G-FRAMES AND HILBERT-SCHMIDT OPERATORS

M. R. ABDOLLAHPOUR AND A. NAJATI*

Communicated by Heydar Radjavi

ABSTRACT. In this paper we introduce and study Besselian g-frames. We show that the kernel of associated synthesis operator for a Besselian g-frame is finite dimensional. We also introduce α -dual of a g-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a g-frame in a finite dimensional Hilbert space.

1. Introduction

Frames for Hilbert spaces introduced by Duffin and schaeffer in 1952 [4]. A sequence $\{f_i\}_{i\in I}\subseteq \mathcal{H}$ is a *frame* for \mathcal{H} , if there exist two positive constants A, B such that

(1.1)
$$A\|f\|^{2} \leq \sum_{i=1}^{\infty} |\langle f, f_{i} \rangle|^{2} \leq B\|f\|^{2}$$

for all $f \in \mathcal{H}$. The numbers A, B are called *frame bounds*. Various generalizations of frames in Hilbert spaces have been proposed and studied recently. For example, frame of subspaces [2], Pseudo frames for subspaces [7], Bounded quasi-projectors [5], oblique frames [3] etc. Wenchang Sun in his paper [12] introduced the concept of g-frames which include all mentioned generalizations. Members of ordinary frames are

MSC(2000): Primary: 42C15; Secondary: 46C05, 47B10.

Keywords: frame, g-frame, Besselian g-frame, $\alpha\text{-dual},$ Hilbert-Schmidt operator.

Received: 20 February 2010, Accepted: 12 July 2010.

*Corresponding author

 $\ \, \ \, \bigcirc$ 2011 Iranian Mathematical Society.

vectors of a Hilbert space, while members of g-frames are bounded operators. Besselian frames and near-Riesz bases in Hilbert spaces introduced by Holub [6]. Also, Besselian frame of subspaces introduced and discussed in [9]. The authors of this paper in [1], introduced the concept of near q-Riesz bases and they showed that a near q-Riesz basis is a Besselian g-frame.

In this paper by using the concept of Besselian frame and g-frame we define Besselian g-frame and investigate some of their properties. In section 2, we give the basic definitions and known results needed. In section 3, we investigate some properties of Besselian g-frames. In particular, we show that under some conditions, the kernel of associated synthesis operator for a Besselian g-frame is finite dimensional. In section 4, we introduce α -dual of a g-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a g-frame in a finite dimensional Hilbert space.

2. Preliminaries

Throughout this paper, \mathcal{H} is a separable Hilbert space and $\{\mathcal{H}_i\}_{i\in I}$ is a sequence of separable Hilbert spaces, where I is a subset of \mathbb{N} .

Definition 2.1. The sequence $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is called a g-Bessel sequence if there exists B > 0 such that $(2.1) \qquad \sum_{i \in I} \|\Lambda_i f\|^2 \leq B\|f\|^2$ for all $f \in \mathcal{H}$.

(2.1)
$$\sum_{i \in I} \|\Lambda_i f\|^2 \le B \|f\|^2$$

for all $f \in \mathcal{H}$.

Let $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be given. Let us define

$$\left(\sum_{i \in I} \oplus \mathcal{H}_i\right)_{l_2} = \left\{ \{g_i\} : g_i \in \mathcal{H}_i, \sum_{i \in I} \|g_i\|^2 < \infty \right\}$$

with the inner product given by $\langle \{f_i\}, \{g_i\} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle$. It is clear that $(\sum_{i\in I}\oplus\mathcal{H}_i)_{l_2}$ is a Hilbert space with respect to the pointwise operations. It is proved in [10], if $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-Bessel sequence for \mathcal{H} , then the operator

$$T: \left(\sum_{i\in I} \oplus \mathcal{H}_i\right)_{l_2} \to H$$

defined by

$$(2.2) T(\lbrace g_i \rbrace) = \sum_{i \in I} \Lambda_i^*(g_i)$$

is well defined, bounded and $T^*f = {\Lambda_i f}_{i \in I}$.

Definition 2.2. We call a sequence $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ a g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in I}$ if there exist two positive constants A and B such that

(2.3)
$$A||f||^2 \le \sum_{i \in I} ||\Lambda_i f||^2 \le B||f||^2$$

for all $f \in \mathcal{H}$. We call A and B the lower and upper g-frame bounds, respectively.

We call $\{\Lambda_i\}_{i\in I}$ a tight g-frame if A=B and Parseval g-frame if A=B=1.

The sequence $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{H} if and only if the operator T defined by (2.2) is bounded and onto (see [10]). The operators T and T^* are called the synthesis and analysis operators, respectively.

Proposition 2.3. [12] Let $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} . The operator

$$S: \mathcal{H} o \mathcal{H}, \quad Sf = \sum_{i \in I} \Lambda_i^* \Lambda_i f$$

is a positive, bounded and invertible operator.

Proposition 2.3 implies that every $f \in \mathcal{H}$ can be represented as

(2.4)
$$f = SS^{-1}f = \sum_{i \in I} \Lambda_i^* \Lambda_i S^{-1}f, \qquad f = S^{-1}Sf = \sum_{i \in I} S^{-1} \Lambda_i^* \Lambda_i f.$$

The operator S is called the g-frame operator of $\{\Lambda_i\}_{i\in I}$. It is easy to check that if $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-Bessel sequence, then S is well defined and $S = TT^*$. We end this section by definition of g-Riesz basis.

Definition 2.4. A sequence $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is called a g-Riesz basis for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$ if there exist two positive constants

A and B such that for any finite subset $F \subseteq I$ and $g_i \in \mathcal{H}_i$, $i \in F$,

(2.5)
$$A \sum_{i \in F} \|g_i\|^2 \le \|\sum_{i \in F} \Lambda_i^* g_i\|^2 \le B \sum_{i \in F} \|g_i\|^2,$$

and $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is g-complete, i.e., $\{f : \Lambda_i f = 0, i \in I\} = 0$.

