Bulletin of the Iranian Mathematical Society Vol. 37 No. 4 (2011), pp 81-94.

GENERALIZED σ -DERIVATION ON BANACH ALGEBRAS

A. HOSSEINI^{*}, M. HASSANI AND A. NIKNAM

Communicated by Saeid Azam

ABSTRACT. Let \mathcal{A} be a Banach algebra and \mathcal{M} be a Banach \mathcal{A} bimodule. We say that a linear mapping $\delta : \mathcal{A} \to \mathcal{M}$ is a generalized σ -derivation whenever there exists a σ -derivation $d : \mathcal{A} \to \mathcal{M}$ such that $\delta(ab) = \delta(a)\sigma(b) + \sigma(a)d(b)$, for all $a, b \in \mathcal{A}$. Giving some facts concerning generalized σ -derivations, we prove that if \mathcal{A} is unital and if $\delta : \mathcal{A} \to \mathcal{A}$ is a generalized σ -derivation and there exists an element $a \in \mathcal{A}$ such that d(a) is invertible, then δ is continuous if and only if d is continuous. We also show that if \mathcal{M} is unital, has no zero divisor and $\delta : \mathcal{A} \to \mathcal{M}$ is a generalized σ derivation such that $d(1) \neq 0$, then $ker(\delta)$ is a bi-ideal of \mathcal{A} and $ker(\delta) = ker(\sigma) = ker(d)$, where 1 denotes the unit element of \mathcal{A} .

1. Introduction

Let \mathcal{A} be a Banach algebra and \mathcal{M} be a Banach \mathcal{A} -bimodule. Let $\sigma : \mathcal{A} \to \mathcal{A}$ be a linear mapping. A linear mapping $d : \mathcal{A} \to \mathcal{M}$ is a σ -derivation if $d(ab) = d(a)\sigma(b) + \sigma(a)d(b)$, for all $a, b \in \mathcal{A}$ (see [7], [8]). A σ -derivation d is said to be inner if there exists an element $u \in \mathcal{M}$ such that $d(a) = u\sigma(a) - \sigma(a)u$, for all $a \in \mathcal{A}$. Suppose \mathcal{M} is a Banach right \mathcal{A} -module. A linear mapping $\delta : \mathcal{M} \to \mathcal{M}$ is called a generalized derivation if there is a derivation $d : \mathcal{A} \to \mathcal{A}$ such that

MSC(2010): Primary: 47B47; Secondary: 17B40, 13N15.

Keywords: Derivation, σ -derivation, (σ, d) -derivation, σ -algebraic map.

Received: 28 February 2010, Accepted: 2 May 2010.

^{*}Corresponding author

^{© 2011} Iranian Mathematical Society.

⁸¹

 $\delta(xa) = \delta(x)a + xd(a) \ (x \in \mathcal{M}, a \in \mathcal{A})$ (for more details see [1], [5]). Generalized inner derivation is defined in [5], [6] as follows:

A linear mapping $\delta : \mathcal{A} \to \mathcal{A}$ is a generalized inner derivation if $\delta(x) =$ bx - xa, for some $a, b \in \mathcal{A}$. Getting idea from generalized derivation, we define a generalized σ -derivation. Now, suppose \mathcal{M} is a Banach \mathcal{A} bimodule, then a linear mapping $\delta : \mathcal{A} \to \mathcal{M}$ is a generalized σ -derivation if there exists a σ -derivation $d: \mathcal{A} \to \mathcal{M}$ such that $\delta(ab) = \delta(a)\sigma(b) + \delta(ab) = \delta(a)\sigma(b)$ $\sigma(a)d(b)$, for all $a, b \in \mathcal{A}$. Let $\varphi : \mathcal{A} \to \mathcal{A}$ be a homomorphism(algebra morphism). A linear mapping $T: \mathcal{M} \to \mathcal{M}$ is called a φ -morphism if $T(xa) = T(x)\varphi(a)$, for all $a \in \mathcal{A}, x \in \mathcal{M}$. Using the extension of the definition of φ -morphism, we define σ -algebraic map $T: \mathcal{A} \to \mathcal{M}$ as follows: A linear mapping $T: \mathcal{A} \to \mathcal{M}$ is a σ -algebraic map if there exists a linear mapping $\sigma : \mathcal{A} \to \mathcal{A}$ such that $T(ab) = T(a)\sigma(b)$, for all $a, b \in \mathcal{A}$. It is clear that if σ is an endomorphism, then T will be a σ -morphism in the aforementioned sense. Obviously, generalized σ derivation covers the notion of generalized derivation (in case $\sigma = id$, the identity operator on \mathcal{A}), notion of a σ -derivation (in case $\delta = d$), notion of a derivation (in case $\delta = d$, $\sigma = id$), notion of a σ -algebraic map (in case d = 0) and the notion of a modular left centralizer (in case $d = 0, \sigma = id$). Thus, it is interesting to investigate properties of this general notion. We shall prove a theorem about the relation between separating space of σ -derivation d and σ -algebraic map T and generalized σ -derivation δ by Niknam's paper (you can refer to [9]).

