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G-FRAMES AND HILBERT-SCHMIDT OPERATORS

M. R. ABDOLLAHPOUR AND A. NAJATT*
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ABSTRACT. In this paper we introduce and study Besselian g-frames.
We show that the kernel of associated synthesis operator for a

Besselian g-frame is finite dimensional. We also introduce a-dual of

a g-frame and we get some results when we use the Hilbert-Schmidt

norm for the members of a g-frame in a finite dimensional Hilbert

space.

1. Introduction

Frames for Hilbert spaces introduced by Duffin and schaeffer in 1952
[4]. A sequence {f;}ier C H is a frame for H, if there exist two positive
constants A, B such that

0
(1.1) AL < ST £ < BIFIP

i=1
for all f € ‘H. The numbers A, B are called frame bounds. Various gen-
eralizations of frames in Hilbert spaces have been proposed and stud-
ied recently. For example, frame of subspaces [2], Pseudo frames for
subspaces|7], Bounded quasi-projectors [5], oblique frames [3] etc. Wen-
chang Sun in his paper [12] introduced the concept of g-frames which
include all mentioned generalizations. Members of ordinary frames are
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vectors of a Hilbert space, while members of g-frames are bounded op-
erators. Besselian frames and near-Riesz bases in Hilbert spaces intro-
duced by Holub [6]. Also, Besselian frame of subspaces introduced and
discussed in [9]. The authors of this paper in [1], introduced the concept
of near g-Riesz bases and they showed that a near g-Riesz basis is a
Besselian g-frame.

In this paper by using the concept of Besselian frame and g-frame we
define Besselian g-frame and investigate some of their properties. In
section 2, we give the basic definitions and known results needed. In
section 3, we investigate some properties of Besselian g-frames. In par-
ticular, we show that under some conditions, the kernel of associated
synthesis operator for a Besselian g-frame is finite dimensional. In sec-
tion 4, we introduce a-dual of a g-frame and we get someresults when
we use the Hilbert-Schmidt norm for the members of a g-frame in a finite
dimensional Hilbert space.

2. Preliminaries

Throughout this paper, H is a separable Hilbert space and {H,}cr is
a sequence of separable Hilbert spaces, where [ is a subset of N.

Definition 2.1. The sequence {A; € B(H,H;) i € I} is called a g-
Bessel sequence if there exists B > 0 such that

(2.1) > IAfl? < BlIfI?
i€l
forall f € H.

Let {A; € B(HyH,) : i€ I} be given. Let us define

(Z EBHz') = {{Qi} 9 € Hi,z lgsll* < OO}
il I el

with the inner product given by ({fi},{g:}) = > ic;(fi;9i). It is clear
that (Zie[ QBHZ-)I2 is a Hilbert space with respect to the pointwise op-
erations. It is proved in [10] , if {A; € B(H,H;) : i € I} is a g-Bessel
sequence for H, then the operator

T: <Z@Hi>l —H

iel )
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defined by
(2:2) T({gi}) =Y Ai(9i)
el
is well defined, bounded and 7™ f = {A; f}icr.

Definition 2.2. We call a sequence {A; € B(H,H;) :i € I} a g-frame
for H with respect to {H;}icr if there exist two positive constants A and
B such that

(2.3) AIfIP < IAf 1P < BIIP

el
for all f € H. We call A and B the lower and upper g—frame bounds,
respectively.

We call {A;}icr a tight g-frame if A = B and Parseval g-frameif A =
B=1.

The sequence {A; € B(H,H;) : i € I} is a g-frame for H if and
only if the operator T defined by (2.2) is bounded and onto (see [10]).
The operators T and T™ are called the synthesis and analysis operators,
respectively.

Proposition 2.3. [12] Let {A; e B(H, H;) : i € I} be a g-frame for H.
The operator
S H—H, .Sf=> AAf
el
s a positive, bounded and invertible operator.