It is proved in [10], that $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is g-complete if and only if $\overline{\operatorname{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i\in I}=\mathcal{H}$.

3. Besselian q-frames

As usual, we denote by $l^2(I)$ the Hilbert space of all square-summable sequences of scalars $\{c_i\}_{i\in I}$. If $\{f_i\}_{i\in I}$ is a frame for \mathcal{H} , then $\sum_{i\in I} c_i f_i$ converges if $\{c_i\}_{i\in I}\in l^2(I)$. But the converse is not true in general (see [6]). We say that a frame $\{f_i\}_{i\in I}$ for \mathcal{H} is

- Besselian if, whenever ∑_{i∈I} c_if_i converges, then {c_i}_{i∈I} ∈ l²(I);
 a near-Riesz basis, if there is a finite set σ for which {f_i}_{i∈I\σ} is a Riesz basis for H.

We recall the following characterization of frames which are near-Riesz

Theorem 3.1. [6] If $\{f_i\}_{i\in I}$ is a frame in \mathcal{H} , the following are equiva-

- (i) $\{f_i\}_{i\in I}$ is a near-Riesz basis for \mathcal{H} ; (ii) $\{f_i\}_{i\in I}$ is Besselian; (iii) $\sum_{i\in I} c_i f_i$ converges if and only if $\{c_i\}_{i\in I} \in l^2(I)$.

Besselian frame of subspaces introduced and discussed in [9]. Here we introduce the concept of Besselian g-frames.

Definition 3.2. Let $\Lambda = {\Lambda_i}_{i \in I}$ be a g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in I}$. We call Λ a Besselian g-frame if, whenever $\sum_{i\in I}\Lambda_i^*g_i$ converges, then

$$\{g_i\}_{i\in I}\in\left(\sum_{i\in I}\oplus\mathcal{H}_i\right)_{l_2}.$$

Let $\{e_{ij}\}_{j\in J_i}$ be an orthonormal basis for \mathcal{H}_i for each $i\in I$ and $\{\Lambda_i\in$ $B(\mathcal{H}, \mathcal{H}_i) : i \in I$ be given. Then $\{\Lambda_i^* e_{ij}\}_{i \in I, j \in J_i}$ is a frame (res. Riesz basis) for \mathcal{H} if and only if $\{\Lambda_i\}_{i\in I}$ is a g-frame (res. g-Riesz basis) for \mathcal{H} (see [12]).

Theorem 3.3. Suppose that dim $\mathcal{H}_i < \infty$ for each $i \in I$. Let $\Lambda = \{\Lambda_i\}_{i \in I}$ be a Besselian g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$ and T be the associated synthesis operator for Λ . Then KerT is finite dimensional.

Proof. Let $\{e_{ij}\}_{j\in J_i}$ be an orthonormal basis for \mathcal{H}_i for each $i\in I$. Then $\{\Lambda_i^*e_{ij}\}_{i\in I, j\in J_i}$ is a frame for \mathcal{H} . Suppose that $\sum_{i\in I}\sum_{j\in J_i}c_{ij}\Lambda_i^*e_{ij}$ converges. Since Λ is a Besselian g-frame, we get $\left\{\sum_{j\in J_i}c_{ij}e_{ij}\right\}_{i\in I}\in\left(\sum_{i\in I}\oplus\mathcal{H}_i\right)_{l_2}$. So

$$\sum_{i \in I} \sum_{j \in J_i} |c_{ij}|^2 = \sum_{i \in I} \left\| \sum_{j \in J_i} c_{ij} e_{ij} \right\|^2 < \infty.$$

Hence $\{\Lambda_i^* e_{ij}\}_{i \in I, j \in J_i}$ is Besselian. Let Q be the associated synthesis operator for $\{\Lambda_i^* e_{ij}\}_{i \in I, j \in J_i}$, then dim KerQ $< \infty$ [6, Theorem 2.3]. Let us define $E_{ij} \in (\sum_{i \in I} \oplus \mathcal{H}_i)_{l_2}$ by

(3.1)
$$(E_{ij})_k = \begin{cases} e_{ij}, & i = k \\ 0, & i \neq k \end{cases}$$

for all $i, j, k \in I$. It is easy to check that $\{E_{ij}\}_{i \in I, j \in J_i}$ is an orthonormal basis for $(\sum_{i \in I} \oplus \mathcal{H}_i)_{l_2}$ (see[10]). By the definition of Q and T, it is clear that

$$Q(\lbrace c_{ij}\rbrace_{i\in I, j\in J_i}) = \sum_{i\in I} \sum_{j\in J_i} c_{ij} \Lambda_i^* e_{ij} = T\Big(\sum_{i\in I} \sum_{j\in J_i} c_{ij} E_{ij}\Big).$$

Now we consider the mapping

$$\varphi : \text{KerQ} \to \text{KerT}, \quad \varphi(\{c_{ij}\}_{i \in I, j \in J_i}) = \sum_{i \in I} \sum_{j \in J_i} c_{ij} E_{ij}.$$

It is obvious that φ is linear and injective. We claim that φ is surjective. Let $\{g_i\}_{i\in I}\in \mathrm{KerT}$. Then $g_i\in\mathcal{H}_i$ and $g_i=\sum_{j\in J_i}\lambda_{ij}e_{ij}$ for each $i\in I$. Since $\|g_i\|^2=\sum_{j\in J_i}|\lambda_{ij}|^2$, we have $\sum_{i\in I}\sum_{j\in J_i}|\lambda_{ij}|^2=\sum_{i\in I}\|g_i\|^2<$

 ∞ . Therefore $\{\lambda_{ij}\}_{i\in I, j\in J_i}\in l^2$ and

$$Q(\{\lambda_{ij}\}_{i\in I, j\in J_i}) = T\left(\sum_{i\in I}\sum_{j\in J_i}\lambda_{ij}E_{ij}\right) = T(\{g_i\}_{i\in I}) = 0,$$

$$\varphi(\{\lambda_{ij}\}_{i\in I, j\in J_i}) = \sum_{i\in I}\sum_{j\in J_i}\lambda_{ij}E_{ij} = \{g_i\}_{i\in I}.$$

Hence dim KerT = dim KerQ $< \infty$ and the proof is completed.