2. σ -algebraic maps

Throughout the paper \mathcal{A} and \mathcal{M} denote a Banach algebra and a Banach \mathcal{A} -bimodule, respectively. If \mathcal{A} is unital, then 1 will show the unit element of \mathcal{A} . Recall that if E is a subset of an algebra B, the right annihilator ran(E) of E (resp. the left annihilator lan(E) of E) is defined to be $\{b \in B: Eb = \{0\}\}$ (resp. $\{b \in B: bE = \{0\}\}$). The set $ann(E) := ran(E) \cap lan(E)$ is called the annihilator of E. Suppose $S \subseteq \mathcal{M}$. The right annihilator ran(S) of S is defined to be $\{a \in \mathcal{A} :$ $Sa = 0\}$. Similarly, we define the left annihilator of S. We also recall that if Y and Z are normed spaces and $T: Y \to Z$ is a linear mapping, then the set of all $z \in Z$ such that there is a sequence $\{y_n\} \subseteq Y$ with $y_n \to 0$ and $Ty_n \to z$ is called the separating space S(T) of T. Clearly, $S(T) = \bigcap_{n=1}^{\infty} \{T(y): \|y\| < \frac{1}{n}\}$ is a closed linear space. If Y and Z are

Banach spaces, by the closed graph theorem, T is continuous if and only if $S(T) = \{0\}$.

Definition 2.1. A linear operator $T : \mathcal{A} \to \mathcal{M}$ is called a σ -algebraic map if there is a linear mapping $\sigma : \mathcal{A} \to \mathcal{A}$ such that $T(ab) = T(a)\sigma(b)$, for all $a, b \in \mathcal{A}$. If σ is an endomorphism on \mathcal{A} , then T is called a σ morphism. It is clear that if T is a σ -algebraic map on a unital algebra, then $ker(\sigma) \subseteq ker(T)$.

Example 2.2. Suppose $\sigma : \mathcal{A} \to \mathcal{A}$ is an endomorphism and $T: \mathcal{A} \to \mathcal{M}$ is a modular map, i.e., T(ab) = T(a)b $(a, b \in \mathcal{A})$. Then, $T_1 = T\sigma$ is a σ -algebraic map.

Example 2.3. Let $\mathfrak{B} = \mathcal{A} \times \mathcal{A}$, then \mathfrak{B} is a Banach algebra by the following action and norm: $(a,b) \bullet (c,d) = (ac,bd)$ and ||(a,b)|| = ||a|| + ||b||. Suppose I is an ideal of \mathfrak{B} , then we know that $\frac{\mathfrak{B}}{I}$ is a \mathfrak{B} -bimodule by the following actions: ((a,b) + I).(c,d) = (ac,bd) + I, (c,d).((a,b) + I) = (ca,db) + I. We define $\sigma : \mathfrak{B} \to \mathfrak{B}$ by $\sigma(a,b) = (a,\frac{a+b}{2})$ and $T : \mathfrak{B} \to \frac{\mathfrak{B}}{I}$ by T(a,b) = (a,0) + I. Then, T is a σ -algebraic map.

Example 2.4. Suppose $T, \sigma : C([0,1]) \to C([0,1])$ are defined by

$$T(f)(t) = \begin{cases} f(2t)h_0(t) & \text{if } 0 \le t \le \frac{1}{2} \\ f(1)h_0(\frac{1}{2}) & \frac{1}{2} \le t \le 1 \end{cases}$$
$$\sigma(f)(t) = \begin{cases} f(2t) & \text{if } 0 \le t \le \frac{1}{2} \\ f(1) & \frac{1}{2} \le t \le 1 \end{cases}$$

where, h_0 is a fixed element of C([0,1]). It is clear that T is a σ -algebraic map.

Proposition 2.5. Suppose \mathcal{A} is a unital algebra and $T : \mathcal{A} \to \mathcal{A}$ is a σ -algebraic map such that $T(\mathbf{1}) = \mathbf{1}$. Then, $T = \sigma$ and σ is an endomorphism.

Proof. $T(a) = T(\mathbf{1})\sigma(a) = \sigma(a)$, for all $a \in \mathcal{A}$, it leads to $\sigma = T$ and we have $\sigma(ab) = T(ab) = T(a)\sigma(b) = \sigma(a)\sigma(b)$.

Theorem 2.6. Suppose $T : \mathcal{A} \to \mathcal{M}$ is a σ -algebraic map. Then,

- (i) $T(\mathcal{A})S(\sigma) \subseteq S(T)$.
- (ii) $S(T)\sigma(\mathcal{A}) \subseteq S(T)$.
- (iii) If $\mathcal{M} = \mathcal{A}$ and $T(\mathbf{1})$ is invertible, then $S(T) = T(\mathbf{1})S(\sigma)$ and T is surjective if and only if σ is surjective, furthermore $S(T) = \mathcal{A}$ if and only if $S(\sigma) = \mathcal{A}$.

(iv) If $\mathcal{M} = \mathcal{A}$ and σ is surjective, then $T(\mathcal{A})$ is a right ideal of \mathcal{A} . Moreover, if \mathcal{A} is unital, then $T(\mathcal{A})$ is a right ideal generated by $T(\mathbf{1})$.

Proof. (i) Assume that $a \in S(\sigma)$. Then, there is a sequence $\{a_n\} \subseteq \mathcal{A}$ such that $a_n \to 0$ and $\sigma(a_n) \to a$. We have $T(ba_n) = T(b)\sigma(a_n) \to T(b)a$, for all $b \in \mathcal{A}$, it implies that $T(\mathcal{A})S(\sigma) \subseteq S(T)$.

(ii) The proof is similar to the proof of (i).