Proposition 2.3 implies that every f € H can be represented as
(24) f=8S'f=> ANNST, f=S5T1SF=) STAIAS
i€l i€l
The operator S is called the g-frame operator of {A;}icr.
It is easy to check that if {A; € B(H,H;) : i € I} is a g-Bessel sequence,
then S is well defined and S = TT*. We end this section by definition
of g-Riesz basis.

Definition 2.4. A sequence {A; € B(H,H;) :i € I} is called a g-Riesz
basis for H with respect to {H;}icr if there exist two positive constants
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A and B such that for any finite subset F C I and g; € H;, i € F,
(25) AN gl < 1D Aal> < B llgill,

icF ieF icF
and {\; € B(H,H;) : i € I} is g-complete, i.e., {f : Nif =0,i€ I} =0.

It is proved in [10], that {A; € B(H,H;) : i € I} is g-complete if and
only if span{Af(H;)},c; =H -

3. Besselian g-frames

As usual, we denote by (?(I) the Hilbert space of all squaressummable
sequences of scalars {c;}ier. If {fi}ier is a frame for H, then >, ;¢ f;
converges if {c;}ic; € I2(I). But the converse is not true in general (see
[6]). We say that a frame {f;}ier for H is

e Besselian if, whenever _,_; ¢; fi converges, then{¢; }ier € I*(1);
e a near-Riesz basis, if there is a finite set o for which {f;};c I\o 18
a Riesz basis for H.
We recall the following characterization of frames which are near-Riesz
bases.

Theorem 3.1. [6] If {fi}icr is a frame in H; the following are equiva-
lent:

(1) {fi}ier is a near-Riesz basis for H;
(i1) {fi}tier is Besselian;
(iil) Y;escifi converges if and only if {c;}icr € 1*(I).

Besselian frame of subspaces introduced and discussed in [9]. Here we
introduce the concept of Besselian g-frames.

Definition 3.2. Let A = {A;}icr be a g-frame for H with respect to
{Hi}ier. We call A a Besselian g-frame if, whenever ), ; Afg; con-

verges, then
{gi}ier € (Z @Hi> :
l2

i€l

Let {ei;}jes, be an orthonormal basis for H; for each ¢ € I and {A; €
B(H,H;) : i € I} be given. Then {A}e;j}icr jes, is a frame (res. Riesz
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basis) for H if and only if {A;}ics is a g-frame (res. g-Riesz basis) for H
(see [12]).

Theorem 3.3. Suppose that dimH; < oo for each i € I. Let A =
{Ai}ier be a Besselian g-frame for H with respect to {H;}ier and T be
the associated synthesis operator for A. Then KerT is finite dimensional.

Proof. Let {e;;}jcs, be an orthonormal basis for H; for each i € I.
Then {Aje;;}icr jes, is a frame for H. Suppose that ), ; ZjeJi cijAles;

converges. Since A is a Besselian g-frame, we get {Zje Ji cijeij} €
el

(Ziel @Hi)zz' So

DD el =) H > cijei

icl jeJ; iel  jEJ;

2
< Q.

Hence {Aje;j}ierjes, is Besselian. Let @ be the associated synthesis
operator for {Aje;;}ier jes,, then dim KerQ < oo [6, Theorem 2.3]. Let
us define E;; € (Zie[ @’Hi) by

l2
B o e¢j7 1= k

for all i, j,k € I. It is easy to check that {Ej;}icr jes, is an orthonormal
basis for (3¢, @Hi)lg (see[10]). By the definition of Q and T, it is clear
that

QU{cijhierjes) =YY cijhjei; = T( > Cij%‘)-
i€l jeJd; i€l jed;
Now we consider the mapping
prKerQ — KerT,  o({cijlierjes) = > cijEij.

el jed;

It is obvious that ¢ is linear and injective. We claim that ¢ is surjective.
Let {g;}icr € KerT. Then g; € H; and g; = EjeJi Aijeij for each i € I.

