-derivation
if there exists a σ-derivation d : A → M such that δ(ab) = δ(a)σ(b) +
σ(a)d(b), for all a, b ∈ A. Let ϕ : A → A be a homomorphism(algebra
morphism). A linear mapping T : M → M is called a ϕ-morphism if
T (xa) = T (x)ϕ(a), for all a ∈ A, x ∈ M. Using the extension of the
definition of ϕ-morphism, we define σ-algebraic map T : A → M as
follows: A linear mapping T : A → M is a σ-algebraic map if there
exists a linear mapping σ : A → A such that T (ab) = T (a)σ(b), for
all a, b ∈ A. It is clear that if σ is an endomorphism, then T will be
a σ-morphism in the aforementioned sense. Obviously, generalized σ-
derivation covers the notion of generalized derivation (in case σ = id,
the identity operator on A), notion of a σ-derivation (in case δ = d),
notion of a derivation (in case δ = d, σ = id), notion of a σ-algebraic
map (in case d = 0) and the notion of a modular left centralizer (in
case d = 0, σ = id). Thus, it is interesting to investigate properties
of this general notion. We shall prove a theorem about the relation
between separating space of σ-derivation d and σ-algebraic map T and
generalized σ-derivation δ by Niknam’s paper (you can refer to [9]).

2. σ-algebraic maps

Throughout the paper A and M denote a Banach algebra and a
Banach A-bimodule, respectively. If A is unital, then 1 will show the
unit element of A. Recall that if E is a subset of an algebra B, the
right annihilator ran(E ) of E (resp. the left annihilator lan(E ) of E )
is defined to be {b ∈ B : Eb = {0}} (resp. {b ∈ B :bE = {0}}). The
set ann(E ) := ran(E )

⋂
lan(E ) is called the annihilator of E. Suppose

S ⊆ M. The right annihilator ran(S ) of S is defined to be {a ∈ A :
Sa = 0}. Similarly, we define the left annihilator of S. We also recall
that if Y and Z are normed spaces and T : Y → Z is a linear mapping,
then the set of all z ∈ Z such that there is a sequence {yn} ⊆ Y with
yn → 0 and Tyn → z is called the separating space S (T ) of T. Clearly,
S(T ) =

⋂∞
n=1 {T (y) : ‖y‖ < 1

n} is a closed linear space. If Y and Z are
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Banach spaces, by the closed graph theorem, T is continuous if and only
if S (T ) = {0}.

Definition 2.1. A linear operator T : A → M is called a σ-algebraic
map if there is a linear mapping σ : A → A such that T (ab) = T (a)σ(b),
for all a, b ∈ A. If σ is an endomorphism on A, then T is called a σ-
morphism. It is clear that if T is a σ-algebraic map on a unital algebra,
then ker(σ) ⊆ ker(T ).

Example 2.2. Suppose σ : A → A is an endomorphism and T: A →M
is a modular map, i.e., T(ab) = T(a)b (a, b ∈ A). Then, T1 = Tσ is a
σ-algebraic map.

Example 2.3. Let ß = A × A, then ß is a Banach algebra by the fol-
lowing action and norm: (a,b)•(c,d) = (ac,bd) and ‖(a, b)‖ = ‖a‖+‖b‖.
Suppose I is an ideal of ß, then we know that ß

I is a ß-bimodule by the
following actions: ((a,b) + I ).(c,d) = (ac,bd) + I , (c,d).((a,b) + I) =
(ca,db) + I. We define σ : ß → ß by σ(a, b) = (a, a+b

2 ) and T : ß → ß
I by

T(a,b) = (a,0) + I. Then, T is a σ-algebraic map.

Example 2.4. Suppose T, σ : C([0, 1]) → C([0, 1]) are defined by

T (f)(t) =
{

f(2t)h0(t) if 0 ≤ t ≤ 1
2

f(1)h0(1
2) 1

2 ≤ t ≤ 1

σ(f)(t) =
{

f(2t) if 0 ≤ t ≤ 1
2

f(1) 1
2 ≤ t ≤ 1

where, h0 is a fixed element of C([0,1]). It is clear that T is a σ-algebraic
map.