(iii) Assume $a \in S(T)$. Then, there is a sequence $\{a_n\} \subseteq \mathcal{A}$ such that $a_n \to 0$ and $T(a_n) \to a$. We have $T(\mathbf{1})\sigma(a_n) = T(a_n) \to a$. Since $T(\mathbf{1})$ is invertible, we obtain $\sigma(a_n) \to (T(\mathbf{1}))^{-1}a$, it means that $S(T) \subseteq T(\mathbf{1})S(\sigma)$. Now, Assume that $a \in S(\sigma)$, then, there is a sequence $\{a_n\} \subseteq \mathcal{A}$ such that $a_n \to 0$ and $\sigma(a_n) \to a$. We have $T(\mathbf{1})\sigma(a_n) \to T(\mathbf{1})a$, it means that $T(a_n) \to T(\mathbf{1})a$. We obtain $T(\mathbf{1})S(\sigma) \subseteq S(T)$. Therefore, $S(T) = T(\mathbf{1})S(\sigma)$. Suppose T is surjective and $b \in \mathcal{A}$. Then, $T(\mathbf{1})b \in \mathcal{A}$. Since T is surjective, there exists an element $a \in \mathcal{A}$ such that $T(a) = T(\mathbf{1})b$. Therefore, $b = T(\mathbf{1})^{-1}T(a) = T(\mathbf{1})^{-1}T(\mathbf{1})\sigma(a) = \sigma(a)$. Hence, σ is a surjective map. Conversely, suppose σ is a surjective mapping. We know that $\mathcal{A} = T(\mathbf{1})\mathcal{A}$; therefore, $T(\mathcal{A}) = T(\mathbf{1})\sigma(\mathcal{A}) = T(\mathbf{1})\mathcal{A} = \mathcal{A}$. In conclusion, T is surjective. By a similar procedure, we are able to prove $S(T) = \mathcal{A}$ if and only if $S(\sigma) = \mathcal{A}$. (iv) The proof of this part is like the former one.

Corollary 2.7. Suppose $T : \mathcal{A} \to \mathcal{A}$ is a σ -algebraic map.

- (i) If \mathcal{A} is unital and T(1) is invertible, then T is continuous if and only if σ is continuous.
- (ii) Suppose \mathcal{A} is unital and T(1) = 1. If σ is a surjective map, then $S(\sigma)$ is a bi-ideal of \mathcal{A} .
- (iii) If T is continuous and $ran(T(A)) = \{0\}$, then σ is continuous.
- (iv) If σ is surjective, then S(T) is a right ideal of A.

Proof. (i) We can prove this part by (iii) of previous theorem. (ii) This part is derived from Proposition 2.5 and (i), (ii) of previous theorem.

- (iii) This part can be proved by (i) of the former theorem.
- (iv) We obtain this part by (ii) of the former theorem. \Box

Definition 2.8. A Banach algebra \mathcal{A} has the Cohen's factorization property if for all sequences $\{a_n\} \subseteq \mathcal{A}$ such that $a_n \to 0$ there exist an element $c \in \mathcal{A}$ and a sequence $\{b_n\} \subseteq \mathcal{A}$ such that $a_n = cb_n$, for all positive integer n and $b_n \to 0$. If \mathcal{A} has a bounded left approximate identity,

then Corollary 11.12 of [2] results that it has the Cohen's factorization property.

Theorem 2.9. Suppose \mathcal{A} has the Cohen's factorization property and $T : \mathcal{A} \to \mathcal{M}$ is a non-zero σ -algebraic map. If $ran(T(\mathcal{A})) = \{0\}$, then T is continuous if and only if σ is continuous.

Proof. Suppose σ is continuous and let $\{a_n\}$ be a sequence in \mathcal{A} converging to zero in the norm topology. By Cohen's factorization property, there exist a sequence $\{b_n\}$ and an element $c \in \mathcal{A}$ such that $b_n \to 0$ and $a_n = cb_n$. We have $T(a_n) = T(c)\sigma(b_n) \to 0$; thus, by the closed graph theorem, T is continuous. Conversely, suppose T is continuous. By part (iii) of Corollary 2.7, σ is continuous.

3. Generalized σ -derivations

Definition 3.1. A linear mapping $\delta : \mathcal{A} \to \mathcal{M}$ is called a generalized σ -derivation if there exists a σ -derivation $d : \mathcal{A} \to \mathcal{M}$ such that $\delta(ab) = \delta(a)\sigma(b) + \sigma(a)d(b)$, for all $a, b \in \mathcal{A}$.

For convenience, we say that such a generalized σ -derivation δ is a (σ, d) -derivation. In general, the σ -derivation $d : \mathcal{A} \to \mathcal{M}$ is not unique and it may happen that $\delta(\operatorname{resp.} d)$ is continuous but $d(\operatorname{resp.} \delta)$ is discontinuous. For instance, assume that the actions of \mathcal{A} on \mathcal{M} and of \mathcal{A} on \mathcal{A} are trivial, i.e., $\mathcal{M}\mathcal{A} = \mathcal{A}\mathcal{M} = \{0\}$ and $\mathcal{A}\mathcal{A} = \{0\}$. Then, every linear mapping $\delta : \mathcal{A} \to \mathcal{M}$ is a (σ, d) -derivation, for all σ -derivation $d : \mathcal{A} \to \mathcal{M}$.

Example 3.2. Suppose $\sigma : \mathcal{A} \to \mathcal{A}$ is an endomorphism and $\delta : \mathcal{A} \to \mathcal{M}$ is a generalized derivation, i.e., $\delta(ab) = \delta(a)b + ad(b)$, for some derivation $d : \mathcal{A} \to \mathcal{M}$. We know that $d_1 = d\sigma$ is a σ -derivation. If $\delta_1 = \delta\sigma$, then δ_1 is a (σ, d_1) -derivation.

Example 3.3. Suppose $T : \mathcal{A} \to \mathcal{M}$ is a σ -algebraic map and $d : \mathcal{A} \to \mathcal{M}$ is a σ -derivation. Then, $\delta = d + T$ is a (σ, d) -derivation.