In the next theorem we get characterizations of generalized frames, Riesz bases, and frames.

Theorem 3.4. Let $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be given and let $\{g_{ij}\}_{j \in K_i}$ be a frame (res. Riesz basis) for \mathcal{H}_i with bounds A_i, B_i for each $i \in I$ such that $0 < A = \inf_{i \in I} A_i$ and $B = \sup_{i \in I} B_i < \infty$. Then $\{\Lambda_i^* g_{ij}\}_{i \in I, j \in K_i}$ is a frame (res. Riesz basis) for \mathcal{H} if and only if $\{\Lambda_i\}_{i\in I}$ is a g-frame (res. g-Riesz basis) for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in I}$.

Proof. (1) Let $f \in \mathcal{H}$ and $\{\Lambda_i^* g_{ij}\}_{i \in I, j \in K_i}$ be a frame for \mathcal{H} with bounds $0 < C \le D$. Then

$$A \sum_{i \in I} \|\Lambda_i f\|^2 \le \sum_{i \in I} A_i \|\Lambda_i f\|^2 \le \sum_{i \in I} \sum_{j \in K_i} |\langle g_{ij}, \Lambda_i f \rangle|^2$$

$$= \sum_{i \in I} \sum_{j \in K_i} |\langle \Lambda_i^* g_{ij}, f \rangle|^2 \le D \|f\|^2$$

$$i \in I \qquad i \in I \qquad i \in I \qquad i \in I \qquad i \in I \qquad j \in K_i$$

$$= \sum_{i \in I} \sum_{j \in K_i} |\langle \Lambda_i^* g_{ij}, f \rangle|^2 \leq D \|f\|^2$$

$$C \|f\|^2 \leq \sum_{i \in I} \sum_{j \in K_i} |\langle \Lambda_i^* g_{ij}, f \rangle|^2 = \sum_{i \in I} \sum_{j \in K_i} |\langle g_{ij}, \Lambda_i f \rangle|^2$$

$$\leq \sum_{i \in I} B_i \|\Lambda_i f\|^2 \leq B \sum_{i \in I} \|\Lambda_i f\|^2.$$
and
$$\frac{C}{B} \|f\|^2 \leq \sum_{i \in I} \|\Lambda_i f\|^2 \leq \frac{D}{A} \|f\|^2.$$
The proportion that $\|\Lambda_i\|_{L^2(X_i)}$ is a g -frame for \mathcal{H} with bounds $0 \leq C$.

Hence

$$\frac{C}{B} \|f\|^2 \le \sum_{i \in I} \|\Lambda_i f\|^2 \le \frac{D}{A} \|f\|^2.$$

Next we assume that $\{\Lambda_i\}_{i \in I}$ is a g-frame for \mathcal{H} with bounds $0 < C_0 \le$ D_0 . By the same argument we have

$$AC_0 ||f||^2 \le \sum_{i \in I} \sum_{j \in K_i} |\langle \Lambda_i^* g_{ij}, f \rangle|^2 \le BD_0 ||f||^2$$

for all $f \in \mathcal{H}$.

(2) Suppose that $\{\Lambda_i^* g_{ij}\}_{i \in I, j \in K_i}$ is a Riesz basis for \mathcal{H} with Riesz basis bounds $0 < C \le D$. Let $F \subseteq I$ be a finite subset of I and $g_i \in \mathcal{H}_i$ for each $i \in F$. Then we have $g_i = \sum_{j \in J_i} \lambda_{ij} g_{ij}$ where $\{\lambda_{ij}\} \in l^2(K_i)$. Since $\{g_{ij}\}_{j \in K_i}$ is a Riesz basis for \mathcal{H}_i , we have

(3.2)
$$A \sum_{j \in K_i} |\lambda_{ij}|^2 \le A_i \sum_{j \in K_i} |\lambda_{ij}|^2 \le \left\| \sum_{j \in K_i} \lambda_{ij} g_{ij} \right\|^2 = \|g_i\|^2,$$
$$\left\| \sum_{j \in K_i} \lambda_{ij} g_{ij} \right\|^2 \le B_i \sum_{j \in K_i} |\lambda_{ij}|^2 \le B \sum_{j \in K_i} |\lambda_{ij}|^2.$$

Therefore

$$\frac{C}{B} \sum_{i \in F} \|g_i\|^2 \le C \sum_{i \in F} \sum_{j \in K_i} |\lambda_{ij}|^2 \le \left\| \sum_{i \in F} \sum_{j \in K_i} \lambda_{ij} \Lambda_i^* g_{ij} \right\|^2 = \| \sum_{i \in F} \Lambda_i^* g_i \|^2,$$

$$\left\| \sum_{i \in F} \sum_{j \in K_i} \lambda_{ij} \Lambda_i^* g_{ij} \right\|^2 \le D \sum_{i \in F} \sum_{j \in K_i} |\lambda_{ij}|^2 \le \frac{D}{A} \sum_{i \in F} \|g_i\|^2.$$

Since $\{\Lambda_i^* g_{ij}\}_{i \in I, j \in K_i}$ is a Riesz basis for \mathcal{H} , we have $\overline{\operatorname{span}}\{\Lambda_i^* g_{ij}\}_{i \in I, j \in K_i} = \mathcal{H}$ and so $\overline{\operatorname{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in I} = \mathcal{H}$. Hence $\{\Lambda_i\}_{i \in I}$ is a g-Riesz basis for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$.