Proposition 2.5. Suppose A is a unital algebra and T : A → A is
a σ-algebraic map such that T(1) = 1. Then, T = σ and σ is an
endomorphism.

Proof. T (a) = T (1)σ(a) = σ(a), for all a ∈ A, it leads to σ = T and we
have σ(ab) = T (ab) = T (a)σ(b) = σ(a)σ(b). �

Theorem 2.6. Suppose T : A →M is a σ-algebraic map. Then,
(i) T (A)S(σ) ⊆ S(T ).
(ii) S(T )σ(A) ⊆ S(T ).
(iii) If M = A and T(1) is invertible, then S(T ) = T (1)S(σ) and T

is surjective if and only if σ is surjective, furthermore S(T ) = A
if and only if S(σ) = A.
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(iv) If M = A and σ is surjective, then T (A) is a right ideal of A.
Moreover, if A is unital, then T (A) is a right ideal generated by
T(1).

Proof. (i) Assume that a ∈ S(σ). Then, there is a sequence {an} ⊆ A
such that an → 0 and σ(an) → a. We have T (ban) = T (b)σ(an) →
T (b)a, for all b ∈ A, it implies that T (A)S(σ) ⊆ S(T ).
(ii) The proof is similar to the proof of (i).
(iii) Assume a ∈ S(T ). Then, there is a sequence {an} ⊆ A such that
an → 0 and T (an) → a. We have T (1)σ(an) = T (an) → a. Since
T (1) is invertible, we obtain σ(an) → (T (1))−1a, it means that S(T ) ⊆
T (1)S(σ). Now, Assume that a ∈ S(σ), then, there is a sequence {an} ⊆
A such that an → 0 and σ(an) → a. We have T (1)σ(an) → T (1)a, it
means that T (an) → T (1)a. We obtain T (1)S(σ) ⊆ S(T ). Therefore,
S(T ) = T (1)S(σ). Suppose T is surjective and b ∈ A. Then, T (1)b ∈ A.
Since T is surjective, there exists an element a ∈ A such that T (a) =
T (1)b. Therefore, b = T (1)−1T (a) = T (1)−1T (1)σ(a) = σ(a). Hence,
σ is a surjective map. Conversely, suppose σ is a surjective mapping.
We know that A = T (1)A; therefore, T (A) = T (1)σ(A) = T (1)A = A.
In conclusion, T is surjective. By a similar procedure, we are able to
prove S(T ) = A if and only if S(σ) = A.
(iv) The proof of this part is like the former one. �

Corollary 2.7. Suppose T : A → A is a σ-algebraic map.
(i) If A is unital and T(1) is invertible, then T is continuous if and

only if σ is continuous.
(ii) Suppose A is unital and T(1) = 1. If σ is a surjective map, then

S(σ) is a bi-ideal of A.
(iii) If T is continuous and ran(T (A)) = {0}, then σ is continuous.
(iv) If σ is surjective, then S(T) is a right ideal of A.

Proof. (i) We can prove this part by (iii) of previous theorem.
(ii) This part is derived from Proposition 2.5 and (i), (ii) of previous
theorem.
(iii) This part can be proved by (i) of the former theorem.
(iv) We obtain this part by (ii) of the former theorem. �

Definition 2.8. A Banach algebra A has the Cohen’s factorization prop-
erty if for all sequences {an} ⊆ A such that an → 0 there exist an ele-
ment c ∈ A and a sequence {bn} ⊆ A such that an = cbn, for all positive
integer n and bn → 0. If A has a bounded left approximate identity,
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then Corollary 11.12 of [2] results that it has the Cohen’s factorization
property.

Theorem 2.9. Suppose A has the Cohen’s factorization property and
T : A →M is a non-zero σ-algebraic map. If ran(T (A)) = {0}, then T
is continuous if and only if σ is continuous.

Proof. Suppose σ is continuous and let {an} be a sequence in A con-
verging to zero in the norm topology. By Cohen’s factorization property,
there exist a sequence {bn} and an element c ∈ A such that bn → 0 and
an = cbn. We have T (an) = T (c)σ(bn) → 0; thus, by the closed graph
theorem, T is continuous. Conversely, suppose T is continuous. By part
(iii) of Corollary 2.7 , σ is continuous. �

3. Generalized σ-derivations

Definition 3.1. A linear mapping δ : A → M is called a generalized
σ-derivation if there exists a σ-derivation d : A →M such that δ(ab) =
δ(a)σ(b) + σ(a)d(b), for all a, b ∈ A.