Example 3.4. Suppose β and $\frac{\beta}{I}$ are the symbols which are introduced in Example 2.3. We define $d: \beta \to \frac{\beta}{I}$ by d(a,b) = (0, a-b) + I, $\sigma: \beta \to \beta$ by $\sigma(a,b) = (a, \frac{a+b}{2})$ and $\delta: \beta \to \frac{\beta}{I}$ by $\delta(a,b) = (a, a-b) + I$. Then, a straightforward verification shows that δ is a (σ, d) -derivation.

 \square

Theorem 3.5. A linear mapping $\delta : \mathcal{A} \to \mathcal{M}$ is a (σ, d) -derivation if and only if there exist a σ -derivation $d : \mathcal{A} \to \mathcal{M}$ and a σ -algebraic map $T : \mathcal{A} \to \mathcal{M}$ such that $\delta = d + T$.

Proof. Suppose δ is a (σ, d) -derivation on \mathcal{A} . Then, there exists a σ -derivation d on \mathcal{A} such that δ is a (σ, d) -derivation. Putting $T = \delta - d$ we have

$$T(ab) = (\delta - d)(ab)$$

= $\delta(a)\sigma(b) + \sigma(a)d(b) - d(a)\sigma(b) - \sigma(a)d(b)$
= $(\delta(a) - d(a))\sigma(b)$
= $T(a)\sigma(b)$

for all $a, b \in \mathcal{A}$. Thus, T is a σ -algebraic map and $\delta = d + T$. Conversely, let d be a σ -derivation and T be a σ -algebraic map on \mathcal{A} and put $\delta = d + T$. Then, clearly, δ is a linear mapping and

$$\delta(ab) = d(ab) + T(ab)$$

= $d(a)\sigma(b) + \sigma(a)d(b) + T(a)\sigma(b)$
= $(d(a) + T(a))\sigma(b) + \sigma(a)d(b)$
= $\delta(a)\sigma(b) + \sigma(a)d(b)$

for all $a, b \in \mathcal{A}$. Therefore, δ is a (σ, d) -derivation.

Theorem 3.6. Let \mathcal{A} have the Cohen's factorization property and let δ be a (σ, d) -derivation on \mathcal{A} such that σ is continuous. Then, δ is continuous if and only if d is continuous.

Proof. By Theorem 3.5, $T = \delta - d$ is a σ -algebraic map on \mathcal{A} . Since σ is continuous by Theorem 2.9, T is continuous. Therefore, δ is continuous if and only if d is continuous.

Theorem 3.7. Let $\sigma : \mathcal{A} \to \mathcal{A}$ be a homomorphism and $\delta : \mathcal{A} \to \mathcal{M}$ be a (σ, d) -derivation. Then,

- (i) \mathcal{M} equipped with the module multiplications $a.x = \sigma(a)x$ and $x.a = x\sigma(a)$ is a \mathcal{A} -bimodule denoted by $\widetilde{\mathcal{M}}$.
- (ii) $\delta : \mathcal{A} \to \tilde{M}$ is a generalized derivation and $d : \mathcal{A} \to \tilde{M}$ is an ordinary derivation.
- (iii) $E = \mathcal{A} \bigoplus \overline{M}$ equipped with the multiplication (a,x)(b,y) = (ab,a.y + x.b) is an algebra and $\varphi_d : \mathcal{A} \to E$ defined by $\varphi_d(a) = (a, d(a))$ is an injective homomorphism and $\varphi_\delta : \mathcal{A} \to E$ defined by

 $\varphi_{\delta}(a) = (a, \delta(a))$ is an injective φ_d -morphism, i.e., $\varphi_{\delta}(ab) = \varphi_{\delta}(a)\varphi_d(b)$ $(a, b \in \mathcal{A}).$

(iv) If \mathcal{M} has a norm, σ is continuous and E is equipped by the norm $||(a,x)|| = ||a|| + \sup\{||x||, ||b.x||, ||x.c||, ||b.x.c|| : b, c \in \mathcal{A}, ||b|| \le 1, ||c|| \le 1\}$, then φ_{δ} is continuous if and only if δ is continuous. Thus, if every injective φ -morphism of \mathcal{A} into a Banach algebra is continuous, then every (σ, d) -derivation of \mathcal{A} into a Banach \mathcal{A} -bimodule is continuous.

Proof. Straightforward (see [7]).

Theorem 3.8. In this theorem the notations are the same as in Theorem 3.7. Then,

- (i) $\varphi_{\delta}(\mathcal{A})S(\varphi_d) \subseteq S(\varphi_{\delta}).$
- (ii) $S(\varphi_{\delta})\varphi_d(\mathcal{A}) \subseteq S(\varphi_{\delta}).$
- (iii) If \mathcal{M} is unital and $\sigma(\mathbf{1}) = \mathbf{1}$, then $S(\varphi_{\delta}) = \varphi_{\delta}(\mathbf{1})S(\varphi_{d})$ and φ_{δ} is surjective if and only if φ_{d} is surjective. Furthermore, $S(\varphi_{d}) = E$ if and only if $S(\varphi_{\delta}) = E$.

Proof. The proof is like that of Theorem 2.6. But, note that if $\sigma(\mathbf{1}) = \mathbf{1}$, then $(\mathbf{1},0)$ is the unit element of E and $(\varphi_{\delta}(\mathbf{1}))^{-1} = (\mathbf{1}, -\delta(\mathbf{1}))$.

Definition 3.9. Let $\sigma : \mathcal{A} \to \mathcal{A}$ be an arbitrary linear mapping and suppose that x, y are two elements of \mathcal{M} satisfying $x(\sigma(ab) - \sigma(a)\sigma(b)) = (\sigma(ab) - \sigma(a)\sigma(b))y = y(\sigma(ab) - \sigma(a)\sigma(b))$, for all $a, b \in \mathcal{A}$. Then, the (σ, d) -derivation $\delta : \mathcal{A} \to \mathcal{M}$ defined by $\delta(a) = x\sigma(a) - \sigma(a)y$ is called a generalized inner σ -derivation. In fact, δ is a (σ, d_y) -derivation, where $d_y(a) = y\sigma(a) - \sigma(a)y$, for all $a \in \mathcal{A}$.