Conversely, let $\{\Lambda_i\}_{i\in I}$ be a g-Riesz basis for \mathcal{H} with bounds $0 < C_0 \le D_0$ and $\{c_{ij}\}$ be a finite scalar sequence. Then

$$C_0 \sum_{i} \left\| \sum_{j} c_{ij} g_{ij} \right\|^2 \le \left\| \sum_{i} \Lambda_i^* \left(\sum_{j} c_{ij} g_{ij} \right) \right\|^2 \le D_0 \sum_{i} \left\| \sum_{j} c_{ij} g_{ij} \right\|^2$$

and

$$A\sum_{j}|c_{ij}|^{2} \leq A_{i}\sum_{j}|c_{ij}|^{2} \leq \left\|\sum_{j}c_{ij}g_{ij}\right\|^{2} \leq B_{i}\sum_{j}|c_{ij}|^{2} \leq B\sum_{j}|c_{ij}|^{2}.$$

Hence

$$AC_0 \sum_{i,j} |c_{ij}|^2 \le \left\| \sum_{i,j} c_{ij} \Lambda_i^* g_{ij} \right\|^2 \le BD_0 \sum_{i,j} |c_{ij}|^2.$$

Moreover, we have $\mathcal{H} = \overline{\operatorname{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i\in I} = \overline{\operatorname{span}}\{\Lambda_i^*g_{ij}\}_{i\in I, j\in K_i}$. So $\{\Lambda_i^*g_{ij}\}_{i\in I, j\in K_i}$ is a Riesz basis for \mathcal{H} .

For any sequence $\{\mathcal{H}_i\}_{i\in I}$ of Hilbert spaces, we can find a Hilbert space \mathcal{K} to contain all the \mathcal{H}_i by setting $\mathcal{K} = \left(\sum_{i\in I} \oplus \mathcal{H}_i\right)_{l_2}$.

Proposition 3.5. Let $\Lambda = {\Lambda_i}_{i \in I}$ be a g-frame for \mathcal{H} with respect to ${\mathcal{H}_i}_{i \in I}$ and $E \subseteq I$ such that

$$\langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle = \delta_{ij} \langle g_i, g_j \rangle, \quad g_i \in \mathcal{H}_i, g_j \in \mathcal{H}_j, \quad i, j \in E.$$

Then $f = \sum_{i \in E} \Lambda_i^* \Lambda_i f$ for all $f \in \overline{\operatorname{span}} \{\Lambda_i^*(\mathcal{H}_i)\}_{i \in E}$.

Proof. First of all, the series $\sum_{i \in E} \Lambda_i^* \Lambda_i f$ are convergent for all $f \in \mathcal{H}$. To see this, let J be a finite subset of E. Then

$$\left\| \sum_{i \in J} \Lambda_i^* \Lambda_i f \right\|^2 = \sum_{i \in J} \|\Lambda_i f\|^2 \le \sum_{i \in I} \|\Lambda_i f\|^2$$

for all $f \in \mathcal{H}$. Since $\{\Lambda_i\}_{i \in I}$ is a g-frame for \mathcal{H} , we get $\sum_{i \in E} \Lambda_i^* \Lambda_i f$ converges. Let $f \in \text{span}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in E}$, then $f = \sum_{i \in E} \Lambda_i^* g_i$ where $g_i \in \mathcal{H}_i$ and the set $\{i \in E : \Lambda_i^* g_i \neq 0\}$ is finite. We show that $g_i = \Lambda_i f$ for $i \in E$. Let $h \in \mathcal{H}_i$, then

$$\langle \Lambda_i f, h \rangle = \langle \sum_{k \in E} \Lambda_i \Lambda_k^* g_k, h \rangle = \sum_{k \in E} \langle \Lambda_k^* g_k, \Lambda_i^* h \rangle$$
$$= \langle \Lambda_i^* g_i, \Lambda_i^* h \rangle = \langle g_i, h \rangle.$$

So $g_i = \Lambda_i f$ for $i \in E$ and $f = \sum_{i \in E} \Lambda_i^* \Lambda_i f$.

For the case $f \in \overline{\operatorname{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in E}$, there exists a sequence $\{f_n\}$ in $\operatorname{span}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in E}$ such that $f_n \to f$ as $n \to \infty$. Let B be the upper g-frame bound for Λ . We have

$$\left\| \sum_{i \in E} \Lambda_i^* \Lambda_i f_n - \sum_{i \in E} \Lambda_i^* \Lambda_i f \right\|^2 = \left\| \sum_{i \in E} \Lambda_i^* \Lambda_i (f_n - f) \right\|^2$$

$$= \sum_{i \in E} \|\Lambda_i (f_n - f)\|^2$$

$$\leq B \|f_n - f\|^2 \to 0.$$

Hence $f = \sum_{i \in E} \Lambda_i^* \Lambda_i f$.

Definition 3.6. A g-frame $\{\Lambda_i\}_{i\in I}$ for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in I}$ is called a g-Riesz frame if for every $J\subseteq I$, $\{\Lambda_i\}_{i\in J}$ is a g-frame for $\overline{\operatorname{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i\in J}$ with uniform g-frame bounds A,B.

Proposition 3.7. Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with bounds $0 < C \le D$ such that

(3.3)
$$\langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle = \delta_{ij} \langle g_i, g_j \rangle, \quad g_i \in \mathcal{H}_i, g_j \in \mathcal{H}_j, \quad i, j \in I.$$

Then Λ is a g-Riesz frame with bounds 1 and D. Moreover, if $\{g_{ij}\}_{j\in K_i}$ is a Riesz frame for \mathcal{H}_i with bounds A_i, B_i for each $i \in I$ and $0 < A = \inf_{i \in I} A_i$, $B = \sup_{i \in I} B_i < \infty$, then $\{\Lambda_i^* g_{ij}\}_{i \in I, j \in K_i}$ is a Riesz frame for \mathcal{H} .