Since ||g;||* = > i, [Xij|?, we have Y., D e, Xij|2 = Yier laill? <
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oo. Therefore {\;;}ier jes; € 17 and

Q({NijYierjer) = T< Z Z )\ijEij) =T ({gi}ier) =0,
el jGJi
e ({Nijierjer) = Z Z NijEij = {gi}ier-
el jed;
Hence dim KerT = dim KerQ < oo and the proof is completed.

In the next theorem we get characterizations of generalized frames,
Riesz bases, and frames.

Theorem 3.4. Let {A; € B(H,H;) :i € I} be given and let {g;;}jck, be
a frame (res. Riesz basis) for H; with bounds A;, B; for each i € I such
that 0 < A = infier A; and B = sup;c; B; < co. Then {A}gij}ier jek, is
a frame (res. Riesz basis) for H if and only if {A;}icris a g-frame (res.
g-Riesz basis) for H with respect to {H;}ier.

Proof. (1) Let f € H and {A}gi;}icr jek, be a frame forH with bounds
0< C < D. Then

AY NP <D AlAfIP < 0D Wgags M)

il il iel jeK;
=> > Mgy, HIP < DIIFI?
i€l jeEK;
and
CIAP <> 1 gi, AP =D gijs Mif)P
iel jeK; iel jeK;
<Y BiIAFIP < BY AP
il icl
Hence

C2 2 _ Do
SR < Y InfI < S0P
i€l
Next we assume that {A;};cs is a g-frame for H with bounds 0 < Cj <
Dy. By the same argument we have

AGO|IFIP <~ > 1{ATgig, /)P < BDollfI1?
iel jEKZ‘
for all f € H.
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(2) Suppose that {Afg;j}icrjer, is a Riesz basis for H with Riesz
basis bounds 0 < C < D. Let F C I be a finite subset of I and g; € H;
for each i € F. Then we have g; = > .. ;. Aijgi; where {\;;} € 12(K;).
Since {gi;}jek, is a Riesz basis for H;, we have

2

A Dl <Ay Ml < | 3 g = Nl

(3 2) JEK; JEK; JEK;
| S v < B S P <B Y P

]e i ]E i ]EK

Therefore
Ol <O S gl < | 3 Auia| < >Nl
i€EF i€l jEK; i€F jEK;

H > NijAig S DY Y gl < ZZ gl

i€F jEK; i€F jEK; i€F

Since {A}gij }ier,jek, is a Riesz basis for H, we have span{A}gi; }icr jek, =
H and so span{A}(H;)}ier = H. Hence {Aj}icr is a g-Riesz basis for H
with respect to{H;}ies-

Conversely, let {A;};cr be a g-Riesz basis for H with bounds 0 < C <
Dy and {c;;} be a finite scalar sequence.. Then

o H D ciifi < H oD Cz’jgz'j)H2 <Dy H > cijgi :
i j - 7 i -
and
J j ;

Hence

2
<BiY el <BY eyl
i i

ACOZ ’CZ]| < H ZCUA Gij

Moreover, we have H = span{Ai( i) Yier = span{Aigij}ieLjeKi. So
{Afgij}ticr jek, is a Riesz basis for H.

< BDOZ lcij)?.

For any sequence {H;};cs of Hilbert spaces, we can find a Hilbert
space K to contain all the H; by setting K = (Zz‘el @Hi)b
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Proposition 3.5. Let A = {A;}icr be a g-frame for H with respect to
{Hi}icr and E C I such that

(A7gi, Njgj) = 0ij{9i,95), 9 € Hi, g5 € Hy, 4,5 € E.
Then f =73 ,cp AfAif for all f € span{Aj(H;)}ick.