It is clear that, if σ is an endomorphism, then x,y can be arbitrary elements of \mathcal{M} .

Theorem 3.10. Suppose $\delta : \mathcal{A} \to \mathcal{A}$ is a generalized inner σ -derivation. If 0 < ||x|| < 1 and 0 < ||y|| < 1, then

$$\sum_{n=1}^{\infty} \sum_{k=0}^{n-1} x^k \delta(a) y^{n-1-k}$$

is a generalized inner σ -derivation.

Proof. We may assume that \mathcal{A} is unital. In fact, if \mathcal{A} has no identity, we shall consider the unitization $\mathcal{A}_1 = \mathcal{A} \bigoplus \mathbb{C}$ of \mathcal{A} . First of all, by

induction on n, we prove that

(3.1)
$$x^{n}\sigma(a) - \sigma(a)y^{n} = \sum_{k=0}^{n-1} x^{k}\delta(a)y^{n-1-k}$$

If n = 1, then (3.1) is clear. Now, suppose that (3.1) is true, for n. We have

$$\begin{aligned} x^{n+1}\sigma(a) - \sigma(a)y^{n+1} &= x(x^n\sigma(a) - \sigma(a)y^n) + (x\sigma(a) - \sigma(a)y)y^n \\ &= x\sum_{k=0}^{n-1} x^k\delta(a)y^{n-1-k} + \delta(a)y^n \\ &= \sum_{k=0}^{n-1} x^{k+1}\delta(a)y^{n-1-k} + \delta(a)y^n \\ &= \sum_{k=1}^n x^k\delta(a)y^{n-k} + \delta(a)y^n \\ &= \sum_{k=0}^n x^k\delta(a)y^{n-k} \,. \end{aligned}$$

We know that if ||x|| < 1, then $(1-x)^{-1} = 1 + \sum_{n=1}^{\infty} x^n$. Therefore,

$$\sum_{n=1}^{\infty} \sum_{k=0}^{n-1} x^k \delta(a) y^{n-1-k} = \sum_{n=1}^{\infty} x^n \sigma(a) - \sigma(a) y^n = (1-x)^{-1} \sigma(a) - \sigma(a) (1-y)^{-1}.$$

We can prove theorems like Theorem 3.10, for σ -derivations and generalized derivations.

The proofs of Lemma 3.11 and Theorem 3.12 are similar to the proofs of Lemma 2.2 and Lemma 2.3 in [7], respectively.

Lemma 3.11. Let $\delta : \mathcal{A} \to \mathcal{M}$ be a (σ, d) -derivation. Then, $\delta(a)(\sigma(bc) - \sigma(b)\sigma(c)) = (\sigma(ab) - \sigma(a)\sigma(b))d(c)$, for all $a, b, c \in \mathcal{A}$.

Theorem 3.12. Suppose δ is a (σ, d) -derivation such that $\sigma : \mathcal{A} \to \mathcal{A}$ is a continuous mapping. Then, for each $a \in S(\delta), a_1 \in S(d)$ and $b, c \in \mathcal{A}$ we have

(i) $a(\sigma(bc) - \sigma(b)\sigma(c)) = 0$

(ii) $(\sigma(bc) - \sigma(b)\sigma(c))a_1 = a_1(\sigma(bc) - \sigma(b)\sigma(c)) = 0$

Corollary 3.13. Suppose $\delta : \mathcal{A} \to \mathcal{M}$ is a (σ, d) -derivation.

- (i) If $ran(S(\delta)) \bigcap ann(S(d)) = \{0\}$, then σ is an endomorphism.
- (ii) If $lan(\{\sigma(bc) \sigma(b)\sigma(c) : b, c \in A\}) = \{0\}$, then d and δ are continuous.

Proof. Straightforward.

Theorem 3.14. Suppose \mathcal{A} is a simple algebra and has the Cohen's factorization property. If $\delta : \mathcal{A} \to \mathcal{A}$ is a (σ, d) -derivation such that σ is a surjective continuous linear mapping, then δ is continuous or σ is an endomorphism.

Proof. First, note that S(d) is a bi-ideal of \mathcal{A} (it is proved in Proposition 2.5 of [7]). Therefore, S(d) is $\{0\}$ or \mathcal{A} . If $S(d) = \{0\}$, then d is continuous. We show that δ is continuous. Suppose $\{a_n\}$ is an arbitrary sequence in \mathcal{A} such that $a_n \to 0$. By Cohen's factorization property, there exist a sequence $\{b_n\}$ and an element c in \mathcal{A} such that $b_n \to 0$ and $a_n = cb_n$ $(n \in \mathbb{N})$. Then, $\delta(a_n) = \delta(cb_n) = \delta(c)\sigma(b_n) + \sigma(c)d(b_n) \to 0$. Thus, by the closed graph theorem, δ is continuous. Now, suppose $S(d) = \mathcal{A}$. By Theorem 3.12, we know that $\{\sigma(bc) - \sigma(b)\sigma(c) : b, c \in \mathcal{A}\} \subseteq ann(S(d)) = ann(\mathcal{A})$. Since \mathcal{A} is a bi-ideal, $ann(\mathcal{A})$ is a bi-ideal of \mathcal{A} ; therefore, $ann(\mathcal{A})$ is $\{0\}$ or \mathcal{A} . If $ann(\mathcal{A}) = \mathcal{A}$, then $\mathcal{A}\mathcal{A} = \{0\}$ which is a contradiction and if $ann(\mathcal{A}) = \{0\}$, then σ is an endomorphism. \Box

Definition 3.15. An \mathcal{A} -bimodule $\overline{\mathcal{M}}$ has no zero divisor if ax = 0 or xa = 0, then a = 0 or x = 0 $(a \in \mathcal{A}, x \in \mathcal{M})$.