Proof. Let $E \subseteq I$ and $W = \overline{\operatorname{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in E}$. By Proposition 3.5 we have

$$||f||^2 = \left\| \sum_{i \in E} \Lambda_i^* \Lambda_i f \right\|^2 = \sum_{i \in E} ||\Lambda_i f||^2 \le \sum_{i \in I} ||\Lambda_i f||^2 \le D||f||^2$$

for all $f \in W$. Now we assume that $\{g_{ij}\}_{j \in K_i}$ is a Riesz frame for \mathcal{H}_i and $I_0 \subseteq I$. We show that $\{\Lambda_i^* g_{ij}\}_{i \in I_0, j \in K_i^1}$ is a frame for $\overline{\text{span}}\{\Lambda_i^* g_{ij}\}_{i \in I_0, j \in K_i^1}$ with uniform frame bounds A and BD, where $K_i^1 \subseteq K_i$ for each $i \in I_0$. Let $f \in \text{span}\{\Lambda_i^* g_{ij}\}_{i \in I_0, j \in K_i^1}$ and $k \in I_0$. Then there is a finite scalar sequence $\{c_{ij}\}$ such that $\Lambda_k f = \sum_{i,j} c_{ij} \Lambda_k \Lambda_i^* g_{ij}$. It follows from (3.3) that

$$\Lambda_l f = \sum_j c_{lj} \Lambda_l \Lambda_l^* g_{lj} = \sum_j c_{lj} g_{lj}.$$

Therefore $\Lambda_l f \in \overline{\operatorname{span}}\{g_{lj}\}_{j \in K_l^1}$ for all $f \in \overline{\operatorname{span}}\{\Lambda_i^* g_{ij}\}_{i \in I_0, j \in K_i^1}$ and all $l \in I_0$. Since $\{\Lambda_i\}_{i \in I}$ is a g-Riesz frame we have

(3.4)
$$||f||^2 \le \sum_{i \in I_0} ||\Lambda_i f||^2 \le D||f||^2$$

for all $f \in \overline{\operatorname{span}}\{\Lambda_i^* g_{ij}\}_{i \in I_0, j \in K_i^1}$. Also $\{g_{ij}\}_{j \in K_i}$ is a Riesz frame for \mathcal{H}_i

(3.5)
$$A_i \|\Lambda_i f\|^2 \le \sum_{j \in K_i^1} |\langle \Lambda_i f, g_{ij} \rangle|^2 \le B_i \|\Lambda_i f\|^2$$

for all $f \in \mathcal{H}$. Therefore (3.4) and (3.5) imply that

$$A||f||^2 \le \sum_{i \in I_0} A_i ||\Lambda_i f||^2 \le \sum_{i \in I_0} \sum_{j \in K_i^1} |\langle f, \Lambda_i^* g_{ij} \rangle|^2 \le \sum_{i \in I_0} B_i ||\Lambda_i f||^2 \le BD||f||^2$$

for all $f \in \overline{\operatorname{span}}\{\Lambda_i^* g_{ij}\}_{i \in I_0, j \in K_i^1}$.

4. α -dual of g-frames and Hilbert-Schmidt operators

In this section \mathcal{H} denotes a finite dimensional Hilbert space. We also denote the norm of a Hilbert-Schmidt operator T by $||T||_2$.

Definition 4.1. Let $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be g-frames for \mathcal{H} . We say that $\{\Theta_i\}_{i \in I}$ is a dual g-frame (or simply dual) of $\{\Lambda_i\}_{i \in I}$ if

$$f = \sum_{i \in I} \Lambda_i^* \Theta_i f$$

holds for all $f \in \mathcal{H}$.

It is easy to show that if $\{\Theta_i\}_{i\in I}$ is a dual g-frame of $\{\Lambda_i\}_{i\in I}$, then $\{\Lambda_i\}_{i\in I}$ will be a dual g-frame of $\{\Theta_i\}_{i\in I}$.

Let $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with g-frame operator S. Then (2.4) shows that $\{\Lambda_i S^{-1}\}_{i \in I}$ is a dual g-frame of $\{\Lambda_i\}_{i \in I}$. $\{\Lambda_i S^{-1}\}_{i \in I}$ is called *canonical dual g*-frame of $\{\Lambda_i\}_{i \in I}$.

Proposition 4.2. Let $\{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a dual of g-frame $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ for \mathcal{H} . Then

$$\sum_{i \in I} \|\Lambda_i - \Theta_i\|_2^2 = \sum_{i \in I} \|\Lambda_i\|_2^2 + \sum_{i \in I} \|\Theta_i\|_2^2 - 2\dim \mathcal{H}.$$

Proof. Suppose that $\{e_n\}_{n=1}^M$ is an orthonormal basis for \mathcal{H} . We have

$$\begin{split} \sum_{i \in I} \|\Lambda_i - \Theta_i\|_2^2 &= \sum_{i \in I} \sum_n \|(\Lambda_i - \Theta_i)e_n\|^2 \\ &= \sum_n \sum_{i \in I} \langle (\Lambda_i - \Theta_i)e_n, (\Lambda_i - \Theta_i)e_n \rangle \\ &= \sum_i \sum_n \|\Lambda_i e_n\|^2 + \sum_{i \in I} \sum_n \|\Theta_i e_n\|^2 - \sum_n \sum_{i \in I} \langle \Lambda_i^* \Theta_i e_n, e_n \rangle \\ &- \sum_n \sum_{i \in I} \langle e_n, \Lambda_i^* \Theta_i e_n \rangle \\ &= \sum_{i \in I} \|\Lambda_i\|_2^2 + \sum_{i \in I} \|\Theta_i\|_2^2 - 2 \dim \mathcal{H}. \end{split}$$

Corollary 4.3. Let $\{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be two Parseval g-frames for \mathcal{H} . If $\{\Theta_i\}_{i \in I}$ is a dual of $\{\Lambda_i\}_{i \in I}$, then $\Lambda_i = \Theta_i$ for all $i \in I$.

Proof. Since \mathcal{H} is a finite dimensional and $\{\Lambda_i\}_{i\in I}$ is a Parseval g-frame for \mathcal{H} , we have $\sum_{i\in I} \|\Lambda_i\|_2^2 = \dim \mathcal{H}$ (see [11]). Hence the result follows by Proposition 4.2.