For convenience, we say that such a generalized σ-derivation δ is a
(σ, d)-derivation. In general, the σ-derivation d : A →M is not unique
and it may happen that δ(resp.d) is continuous but d(resp.δ) is discon-
tinuous. For instance, assume that the actions of A on M and of A
on A are trivial, i.e., MA = AM = {0} and AA = {0}. Then, every
linear mapping δ : A → M is a (σ, d)-derivation, for all σ-derivation
d : A →M.

Example 3.2. Suppose σ : A → A is an endomorphism and δ : A →
M is a generalized derivation, i.e., δ(ab) = δ(a)b + ad(b), for some
derivation d : A → M. We know that d1 = dσ is a σ-derivation. If
δ1 = δσ, then δ1 is a (σ, d1)-derivation.

Example 3.3. Suppose T : A →M is a σ-algebraic map and d : A →
M is a σ-derivation. Then, δ = d + T is a (σ, d)-derivation.

Example 3.4. Suppose ß and ß
I are the symbols which are introduced in

Example 2.3. We define d : ß → ß
I by d(a, b) = (0, a− b) + I, σ : ß → ß

by σ(a, b) = (a, a+b
2 ) and δ : ß → ß

I by δ(a, b) = (a, a − b) + I. Then, a
straightforward verification shows that δ is a (σ, d)-derivation.
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Theorem 3.5. A linear mapping δ : A → M is a (σ, d)-derivation if
and only if there exist a σ-derivation d : A →M and a σ-algebraic map
T : A →M such that δ = d + T .

Proof. Suppose δ is a (σ, d)-derivation on A. Then, there exists a σ-
derivation d on A such that δ is a (σ, d)-derivation. Putting T = δ − d
we have

T (ab) = (δ − d)(ab)

= δ(a)σ(b) + σ(a)d(b)− d(a)σ(b)− σ(a)d(b)

= (δ(a)− d(a))σ(b)

= T (a)σ(b)

for all a, b ∈ A. Thus, T is a σ-algebraic map and δ = d+T . Conversely,
let d be a σ-derivation and T be a σ-algebraic map on A and put
δ = d + T . Then, clearly, δ is a linear mapping and

δ(ab) = d(ab) + T (ab)

= d(a)σ(b) + σ(a)d(b) + T (a)σ(b)

= (d(a) + T (a))σ(b) + σ(a)d(b)

= δ(a)σ(b) + σ(a)d(b)

for all a, b ∈ A. Therefore, δ is a (σ, d)-derivation. �

Theorem 3.6. Let A have the Cohen’s factorization property and let
δ be a (σ, d)-derivation on A such that σ is continuous. Then, δ is
continuous if and only if d is continuous.

Proof. By Theorem 3.5, T = δ−d is a σ-algebraic map on A. Since σ is
continuous by Theorem 2.9, T is continuous. Therefore, δ is continuous
if and only if d is continuous. �

Theorem 3.7. Let σ : A → A be a homomorphism and δ : A →M be
a (σ, d)-derivation. Then,

(i) M equipped with the module multiplications a.x = σ(a)x and
x.a = xσ(a) is a A-bimodule denoted by M̃ .

(ii) δ : A → M̃ is a generalized derivation and d : A → M̃ is an
ordinary derivation.

(iii) E = A
⊕

M̃ equipped with the multiplication (a,x)(b,y) = (ab,a.y
+ x.b) is an algebra and ϕd : A → E defined by ϕd(a) = (a, d(a))
is an injective homomorphism and ϕδ : A → E defined by
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ϕδ(a) = (a, δ(a)) is an injective ϕd-morphism, i.e., ϕδ(ab) =
ϕδ(a)ϕd(b) (a, b ∈ A).