Theorem 3.16. Suppose \mathcal{M} has no zero divisor and \mathcal{A} has the Cohen's factorization property and suppose that $\delta : \mathcal{A} \to \mathcal{M}$ is a (σ, d) -derivation. If d is non-zero, then d is continuous if and only if δ is continuous.

Proof. Suppose δ is continuous and $a \in \mathcal{A}$ such that $d(a) \neq 0$. Let $\{a_n\}$ be an arbitrary sequence in \mathcal{A} such that $a_n \to 0$ and $\sigma(a_n) \to c$. We must prove c = 0. Since $a_n a \to 0$ and δ is continuous, we have $\delta(a_n)\sigma(a) + \sigma(a_n)d(a) = \delta(a_n a) \to 0$. It implies that cd(a) = 0. It concludes d(a) = 0 which is a contradiction or c = 0. Therefore, by the closed graph theorem, σ is continuous. Theorems 2.9 and 3.5 imply that the σ -algebraic map $T = \delta - d$ is continuous. Hence, d is continuous. Conversely, suppose d is continuous and let $\{a_n\}$ be an arbitrary sequence in \mathcal{A} such that $a_n \to 0$ and $\sigma(a_n) \to c$. Since d is continuous, $d(a_n)\sigma(a) + \sigma(a_n)d(a) = d(a_n a) \to 0$. It implies that cd(a)

= 0 and it follows that c = 0. Hence, σ is continuous. The proof is complete by continuity of the σ -algebraic map $T = \delta - d$.

Theorem 3.17. Suppose \mathcal{A} is unital and $\delta : \mathcal{A} \to \mathcal{A}$ is a (σ, d) -derivation. If there exists an element $a \in \mathcal{A}$ such that d(a) is invertible, then δ is continuous if and only if d is continuous.

Proof. Suppose d is continuous and a is an element in \mathcal{A} such that d(a) is invertible. We show that σ is continuous. Let $\{a_n\}$ be an arbitrary sequence such that $a_n \to 0$ and $\sigma(a_n) \to c$. We have $d(a)\sigma(a_n) + \sigma(a)d(a_n) = d(aa_n) \to 0$. Thus, d(a)c = 0. Since d(a) is invertible, c = 0. By the closed graph theorem, σ is continuous. Theorem 2.9 implies that the σ -algebraic map $T = \delta - d$ is continuous. Hence, δ is continuous. Conversely, suppose δ is continuous and let $\{a_n\}$ be an arbitrary sequence in \mathcal{A} such that $a_n \to 0$ and $\sigma(a_n) \to c$. We have $\delta(a_n)\sigma(a) + \sigma(a_n)d(a) = \delta(a_na) \to 0$ thus, cd(a) = 0. Since d(a) is invertible, c = 0. Hence, σ is continuous; therefore, the σ -algebraic map $T = \delta - d$ is continuous and so d is continuous.

Proposition 3.18. Suppose \mathcal{A} is unital and $\delta : \mathcal{A} \to \mathcal{M}$ is a (σ, d) -derivation. If $\sigma(\mathbf{1}) = 0$, then δ and d are equal to zero.

Proof. It is clear that $d(\mathbf{1}) = 0$. We have $d(a) = d(a)\sigma(\mathbf{1}) + \sigma(a)d(\mathbf{1}) = 0$, for all $a \in \mathcal{A}$, it means that d = 0. Now, we can see $\delta(\mathbf{1}) = 0$ and it follows that $\delta = 0$.

Theorem 3.19. Suppose \mathcal{M} is unital and has no zero divisor and suppose that $\delta : \mathcal{A} \to \mathcal{M}$ is a (σ, d) -derivation. If $d(\mathbf{1}) \neq 0$, then $ker(\delta)$ is a bi-ideal of \mathcal{A} and $ker(d) = ker(\sigma) = ker(\delta)$.

Proof. First of all, we show that if $d : \mathcal{A} \to \mathcal{M}$ is a non-zero σ -derivation, then $d(\mathbf{1}) = 0$ if and only if $\sigma(\mathbf{1}) = \mathbf{1}$. Suppose $\sigma(\mathbf{1}) = \mathbf{1}$, it is clear that $d(\mathbf{1}) = 0$. Now, suppose that $d(\mathbf{1}) = 0$ and a is an element in \mathcal{A} such that $d(a) \neq 0$. We have $d(a) = d(a)\sigma(\mathbf{1}) + \sigma(a)d(\mathbf{1}) = d(a)\sigma(\mathbf{1})$, it means that $d(a)(\mathbf{1} - \sigma(\mathbf{1})) = 0$. This equality implies that $\sigma(\mathbf{1}) = \mathbf{1}$. Therefore, we have $d(\mathbf{1}) \neq 0$ if and only if $\sigma(\mathbf{1}) \neq \mathbf{1}$. Let $a \in ker(\sigma)$, we have $d(a) = d(\mathbf{1})\sigma(a) + \sigma(\mathbf{1})d(a) = \sigma(\mathbf{1})d(a)$, it means that $(\mathbf{1} - \sigma(\mathbf{1}))d(a) = 0$. It follows that d(a) = 0, i.e., $a \in ker(d)$. Thus, $ker(\sigma) \subseteq ker(d)$. Now, assume that $a \in ker(d)$. By a similar procedure, we obtain $ker(d) \subseteq ker(\sigma)$. Hence, $ker(d) = ker(\sigma)$. We prove that ker(d) is a bi-ideal of \mathcal{A} . Suppose that $a \in ker(d)$ and $b \in \mathcal{A}$, we have d(ab) = $d(a)\sigma(b) + \sigma(a)d(b) = 0$; hence, $ab \in ker(d)$. Similarly, $ba \in ker(d)$; therefore, ker(d) is a bi-ideal of \mathcal{A} . Now, we show that $ker(\sigma) = ker(\delta)$.