Corollary 4.4. Let $\{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a dual of $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ for \mathcal{H} , where $\{\Theta_i\}_{i \in I}$ and $\{\Lambda_i\}_{i \in I}$ are two tight g-frames for \mathcal{H} with bounds B_{Θ} and B_{Λ} , respectively. Then $B_{\Theta} + B_{\Lambda} = 2$ if and only if $\Lambda_i = \Theta_i$ for all $i \in I$.

Proof. Since $\sum_{i \in I} \|\Lambda_i\|_2^2 = B_{\Lambda} \dim \mathcal{H}$ and $\sum_{i \in I} \|\Theta_i\|_2^2 = B_{\Theta} \dim \mathcal{H}$, the result follows from Proposition 4.2.

Remark 4.5. Let $\{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be two g-frames for \mathcal{H} with the associated synthesis operators T_{Λ} and T_{Θ} , respectively. Using the proof of Proposition 4.2, we get

$$\sum_{i \in I} \|\Lambda_i - \Theta_i\|_2^2 = \sum_{i \in I} \|\Lambda_i\|_2^2 + \sum_{i \in I} \|\Theta_i\|_2^2 - \operatorname{tr}(\mathbf{T}_{\Theta} \mathbf{T}_{\Lambda}^*) - \operatorname{tr}(\mathbf{T}_{\Lambda} \mathbf{T}_{\Theta}^*).$$

Let $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with the frame operator S. It is clear that $\{\Lambda_i S^{\alpha-1}\}_{i \in I}$ is a g-frame for \mathcal{H} with the property $\sum_{i \in I} \Lambda_i^* \Lambda_i S^{\alpha-1} = S^{\alpha} f$ for all $f \in \mathcal{H}$. For $\alpha = 0$ we get the canonical dual g-frame of $\{\Lambda_i\}_{i \in I}$.

Definition 4.6. Let $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with g-frame operator S_{Λ} . A g-frame $\{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is called a α -dual of $\{\Lambda_i\}_{i\in I}$ if $\sum_{i\in I} \Lambda_i^*\Theta_i = S_{\Lambda}^{\alpha}f$ for all $f \in \mathcal{H}$.

It is clear that $\{\Lambda_i S_{\Lambda}^{\alpha-1}\}_{i\in I}$ is a α -dual of $\{\Lambda_i\}_{i\in I}$. The canonical dual g-frame of $\{\Lambda_i\}_{i\in I}$ has some interesting properties between other dual g-frames of $\{\Lambda_i\}_{i\in I}$ (see [12]). We will show that the α -dual frame $\{\Lambda_i S_{\Lambda}^{\alpha-1}\}_{i\in I}$ has some minimal properties between other α -dual frames of $\{\Lambda_i\}_{i\in I}$.

Proposition 4.7. Let $\{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a α -dual of $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ with g-frame operator S_{Θ} . Then

(4.1)
$$\sum_{i \in I} \|\Lambda_i S_{\Lambda}^{\alpha - 1}\|_2^2 = \|S_{\Lambda}^{\frac{2\alpha - 1}{2}}\|_2^2 \le \|S_{\Theta}^{\frac{1}{2}}\|_2^2 = \sum_{i \in I} \|\Theta_i\|_2^2.$$

The equality in (4.1) holds if and only if $\Theta_i = \Lambda_i S_{\Lambda}^{\alpha-1}$ for all $i \in I$.

Proof. Let $\{e_n\}_{n=1}^M$ be an orthonormal basis for \mathcal{H} . We have

$$\begin{split} \sum_{i \in I} \|\Lambda_i S_{\Lambda}^{\alpha-1}\|_2^2 &= \sum_{i \in I} \sum_n \langle \Lambda_i S_{\Lambda}^{\alpha-1} e_n, \Lambda_i S_{\Lambda}^{\alpha-1} e_n \rangle \\ &= \sum_{i \in I} \sum_n \langle \Lambda_i^* \Lambda_i S_{\Lambda}^{\alpha-1} e_n, S_{\Lambda}^{\alpha-1} e_n \rangle \\ &= \sum_n \langle e_n, S_{\Lambda}^{2\alpha-1} e_n \rangle \\ &= \sum_n \langle S_{\Lambda}^{\frac{2\alpha-1}{2}} e_n, S_{\Lambda}^{\frac{2\alpha-1}{2}} e_n \rangle = \left\| S_{\Lambda}^{\frac{2\alpha-1}{2}} \right\|_2^2, \\ &\sum_{i \in I} \|\Theta_i\|_2^2 = \sum_{i \in I} \sum_n \langle \Theta_i^* \Theta_i e_n, e_n \rangle = \sum_n \langle S_{\Theta} e_n, e_n \rangle = \| S_{\Theta}^{\frac{1}{2}} \|_2^2. \end{split}$$

On the other hand

$$\begin{split} \sum_{i \in I} \|\Lambda_{i} S_{\Lambda}^{\alpha-1}\|_{2}^{2} &= \sum_{i \in I} \sum_{n} \langle \Lambda_{i} S_{\Lambda}^{\alpha-1} e_{n}, \Lambda_{i} S_{\Lambda}^{\alpha-1} e_{n} \rangle \\ &= \sum_{n} \langle S_{\Lambda}^{\alpha} e_{n}, S_{\Lambda}^{\alpha-1} e_{n} \rangle \\ &= \sum_{n} \sum_{i \in I} \langle \Lambda_{i}^{*} \Theta_{i} e_{n}, S_{\Lambda}^{\alpha-1} e_{n} \rangle \\ &= \sum_{n} \sum_{i \in I} \langle \Theta_{i} e_{n}, \Lambda_{i} S_{\Lambda}^{\alpha-1} e_{n} \rangle \\ &\leq \left(\sum_{n} \sum_{i \in I} \|\Lambda_{i} S_{\Lambda}^{\alpha-1} e_{n}\|^{2} \right)^{\frac{1}{2}} \left(\sum_{n} \sum_{i \in I} \|\Theta_{i} e_{n}\|^{2} \right)^{\frac{1}{2}}. \end{split}$$