Proof. First of all, the series ) ;. AjA;f are convergent for all f € H.
To see this, let J be a finite subset of E. Then

| Soanf | =SSl < 3 sl
ieJ icJ iel
for all f € H. Since {A;}icr is a g-frame for H, we get Y7, p AFA; f
converges. Let f € span{A;(H;)}icp, then f = 3. p Ajgi where g; €
H; and the set {i € E : Afg; # 0} is finite. We show that g; = A; f for
1 € E. Let h € 'H;, then
(Auf.h) = (D Aikgr h) = D (Afges Afh)

keE keE

Sog;=A;f fori € Fand f = ZiGE AfA,f
For the case f € span{A;(H;)}ick, there exists a sequence {f,} in
span{A}(H;)}icr such that f, — f asm — oo. Let B be the upper

g-frame bound for A. We have
A ZA:Ai<fn -0

[0 armira =3 M3
ick el
=" A fu = DIP

i€l
<B||fn = fI? = 0.

Hence f =3 . cp AT A S

Definition 3.6. A g-frame {A;};c; for H with respect to {H;}icr is
called a g-Riesz frame if for every J C I, {A;}ics is a g-frame for
span{Af(H;)}ics with uniform g-frame bounds A, B.

Proposition 3.7. Let A = {A; € B(H,H;) : i € I} be a g-frame for H
with bounds 0 < C < D such that

(3.3) (Afgi, Njg5) = 0ij{9i, 95), 9 € Hiy gj € My, 4,5 € 1.
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Then A is a g-Riesz frame with bounds 1 and D. Moreover, if {g:j}jck,
18 a Riesz frame for H; with bounds A;, B; for each i € I and 0 < A =
infier Ai, B =sup;cr B; < 00, then {A}gij}tier jek, is a Riesz frame for
H.

Proof. Let E C I and W = span{A}(H;)}ice. By Proposition 3.5 we
have

2
AR = {| D2 ArAas]| = DD A2 < 7 AP < DI

ick i€l i€l

for all f € W. Now we assume that {g;;} ek, is a Riesz frame for H; and
Io € I. We show that {A7gij }icr, jert is a frame for Span{Afgs; bicry, je k!
with uniform frame bounds A and BD, where Ki1 C K; for each i € I.
Let f € span{Ajgi;}icr, jexr and k € Ip. Then there is a finite scalar
sequence {c;;} such that Apf = 37, . cijApAgije It follows from (3.3)

that
Af =" cMiAigy = cgy
J J

Therefore A;f € span{glj}jeKl1 for all f € span{A;gi;}icy, jex? and all
l € Iy. Since {A;}icr is a g-Riesz frame we have
(3.4) AP <Dl fI* <D £
i€lp
for all f € span{A}gij}icr, jext- Also {gij}jek, is a Riesz frame for H;
SO
(3.5) Al A 1B D (A 969) 7 < BillAf?
1|43 N iJ s 9ij > Dif| 4

jeK}
for all f € H. Therefore (3.4) and (3.5) imply that
AIFIP <D AlAaf 12 <7 > 1 ATg)> < Y BillAif|* < BDJ|f|?

1€y i€lp jeKil i€lp
for all f e span{Afgij}i€IO7j€Ki1.

4. a-dual of g-frames and Hilbert-Schmidt operators

In this section H denotes a finite dimensional Hilbert space. We also
denote the norm of a Hilbert-Schmidt operator 7' by ||T'||2.


www.SID.ir

150 Abdollahpour and Najati

Definition 4.1. Let {A; € B(H,H;) :i € I} and {©; € B(H,H;) : i €
I} be g-frames for H. We say that {©;}icr is a dual g-frame (or simply
dual) Of {Ai}ie[ Zf
f=Y Ajeif
el

holds for all f € H.

It is easy to show that if {©;};cr is a dual g-frame of {A;};cr, then
{A;}ier will be a dual g-frame of {©;}ier.

Let {A; € B(H,H;) : i € I} be a g-frame for H with g-frame operator
S. Then (2.4) shows that {A;S7'},cr is a dual g-frame of {A; }ier.
{A;S71}icr is called canonical dual g-frame of { A; }icy.