Suppose that $a \in ker(\sigma)$, we have $\delta(a) = \delta(\mathbf{1})\sigma(a) + \sigma(\mathbf{1})d(a) = 0$; it means that $ker(\sigma) \subseteq ker(\delta)$. Now, suppose that $a \in ker(\delta)$. We have $\delta(a)\sigma(\mathbf{1}) + \sigma(a)d(\mathbf{1}) = \delta(a) = 0$, it means that $\sigma(a)d(\mathbf{1}) = 0$ hence, $a \in ker(\sigma)$. Therefore, $ker(\delta) \subseteq ker(\sigma)$. It follows that $ker(\delta) = ker(\sigma) = ker(d)$.

Corollary 3.20. Suppose that \mathcal{M} is unital, has no zero divisor and \mathcal{A} is a simple algebra.

- (i) If $\delta : \mathcal{A} \to \mathcal{M}$ is a (σ, d) -derivation such that $d(\mathbf{1}) \neq 0$, then d, σ and δ are injective.
- (ii) If $\mathcal{M} = \mathcal{A}$ and $\delta : \mathcal{A} \to \mathcal{A}$ is a (σ, d) -derivation such that $d(\mathbf{1}) \neq 0$, then there is no positive integer n such that δ^n or σ^n or d^n are equal to zero.

Proof. Straightforward.

Theorem 3.21. Suppose that \mathcal{A} is unital.

- (i) If $\delta : \mathcal{A} \to \mathcal{M}$ is a (σ, d) -derivation such that $\delta(\mathbf{1}) = d(\mathbf{1})$, then $\delta = d$.
- (ii) If $\delta : \mathcal{A} \to \mathcal{A}$ is a (σ, d) -derivation such that $d(\mathbf{1}) = \mathbf{1}$, then $\delta = d$ and d is an endomorphism.

Proof. (i) The proof of this part is straightforward.

(ii) Since $d(\mathbf{1}) = \mathbf{1}$, it follows that $\sigma(\mathbf{1}) = \frac{1}{2}$. By Theorem 3.5, $T = \delta - d$ is a σ -algebraic map; therefore, $T(a) = T(a)\sigma(\mathbf{1}) = \frac{T(a)}{2}$, for all $a \in \mathcal{A}$. It follows that T = 0 and in conclusion $\delta = d$. We have $d(a) = d(a)\sigma(\mathbf{1}) + \sigma(a)d(\mathbf{1}) = \frac{d(a)}{2} + \sigma(a)$. Thus, $\frac{d(a)}{2} = \sigma(a)$, for all $a \in \mathcal{A}$. By this fact we have,

$$d(ab) = d(a)\sigma(b) + \sigma(a)d(b)$$
$$= d(a)\frac{d(b)}{2} + \frac{d(a)}{2}d(b)$$
$$= d(a)d(b).$$

It means that d is an endomorphism.

Theorem 3.22. Suppose that \mathcal{A} is unital and $\delta : \mathcal{A} \to \mathcal{M}$ is a (σ, d) -derivation such that σ is continuous. If $\sigma(\mathbf{1}) = \mathbf{1}$, then δ is continuous if and only if d is continuous.

Proof. It is clear that $\delta - d = \delta(\mathbf{1})\sigma$. Since σ is continuous, $\delta - d$ is continuous. Therefore, by Proposition 5.2.3 of [4], we have $S(\delta) = S(d)$. Hence, δ is continuous if and only if d is continuous.

Proposition 3.23. Suppose that \mathcal{A} is unital and $\delta : \mathcal{A} \to \mathcal{A}$ is a (σ, d) -derivation such that $\delta(\mathbf{1})$ is invertible and $\sigma(\mathbf{1}) = \mathbf{1}$. Then,

- (i) $\delta(a)$ is not equal to d(a), for all $a \in (ker(\sigma))^C$, where $(ker(\sigma))^C$ is the complement of $ker(\sigma)$.
- (ii) If δ and d are continuous, then ker (σ) is not dense in A.
- (iii) σ is an endomorphism.

Proof. (i) Arguing by contradiction, suppose that there is an element $b \in (ker(\sigma))^C$ such that $\delta(b) = d(b)$. Since $\sigma(\mathbf{1}) = \mathbf{1}$, we have $\delta(a) - d(a) = \delta(\mathbf{1})\sigma(a)$, for all $a \in \mathcal{A}$; hence, $\delta(\mathbf{1})\sigma(b) = 0$. It follows that $\sigma(b) = 0$ which is a contradiction.

(ii) Arguing by contradiction, suppose that $ker(\sigma)$ is dense in \mathcal{A} . If $a \in ker(\sigma)$, we have $\delta(a) = \sigma(\mathbf{1})d(a)$ and $d(a) = \sigma(\mathbf{1})d(a)$. It means that $\delta = d$ on $ker(\sigma)$; hence, $\delta = d$ on \mathcal{A} . Assume $b \in (ker(\sigma))^C$. Since $\sigma(\mathbf{1}) = \mathbf{1}$, we have $\delta(a) - d(a) = \delta(\mathbf{1})\sigma(a)$, i.e., $\delta(\mathbf{1})\sigma(a) = 0$, for all $a \in \mathcal{A}$. It follows that $\delta(\mathbf{1})\sigma(b) = 0$. We conclude $\sigma(b) = 0$ which is a contradiction.