So $\sum_{i \in I} \|\Lambda_i S_{\Lambda}^{\alpha - 1}\|_2^2 \le \sum_{i \in I} \|\Theta_i\|_2^2$ and we obtain (4.1). If $\sum_{i \in I} \|\Lambda_i S_{\Lambda}^{\alpha - 1}\|_2^2 = \sum_{i \in I} \|\Theta_i\|_2^2$, then it follows from (4.2) that

$$\begin{split} \sum_{n} \sum_{i \in I} \langle \Theta_{i} e_{n}, \Lambda_{i} S_{\Lambda}^{\alpha - 1} e_{n} \rangle &= \sum_{n} \sum_{i \in I} \left| \langle \Theta_{i} e_{n}, \Lambda_{i} S_{\Lambda}^{\alpha - 1} e_{n} \rangle \right| \\ &= \left(\sum_{n} \sum_{i \in I} \| \Lambda_{i} S_{\Lambda}^{\alpha - 1} e_{n} \|^{2} \right)^{\frac{1}{2}} \left(\sum_{n} \sum_{i \in I} \| \Theta_{i} e_{n} \|^{2} \right)^{\frac{1}{2}}. \end{split}$$

So $\langle \Theta_i e_n, \Lambda_i S_{\Lambda}^{\alpha-1} e_n \rangle \geq 0$ and $\langle \Theta_i e_n, \Lambda_i S_{\Lambda}^{\alpha-1} e_n \rangle = \|\Theta_i e_n\| \|\Lambda_i S_{\Lambda}^{\alpha-1} e_n\|$ for all i, n. Therefore there exist $\lambda, \lambda_{i,n} \geq 0$ such that

$$\Lambda_i S_{\Lambda}^{\alpha-1} e_n = \lambda_{i,n} \Theta_i e_n, \quad \|\Lambda_i S_{\Lambda}^{\alpha-1} e_n\| = \lambda \|\Theta_i e_n\|$$

for all i, n. Hence $\lambda_{i,n} = \lambda$ and we conclude that $\Lambda_i S_{\Lambda}^{\alpha-1} e_n = \lambda \Theta_i e_n$ for all i, n. Since $\sum_{i \in I} \|\Lambda_i S_{\Lambda}^{\alpha-1}\|_2^2 = \sum_{i \in I} \|\Theta_i\|_2^2$, we get $\lambda = 1$ and so $\Lambda_i S_{\Lambda}^{\alpha-1} e_n = \Theta_i e_n \text{ for all } i, n.$

Corollary 4.8. Let $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with g-frame operator S_{Λ} . Then

$$\sum_{i \in I} \|\Lambda_i - \Lambda_i S_{\Lambda}^{\alpha - 1}\|_2^2$$

$$= \min \Big\{ \sum_{i \in I} \|\Lambda_i - \Theta_i\|_2^2 : \{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\} \text{ is a } \alpha\text{-dual of } \{\Lambda_i\}_{i \in I} \Big\}.$$

Moreover, if $\{\Theta_i\}_{i\in I}$ is a α -dual of $\{\Lambda_i\}_{i\in I}$, then $\sum_{i\in I} \|\Lambda_i - \Theta_i\|_2^2 = \sum_{i\in I} \|\Lambda_i - \Lambda_i S_{\Lambda}^{\alpha-1}\|_2^2$ if and only if $\Theta_i = \Lambda_i S_{\Lambda}^{\alpha-1}$ for all $i\in I$.

$$\sum_{i \in I} \sum_{n} \langle \Theta_i e_n, \Lambda_i e_n \rangle = \sum_{n} \langle S_{\Lambda}^{\alpha} e_n, e_n \rangle = \sum_{i \in I} \sum_{n} \langle \Lambda_i S_{\Lambda}^{\alpha - 1} e_n, \Lambda_i e_n \rangle,$$

by Proposition 4.7 we have
$$\begin{split} \sum_{i \in I} \|\Lambda_i - \Theta_i\|_2^2 &= \sum_{i \in I} \sum_n \left(\|\Lambda_i e_n\|^2 + \|\Theta_i e_n\|^2 - 2\Re \langle \Theta_i e_n, \Lambda_i e_n \rangle \right) \\ &\geq \sum_{i \in I} \sum_n \left(\|\Lambda_i e_n\|^2 + \|\Lambda_i S_\Lambda^{\alpha - 1} e_n\|^2 - 2\Re \langle \Lambda_i S_\Lambda^{\alpha - 1} e_n, \Lambda_i e_n \rangle \right) \\ &= \sum_{i \in I} \sum_n \|(\Lambda_i - \Lambda_i S_\Lambda^{\alpha - 1}) e_n\|^2 \\ &= \sum_{i \in I} \|\Lambda_i - \Lambda_i S_\Lambda^{\alpha - 1}\|_2^2. \end{split}$$

Therefore the above inequality implies that $\sum_{i \in I} \|\Lambda_i - \Theta_i\|_2^2 = \sum_{i \in I} \|\Lambda_i - \Lambda_i S_{\Lambda}^{\alpha-1}\|_2^2$ if and only if $\sum_{i \in I} \sum_n \|\Lambda_i S_{\Lambda}^{\alpha-1} e_n\|^2 = \sum_{i \in I} \sum_n \|\Theta_i e_n\|^2$. Hence by Proposition 4.7, $\sum_{i \in I} \|\Lambda_i - \Theta_i\|_2^2 = \sum_{i \in I} \|\Lambda_i - \Lambda_i S_{\Lambda}^{\alpha-1}\|_2^2$ if and only if $\Theta_i = \Lambda_i S_{\Lambda}^{\alpha-1}$ for all $i \in I$.