Proposition 4.2. Let {©; € B(H,H;) : ¢ € I} be a dual of g-frame
{Ai € B(H,H;) :i €I} for H. Then

D A =043 =D 1IA3 + D TIIeslf3 — 2dim A

el iel i€l

Proof. Suppose that {e,}}; is an orthonormal basis for H. We have

D I =6l =) T lI(As = B)en||?

el i€l n
=3 ) (A — @i)en, (Ai — ©))en)
n el
:ZZ [Aien? + Z Z 1©ienll” — Z Z<A;@iem €n)
i€l n i€l n n el
4 Zz<en,A:91€n>
n g€l
=D 1A+ l18ill3 — 2dim A
iel el

Corollary 4.3. Let {©; € B(H,H;) :i € I} and {A; € B(H,H;) : i €
I} be two Parseval g-frames for H. If {©;}ier is a dual of {A;}ier, then
AN, =0; foralliel.
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Proof. Since H is a finite dimensional and {A;};c; is a Parseval g-frame
for H, we have Y,/ [|As]|3 = dim M (see [11]). Hence the result follows
by Proposition 4.2.

Corollary 4.4. Let {©; € B(H,H;) : i € I} be a dual of {A; €
B(H,H;) : i € I} for H, where {©;}icr and {A;}icr are two tight g-
frames for H with bounds Bg and By, respectively. Then Bg + B = 2
if and only if A; = ©; for alli € 1.

Proof. Since Y, ;||Ai[|3 = BadimH and Y, |0:]|3 = Bo dimH, the
result follows from Proposition 4.2.

Remark 4.5. Let {©;, € B(H,H;):i € 1} and {A; € B(H,H;) : i € I}
be two g-frames for H with the associated synthesis. operators Ty and
To, respectively. Using the proof of Proposition 4.2, we. get

Yol 03 =D A3+ D 11043 — tr(TeTh) = tx(TaTE).

iel iel el

Let {A; € B(H,H;) : i € I} be a g-frame for H with the frame
operator S. It is clear that {A;S% !} is a g-frame for H with the
property > i; ArA; 571 = Sof for all f &€ H. For a = 0 we get the
canonical dual g-frame of {A;};c;.

Definition 4.6. Let {A; € B(H;H;) : i € I} be a g-frame for H with
g-frame operator Sy. A g-frame {©; € B(H,H;) : i € I} is called a
a-dual of {Aitier if Y ic; Nj©; = S{ f for all f € H.

It is clear that {AiSX‘*l}ieI is a a-dual of {A;};c;. The canonical
dual g-frame of {A;};c; has some interesting properties between other
dual g-frames of {A;}ier (see [12]). We will show that the a-dual frame
{AiSﬁfl}ie 7 has some minimal properties between other a-dual frames

of {Ai}ier.

Proposition 4.7. Let {©; € B(H,H;) : i € I} be a a-dual of {A; €
B(H,H;) :i € I} with g-frame operator Sg. Then

20-1 1
(4.1) Z [ASYTHIE =S, 2 H; <185 = Z 16: 13-

i€l iel
The equality in (4.1) holds if and only if ©; = AiSX‘_l for alli e I.
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Proof. Let {e,}M , be an orthonormal basis for H. We have

DOIASTTHE =)0 (AiSy  en, AiSy )

el el n

= (AFA S e, S te,)
DD (ATASE en, Sy

i€l n

2a—1 2a—1 2a—1

=SS, en Sy 7 en) = |5,

I5

D65 =" (0;0ien,en) = > (Soen, en) = 152113

el i€l n n

On the other hand
(4.2)
SOIASTTHE =)0 Ay en, MiSY en)

el i€l n

= Z<Sgen, S te,)

n
=3 (A OuenSy en)

n €I
=3 (Oien, NS )
n g€l % %
< (zznmszlennz) (zzn@ienu?) |
n el n el

S0 ier HAiSX‘l\I% < >ier [16i]13 and we obtain (4.1). If 3., HAiSX_l“% =
> ierll©ill3, then it follows from (4.2) that