(iv) If M has a norm, σ is continuous and E is equipped by the norm
‖(a, x)‖ = ‖a‖ + sup{‖x‖, ‖b.x‖, ‖x.c‖, ‖b.x.c‖ : b, c ∈ A, ‖b‖ ≤
1, ‖c‖ ≤ 1}, then ϕδ is continuous if and only if δ is continuous.
Thus, if every injective ϕ-morphism of A into a Banach algebra
is continuous, then every (σ, d)-derivation of A into a Banach
A-bimodule is continuous.

Proof. Straightforward (see [7]). �

Theorem 3.8. In this theorem the notations are the same as in Theorem
3.7. Then,

(i) ϕδ(A)S(ϕd) ⊆ S(ϕδ).
(ii) S(ϕδ)ϕd(A) ⊆ S(ϕδ).
(iii) If M is unital and σ(1) = 1, then S(ϕδ) = ϕδ(1)S(ϕd) and

ϕδ is surjective if and only if ϕd is surjective. Furthermore,
S(ϕd) = E if and only if S(ϕδ) = E.

Proof. The proof is like that of Theorem 2.6. But, note that if σ(1) = 1,
then (1,0) is the unit element of E and (ϕδ(1))−1 = (1,−δ(1)). �

Definition 3.9. Let σ : A → A be an arbitrary linear mapping and sup-
pose that x,y are two elements of M satisfying x(σ(ab) − σ(a)σ(b)) =
(σ(ab) − σ(a)σ(b))y = y(σ(ab) − σ(a)σ(b)), for all a, b ∈ A. Then, the
(σ, d)-derivation δ : A →M defined by δ(a) = xσ(a)− σ(a)y is called a
generalized inner σ-derivation. In fact, δ is a (σ, dy)-derivation, where
dy(a) = yσ(a)− σ(a)y, for all a ∈ A.
It is clear that, if σ is an endomorphism, then x,y can be arbitrary ele-
ments of M.

Theorem 3.10. Suppose δ : A → A is a generalized inner σ-derivation.
If 0 < ‖x‖ < 1 and 0 < ‖y‖ < 1, then

∞∑
n=1

n−1∑
k=0

xkδ(a)yn−1−k

is a generalized inner σ-derivation.

Proof. We may assume that A is unital. In fact, if A has no identity,
we shall consider the unitization A1 = A

⊕
C of A. First of all, by
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induction on n, we prove that

xnσ(a)− σ(a)yn =
n−1∑
k=0

xkδ(a)yn−1−k(3.1)

If n = 1, then (3.1) is clear. Now, suppose that (3.1) is true, for n.
We have

xn+1σ(a)− σ(a)yn+1 = x(xnσ(a)− σ(a)yn) + (xσ(a)− σ(a)y)yn

= x
n−1∑
k=0

xkδ(a)yn−1−k + δ(a)yn

=
n−1∑
k=0

xk+1δ(a)yn−1−k + δ(a)yn

=
n∑

k=1

xkδ(a)yn−k + δ(a)yn

=
n∑

k=0

xkδ(a)yn−k .

We know that if ‖x‖ < 1, then (1− x)−1 = 1 +
∑∞

n=1 xn. Therefore,

∞∑
n=1

n−1∑
k=0

xkδ(a)yn−1−k =
∞∑

n=1

xnσ(a)− σ(a)yn

= (1− x)−1σ(a)− σ(a)(1− y)−1.

�

We can prove theorems like Theorem 3.10, for σ-derivations and gen-
eralized derivations.

The proofs of Lemma 3.11 and Theorem 3.12 are similar to the proofs
of Lemma 2.2 and Lemma 2.3 in [7], respectively.

Lemma 3.11. Let δ : A →M be a (σ, d)-derivation. Then,
δ(a)(σ(bc)− σ(b)σ(c)) = (σ(ab)− σ(a)σ(b))d(c), for all a, b, c ∈ A.

Theorem 3.12. Suppose δ is a (σ, d)-derivation such that σ : A → A is
a continuous mapping. Then, for each a ∈ S(δ), a1 ∈ S(d) and b, c ∈ A
we have

(i) a(σ(bc)− σ(b)σ(c)) = 0
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(ii) (σ(bc)− σ(b)σ(c))a1 = a1(σ(bc)− σ(b)σ(c)) = 0

Corollary 3.13. Suppose δ : A →M is a (σ, d)-derivation.
(i) If ran(S(δ))

⋂
ann(S(d)) = {0}, then σ is an endomorphism.