Corollary 4.9. Let $\{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a dual of g-frame $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ for \mathcal{H} . Then

(4.3)
$$\sum_{i \in I} \|\Theta_i\|_2^2 = \|S_{\Theta}^{\frac{1}{2}}\|_2^2 \ge \|S_{\Lambda}^{-\frac{1}{2}}\|_2^2 = \sum_{i \in I} \|\Lambda_i S_{\Lambda}^{-1}\|_2^2$$

where S_{Λ} and S_{Θ} are the g-frame operators of $\{\Lambda_i\}_{i\in I}$ and $\{\Theta_i\}_{i\in I}$, respectively. Moreover, the following are equivalent

- $\begin{array}{ll} (i) \; \sum_{i \in I} \|\Theta_i\|_2^2 = \sum_{i \in I} \|\Lambda_i S_{\Lambda}^{-1}\|_2^2; \\ (ii) \; \Theta_i = \Lambda_i S_{\Lambda}^{-1} \; for \; all \; i \in I; \\ (iii) \; S_{\Theta} = S_{\Lambda}^{-1}. \end{array}$

Proposition 4.10. Let $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame and $\{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a Parseval g-frame for \mathcal{H} . Then

- (i) $\operatorname{tr}(T_{\Theta}T_{\Lambda}^{*}) + \operatorname{tr}(T_{\Lambda}T_{\Theta}^{*}) \leq 2\|S_{\Lambda}^{\frac{1}{4}}\|_{2}^{2};$ (ii) $\operatorname{tr}(T_{\Theta}T_{\Lambda}^{*}) + \operatorname{tr}(T_{\Lambda}T_{\Theta}^{*}) = 2\|S_{\Lambda}^{\frac{1}{4}}\|_{2}^{2} \text{ if and only if } \Theta_{i} = \Lambda_{i}S_{\Lambda}^{-\frac{1}{2}} \text{ for all } i \in I.$

Proof. By Remark 4.5, $\operatorname{tr}(T_{\Theta}T_{\Lambda}^*) + \operatorname{tr}(T_{\Lambda}T_{\Theta}^*)$ is real. Since $\{\Theta_i\}_{i\in I}$ is a Parseval g-frame for \mathcal{H} , we have $\|T_{\Theta}\| = \|T_{\Theta}^*\| = 1$. Let us denote the trace-class norm by $\|.\|_1$. By a simple computation we get $\|T_{\Lambda}^*\|_1 =$ $\|S_{\Lambda}^{\frac{1}{4}}\|_{2}^{2}$. By [8; Theorems 2.4.14 and 2.4.16], we get

$$\left|\operatorname{tr}(T_{\Theta}T_{\Lambda}^*)\right|, \left|\operatorname{tr}(T_{\Lambda}T_{\Theta}^*)\right| \leq \|S_{\Lambda}^{\frac{1}{4}}\|_2^2.$$

Therefore (i) is proved. To prove (ii), let $\operatorname{tr}(T_{\Theta}T_{\Lambda}^{*}) + \operatorname{tr}(T_{\Lambda}T_{\Theta}^{*}) =$ $2\|S_{\Lambda}^{\frac{1}{4}}\|_2^2$. It follows from (i) that $tr(T_{\Theta}T_{\Lambda}^*) = \|S_{\Lambda}^{\frac{1}{4}}\|_2^2$. Hence we get the result by Corollary 2.6 of [11].

Corollary 4.11. Let $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{H} with g-frame operator S_{Λ} . Then

 $\max \left\{ \Re \operatorname{tr}(T_{\Theta} T_{\Lambda}^*) : \left\{ \Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I \right\} \text{ is a Parseval g-frame for } \mathcal{H} \right\} = \|S_{\Lambda}^{\frac{1}{4}}\|_2^2.$

Acknowledgments

The authors wish to thank to the referees for their helpful remarks.

References

- M.R. Abdollahpour and A. Najati, Besselian g-frames and near g-Riesz bases, Appl. Anal. Discrete Math 5 (2011) 259-270.
- [2] P.G. Casazza and G. Kutyniok, Frames of subspaces, Contemp. Math. 345 (2004) 87-113.
- [3] O. Christensen and Y.C. Eldar, Oblique dual frames and shift invariant-spaces, Appl. Comput. Harmon. Anal. 17 (2004) 48-68.
- [4] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, *Trans. Amer. Math. Soc.* **72** (1952) 341-366.
- [5] M. Fornasier, Decompositions of Hibert space: local construction of global frames, Proc. Int. Conf. On constructive function theory, varna (2002), B. Bojanov Ed., DARBA, Sofia, (2003) 275–281.
- [6] J. Holub, Pre-frame operarors, Besselian frames and near-Riesz bases, *Proc. Amer. Math. Soc.* **122** (1994) 779-785.
- [7] S. Li and H. Ogawa, Pseudoframes for subspaces with applications, J. Fourier Anal. Appl. 10 (2004) 409-431.
- [8] Gerard J. Murphy, C**-algebras and operator Theory, Academic Press, Inc, 1990.
- [9] A. Najati, A. Rahimi and M.H. Faroughi, Continuous and discrete frames of subspaces in Hilbert spaces, *Southeast Asian Bull. Math.* **32** (2008) 305-324.
- [10] A. Najati, M.H. Faroughi, and A. Rahimi, G-frames and stability of g-frames in Hilbert spaces, Methods Funct. Anal. Topology 14 (2008) 271-286.
- [11] A. Najati, Approximation of g-frames in Hilbert spaces, Afr. Diaspora J. Math. 6 (2008) 137-145.
- [12] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006) 437-452.

M.R. Abdollahpour and A. Najati

Department of Mathematical Sciences , University of Mohaghegh Ardabili, P.O.Box 179, Ardabil, Iran.

Email: mrabdollahpour@yahoo.com (M.R. Abdollahpour),

Email: a.nejati@yahoo.com (A. Najati)