D N (Oien, AiSY len) =D > " |(Oien, AiSy en)|

n el n el

- (zz umsx—lenw); (zz u@ienu?) g

n el n el
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So (Bien, AiSY ten) > 0 and (Oje,, AiSY ten) = [Qienl|[|A:SF en|
for all ¢,n. Therefore there exist A, A; , > 0 such that

NS ren = Nin®ien,  [[ASY enll = M|Ojen||

for all ¢,n. Hence \;,, = A and we conclude that AiSX‘_len = A\O,e,
for all i,n. Since >, [|A:SY |2 = X/ 116i13, we get A = 1 and so
AiSX‘_len = 0O,e, for all i,n.

Corollary 4.8. Let {A; € B(H,H;) : i € I} be a g-frame for H with
g-frame operator Sp. Then

D I = A

i€l

= min { Z |Ai — ©4]13: {©; € B(H,H,;) =i € I} is aa-dual of {A;}ier }
el

Moreover, if {O;}icr is a a-dual of {Ai}icr, then'y o/ ||Ai — O4]]3 =

Sier 1A — AiSYTHIR if and only if ©; =Sy for alli € 1.

Proof. Since
DD (Oien, Nien) =D (Sien,en) = > (AiSy en, Aien),
el n n i€l n
by Proposition 4.7 we have
DM = 6ill5 =)0 (Meal® + |Oien]* — 2R(Oien, Aien))
iel i€l n
2D D0 (Menl® + 4S5 enll — 2R(A:SR ™ en, Aien))

i€l N

=3 A = ASy Venll?
i€l n

= A — AT
el

Therefore the above inequality implies that Y, [Ai—65]13 = >,/ |Ai—
Az’Sf\th% if and only if > 0/ >, ”AiSXAGnHQ = Diel 2on 1©ien]|?.
Hence by Proposition 4.7, 3,/ [[Ai — 0513 = Y ic/ 1A — NS if
and only if ©; = AiSﬁ_l for all i € I.
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Corollary 4.9. Let {©; € B(H,H;) : ¢ € I} is a dual of g-frame
{A; € B(H,H;) :i €1} for H. Then

1 _1
(4.3) D lI6ill3 = 15313 > 115, %13 = > 185313
i€l i€l

where Sy and Se are the g-frame operators of {A;}icr and {©;}icr,
respectively. Moreover, the following are equivalent

(1) Yicr 166ll3 = Xicr 1053135
(i1) ©; = NiSy* for alli € I;
(iii) Se = Sy

Proposition 4.10. Let {A; € B(H,H;) : i € I} be a g-frame and
{©; € B(H,H;) :i € I} be a Parseval g-frame for H. Then
1
(i) tr(TeT}) + tr(TATg) < 2[|S;[3;
1

1 _1
(ii) tr(TeTh) + tr(TaTg) = 2||Si I3 if and only'if ©; = A;S, 2 for
alli e 1.

Proof. By Remark 4.5, tr(TeT}) + tr(TATg) is real. Since {O;}ier
is a Parseval g-frame for H, we have | Tg|| = ||T]| = 1. Let us denote
the trace-class norm by |.|[;. By asimple computation we get || T3[|1 =

1
|S£]3. By [8; Theorems 2.4.14-and 2.4:16], we get
1
(T T, (T To)| < 5513,

Therefore (i) is_proved. To prove (ii), let tr(TgT}) + tr(TATg) =
1

1 1
2[|S1]13. It follows from (i) that tr(TeT3) = ||Si||3. Hence we get the
result by Corollary 2.6 of [11].

Corollary 4.11. Let {A; € B(H,H;) : i € I} is a g-frame for H with
g-frame operator Sn. Then

1
max {Rtr(TeT}) : {6; € B(H,H;) :i € I} is a Parseval g-frame for H} = ||S{|3.
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