(ii) If lan({σ(bc) − σ(b)σ(c) : b, c ∈ A}) = {0}, then d and δ are
continuous.

Proof. Straightforward. �

Theorem 3.14. Suppose A is a simple algebra and has the Cohen’s
factorization property. If δ : A → A is a (σ, d)-derivation such that σ is
a surjective continuous linear mapping, then δ is continuous or σ is an
endomorphism.

Proof. First, note that S (d) is a bi-ideal of A (it is proved in Proposition
2.5 of [7]). Therefore, S (d) is {0} or A. If S (d) = {0}, then d is
continuous. We show that δ is continuous. Suppose {an} is an arbitrary
sequence in A such that an → 0. By Cohen’s factorization property,
there exist a sequence {bn} and an element c in A such that bn → 0 and
an = cbn (n ∈ N). Then, δ(an) = δ(cbn) = δ(c)σ(bn) + σ(c)d(bn) → 0.
Thus, by the closed graph theorem, δ is continuous. Now, suppose
S(d) = A. By Theorem 3.12, we know that {σ(bc) − σ(b)σ(c) : b, c ∈
A} ⊆ ann(S(d)) = ann(A). Since A is a bi-ideal, ann(A) is a bi-ideal of
A; therefore, ann(A) is {0} or A. If ann(A) = A, then AA = {0} which
is a contradiction and if ann(A) = {0}, then σ is an endomorphism. �

Definition 3.15. An A-bimodule M has no zero divisor if ax = 0 or
xa = 0, then a= 0 or x = 0 (a ∈ A, x ∈M).

Theorem 3.16. Suppose M has no zero divisor and A has the Cohen’s
factorization property and suppose that δ : A →M is a (σ, d)-derivation.
If d is non-zero, then d is continuous if and only if δ is continuous.

Proof. Suppose δ is continuous and a ∈ A such that d(a) 6= 0. Let
{an} be an arbitrary sequence in A such that an → 0 and σ(an) →
c. We must prove c = 0. Since ana → 0 and δ is continuous, we
have δ(an)σ(a) + σ(an)d(a) = δ(ana) → 0. It implies that cd(a) = 0.
It concludes d(a) = 0 which is a contradiction or c = 0. Therefore,
by the closed graph theorem, σ is continuous. Theorems 2.9 and 3.5
imply that the σ-algebraic map T = δ − d is continuous. Hence, d is
continuous. Conversely, suppose d is continuous and let {an} be an
arbitrary sequence in A such that an → 0 and σ(an) → c. Since d is
continuous, d(an)σ(a) + σ(an)d(a) = d(ana) → 0. It implies that cd(a)
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= 0 and it follows that c = 0. Hence, σ is continuous. The proof is
complete by continuity of the σ-algebraic map T = δ − d. �

Theorem 3.17. Suppose A is unital and δ : A → A is a (σ, d)-
derivation. If there exists an element a ∈ A such that d(a) is invertible,
then δ is continuous if and only if d is continuous.

Proof. Suppose d is continuous and a is an element in A such that d(a)
is invertible. We show that σ is continuous. Let {an} be an arbitrary
sequence such that an → 0 and σ(an) → c. We have d(a)σ(an) +
σ(a)d(an) = d(aan) → 0. Thus, d(a)c = 0. Since d(a) is invertible,
c = 0. By the closed graph theorem, σ is continuous. Theorem 2.9
implies that the σ-algebraic map T = δ − d is continuous. Hence, δ
is continuous. Conversely, suppose δ is continuous and let {an} be an
arbitrary sequence in A such that an → 0 and σ(an) → c. We have
δ(an)σ(a) + σ(an)d(a) = δ(ana) → 0 thus, cd(a) = 0. Since d(a) is
invertible, c = 0. Hence, σ is continuous; therefore, the σ-algebraic map
T = δ − d is continuous and so d is continuous. �

Proposition 3.18. Suppose A is unital and δ : A → M is a (σ, d)-
derivation. If σ(1) = 0, then δ and d are equal to zero.