(iii) By $\sigma(\mathbf{1}) = \mathbf{1}$, we have $\delta - d = \delta(\mathbf{1})\sigma$. According to Theorem 3.5, $T = \delta - d$ is a σ -algebraic map. Therefore, we have $\delta(\mathbf{1})\sigma(ab) = \delta(\mathbf{1})\sigma(a)\sigma(b)$. Since $\delta(\mathbf{1})$ is invertible, σ is an endomorphism.

The proof of the following theorem is straightforward.

Theorem 3.24. Suppose that $\delta : \mathcal{A} \to \mathcal{M}$ is a (σ, d) -derivation. Then,

- (i) $S(\delta)\sigma(ker(d)) \subseteq S(\delta)$.
- (ii) $\sigma(ker(\delta))S(d) \subseteq S(\delta).$
- (iii) $\delta(ker(\sigma))S(\sigma) \subseteq S(\delta).$
- (iv) $S(\sigma)d(ker(\sigma)) \subseteq S(\delta)$.
- (v) If σ is continuous, then $\sigma(\mathcal{A})S(d) \subseteq S(\delta)$.
- (vi) If d is continuous, then $\delta(\mathcal{A})S(\sigma) \subseteq S(\delta)$.

Corollary 3.25. (i) Suppose that \mathcal{M} has no zero divisor and δ is a non-zero continuous (σ, d) -derivation on \mathcal{A} . If σ is non-zero, then σ is continuous if and only if d is continuous.

(ii) Suppose that δ is a (σ, d) -derivation such that d is continuous. If δ is continuous, then $S(\sigma) \subseteq ran(\delta(\mathcal{A}))$.

(iii) Suppose that \mathcal{A} is unital and $\delta : \mathcal{A} \to \mathcal{A}$ is a (σ, d) -derivation such that d is continuous and $\delta(\mathbf{1})$ is invertible. Then, $S(\delta) = \delta(\mathbf{1})S(\sigma)$. If $T = \delta - d$, then $S(\delta) = S(T)$.

Proof. (i) Suppose that σ is continuous. By continuity of δ and part (v) of Theorem 3.24, we obtain $\sigma(\mathcal{A})S(d) = \{0\}$, i.e., $\sigma(a)b = 0$, for all

 $a \in \mathcal{A}, b \in S(d)$. Let $a \in \mathcal{A}$ such that $\sigma(a) \neq 0$. We have $\sigma(a)b = 0$, for all $b \in S(d)$; it implies that $\sigma(a) = 0$, where it is a contradiction or b = 0. Since b is an arbitrary element in S(d), S(d) is equal to $\{0\}$. Hence, d is continuous. Conversely, suppose that d is continuous. By the continuity of δ and part (vi) of Theorem 3.24, we can prove that σ is continuous.

(ii) This part can be proved using (vi) of Theorem 3.24.

(iii) By part (vi) of Theorem 3.24, we obtain $\delta(\mathbf{1})S(\sigma) \subseteq S(\delta)$. Now, suppose that $a \in S(\delta)$, then there is a sequence $\{a_n\}$ in \mathcal{A} such that $a_n \to 0$ and $\delta(a_n) \to a$. We have $\delta(\mathbf{1})\sigma(a_n) + \sigma(\mathbf{1})d(a_n) = \delta(a_n) \to a$, it implies that $\delta(\mathbf{1})\sigma(a_n) \to a$; therefore, $\sigma(a_n) \to (\delta(\mathbf{1}))^{-1}a$ and in conclusion $S(\delta) \subseteq \delta(\mathbf{1})S(\sigma)$. Therefore, $S(\delta) = \delta(\mathbf{1})S(\sigma)$. Since d is continuous, Proposition 5.2.3 of [4] gives that $S(T) = S(\delta)$.

References

- Gh. Abbaspour, M. S. Moslehian and A. Niknam, Generalized derivations on modules, *Bull. Iranian Math. Soc.* 32(1) (2006) 21-31.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, 1973.
- [3] M. Brešar, On the distance of the compositions of two derivations to the generalized derivations, *Glasg. Math. J.* 33 (1991) 89-93.
- [4] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series, 24, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000.
- [5] B. Hvala, Generalized derivation in rings, Comm. Algebra. 26 (4) (1998) 1147-1166.
- [6] M. Mathieu, Elementary Operators and Applications, Proc. Internat. Workshop, World Scientific Publishing Co., Inc., River Edge, NJ, 1992.
- [7] M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σ -derivations in C^* -algebras, *Proc. Amer. Math. Soc.* **134**(11) (2006) 3319-3327.
- [8] M. Mirzavaziri and M. S. Moslehian, σ-derivations in Banach algebras, Bull. Iranian Math. Soc. 32(1) (2006) 65-78.
- [9] A. Niknam, A remark on closability of linear mappings in normed algebras, Arch. Math. 47 (1986) 131-134.

Amin Hosseini

Department of Mathematics, Mashhad Branch, Islamic Azad University - Mashhad - Iran

Email:A.hosseini@mshdiau.ac.ir

Mahmoud Hassani

Department of Mathematics, Mashhad Branch, Islamic Azad University - Mashhad - Iran

Email:Hassani@mshdiau.ac.ir

Assadollah Niknam

Department of Mathematics, Ferdowsi University of Mashhad and Center of Excellence in Analysis on Algebraic Structures (CEAAS) Ferdowsi University, Mashhad, Iran

Email:niknam@math.um.ac.ir