Proof. It is clear that d(1) = 0. We have d(a) = d(a)σ(1)+σ(a)d(1) = 0,
for all a ∈ A, it means that d = 0. Now, we can see δ(1) = 0 and it
follows that δ = 0. �

Theorem 3.19. Suppose M is unital and has no zero divisor and sup-
pose that δ : A →M is a (σ, d)-derivation. If d(1) 6= 0, then ker(δ) is
a bi-ideal of A and ker(d) = ker(σ) = ker(δ).

Proof. First of all, we show that if d : A →M is a non-zero σ-derivation,
then d(1) = 0 if and only if σ(1) = 1. Suppose σ(1) = 1, it is clear
that d(1) = 0. Now, suppose that d(1) = 0 and a is an element in A
such that d(a) 6= 0. We have d(a) = d(a)σ(1) + σ(a)d(1) = d(a)σ(1), it
means that d(a)(1 − σ(1)) = 0. This equality implies that σ(1) = 1.
Therefore, we have d(1) 6= 0 if and only if σ(1) 6= 1. Let a ∈ ker(σ),
we have d(a) = d(1)σ(a) + σ(1)d(a) = σ(1)d(a), it means that (1 −
σ(1))d(a) = 0. It follows that d(a) = 0, i.e., a ∈ ker(d). Thus, ker(σ) ⊆
ker(d). Now, assume that a ∈ ker(d). By a similar procedure, we obtain
ker(d) ⊆ ker(σ). Hence, ker(d) = ker(σ). We prove that ker (d) is a
bi-ideal of A. Suppose that a ∈ ker(d) and b ∈ A, we have d(ab) =
d(a)σ(b) + σ(a)d(b) = 0; hence, ab ∈ ker(d). Similarly, ba ∈ ker(d);
therefore, ker (d) is a bi-ideal of A. Now, we show that ker(σ) = ker(δ).
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Suppose that a ∈ ker(σ), we have δ(a) = δ(1)σ(a) + σ(1)d(a) = 0; it
means that ker(σ) ⊆ ker(δ). Now, suppose that a ∈ ker(δ). We have
δ(a)σ(1) + σ(a)d(1) = δ(a) = 0, it means that σ(a)d(1) = 0 hence,
a ∈ ker(σ). Therefore, ker(δ) ⊆ ker(σ). It follows that ker(δ) =
ker(σ) = ker(d). �

Corollary 3.20. Suppose that M is unital, has no zero divisor and A
is a simple algebra.

(i) If δ : A → M is a (σ, d)-derivation such that d(1) 6= 0, then d,
σ and δ are injective.

(ii) If M = A and δ : A → A is a (σ, d)-derivation such that d(1) 6=
0, then there is no positive integer n such that δn or σn or dn

are equal to zero.

Proof. Straightforward. �

Theorem 3.21. Suppose that A is unital.
(i) If δ : A →M is a (σ, d)-derivation such that δ(1) = d(1), then

δ = d.
(ii) If δ : A → A is a (σ, d)-derivation such that d(1) = 1, then

δ = d and d is an endomorphism.

Proof. (i) The proof of this part is straightforward.
(ii) Since d(1) = 1, it follows that σ(1) = 1

2 . By Theorem 3.5, T =
δ − d is a σ-algebraic map; therefore, T (a) = T (a)σ(1) = T (a)

2 , for
all a ∈ A. It follows that T = 0 and in conclusion δ = d. We have
d(a) = d(a)σ(1) + σ(a)d(1) = d(a)

2 + σ(a). Thus, d(a)
2 = σ(a), for all

a ∈ A. By this fact we have,

d(ab) = d(a)σ(b) + σ(a)d(b)

= d(a)
d(b)
2

+
d(a)
2

d(b)

= d(a)d(b).

It means that d is an endomorphism. �

Theorem 3.22. Suppose that A is unital and δ : A → M is a (σ, d)-
derivation such that σ is continuous. If σ(1) = 1, then δ is continuous
if and only if d is continuous.

Proof. It is clear that δ − d = δ(1)σ. Since σ is continuous, δ − d is
continuous. Therefore, by Proposition 5.2.3 of [4], we have S(δ) = S(d).
Hence, δ is continuous if and only if d is continuous. �
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Proposition 3.23. Suppose that A is unital and δ : A → A is a (σ, d)-
derivation such that δ(1) is invertible and σ(1) = 1. Then,

(i) δ(a) is not equal to d(a), for all a ∈ (ker(σ))C , where (ker(σ))C

is the complement of ker(σ).
(ii) If δ and d are continuous, then ker (σ) is not dense in A.
(iii) σ is an endomorphism.

Proof. (i) Arguing by contradiction, suppose that there is an element
b ∈ (ker(σ))C such that δ(b) = d(b). Since σ(1) = 1, we have δ(a) −
d(a) = δ(1)σ(a), for all a ∈ A; hence, δ(1)σ(b) = 0. It follows that
σ(b) = 0 which is a contradiction.
(ii) Arguing by contradiction, suppose that ker(σ) is dense in A. If
a ∈ ker(σ), we have δ(a) = σ(1)d(a) and d(a) = σ(1)d(a). It means
that δ = d on ker(σ); hence, δ = d on A. Assume b ∈ (ker(σ))C . Since
σ(1) = 1, we have δ(a) − d(a) = δ(1)σ(a), i.e., δ(1)σ(a) = 0, for all
a ∈ A. It follows that δ(1)σ(b) = 0. We conclude σ(b) = 0 which is a
contradiction.
(iii) By σ(1) = 1, we have δ−d = δ(1)σ. According to Theorem 3.5, T =
δ−d is a σ-algebraic map. Therefore, we have δ(1)σ(ab) = δ(1)σ(a)σ(b).
Since δ(1) is invertible, σ is an endomorphism. �

The proof of the following theorem is straightforward.

Theorem 3.24. Suppose that δ : A →M is a (σ, d)-derivation. Then,
(i) S(δ)σ(ker(d)) ⊆ S(δ).
(ii) σ(ker(δ))S(d) ⊆ S(δ).
(iii) δ(ker(σ))S(σ) ⊆ S(δ).
(iv) S(σ)d(ker(σ)) ⊆ S(δ).
(v) If σ is continuous, then σ(A)S(d) ⊆ S(δ).
(vi) If d is continuous, then δ(A)S(σ) ⊆ S(δ).

Corollary 3.25. (i) Suppose that M has no zero divisor and δ is a
non-zero continuous (σ, d)-derivation on A. If σ is non-zero, then σ is
continuous if and only if d is continuous.
(ii) Suppose that δ is a (σ, d)-derivation such that d is continuous. If δ
is continuous, then S(σ) ⊆ ran(δ(A)).
(iii) Suppose that A is unital and δ : A → A is a (σ, d)-derivation such
that d is continuous and δ(1) is invertible. Then, S(δ) = δ(1)S(σ). If
T = δ − d, then S(δ) = S(T ).

Proof. (i) Suppose that σ is continuous. By continuity of δ and part
(v) of Theorem 3.24, we obtain σ(A)S(d) = {0}, i.e., σ(a)b = 0, for all
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a ∈ A, b ∈ S(d). Let a ∈ A such that σ(a) 6= 0. We have σ(a)b = 0,
for all b ∈ S(d); it implies that σ(a) = 0, where it is a contradiction
or b = 0. Since b is an arbitrary element in S(d), S(d) is equal to {0}.
Hence, d is continuous. Conversely, suppose that d is continuous. By
the continuity of δ and part (vi) of Theorem 3.24, we can prove that σ
is continuous.
(ii) This part can be proved using (vi) of Theorem 3.24.
(iii) By part (vi) of Theorem 3.24, we obtain δ(1)S(σ) ⊆ S(δ). Now,
suppose that a ∈ S(δ), then there is a sequence {an} in A such that
an → 0 and δ(an) → a. We have δ(1)σ(an) + σ(1)d(an) = δ(an) → a,
it implies that δ(1)σ(an) → a; therefore, σ(an) → (δ(1))−1a and in
conclusion S(δ) ⊆ δ(1)S(σ). Therefore, S(δ) = δ(1)S(σ). Since d is
continuous, Proposition 5.2.3 of [4] gives that S(T ) = S(δ). �
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