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ON THE ISHIKAWA ITERATION PROCESS IN CAT(0)
SPACES

B. PANYANAK∗ AND T. LAOKUL

Communicated by Saeid Azam

Abstract. In this paper, several ∆ and strong convergence the-
orems are established for the Ishikawa iterations for nonexpansive
mappings in the framework of CAT(0) spaces. Our results extend
and improve the corresponding results given by many authors.

1. Introduction

Let C be a nonempty bounded closed convex subset of a Banach space
X. A mapping T : C → C is said to be nonexpansive, if

‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ C.

It has been shown that if X is uniformly convex then every nonexpansive
mapping T : C → C has a fixed point (see Browder [2], cf. also Kirk
[17]). In 1974, Ishikawa [16] introduced a new iteration procedure for
approximating fixed points of pseudo-contractive compact mappings in
Hilbert spaces as follows.

(IS) x1 ∈ C, xn+1 = tnT [snTxn + (1− sn)xn] + (1− tn)xn, n ≥ 1,
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where {tn} and {sn} are sequences in [0, 1] satisfying certain conditions.
Note that the normal Mann iteration procedure [26],

(M) x1 ∈ C, xn+1 = tnTxn + (1− tn)xn, n ≥ 1,

where {tn} is a sequence in [0, 1], is a special case of the Ishikawa one.
In 1993, Tan and Xu [33] showed weak and strong convergence of the
Ishikawa iterations for nonexpansive mappings in uniformly convex Ba-
nach spaces. Precisely, they proved the following result.

Theorem 1.1. Let X be a uniformly convex Banach space which sat-
isfies Opial’s condition or whose norm is Frechet differentiable, C be a
bounded closed convex subset of X and T : C → C be a nonexpansive
mapping. If {xn} is the iterative scheme defined by (IS) with condi-
tions (T1)

∑∞
n=1 tn(1 − tn) = ∞ (T2)

∑∞
n=1(1 − tn)sn < ∞, and (T3)

lim supn sn < 1, then {xn} converges weakly to a fixed point of T.

In 2002, Zhou et. al. [35] generalized Theorem 1.1 by removing
condition (T3) and weaken condition (T2) to (Z2) as the following result.

Theorem 1.2. Let X be as in Theorem 1.1, C be a closed convex (not
necessary bounded) subset of X and T : C → C be a nonexpansive
mapping with nonempty fixed point set F (T ). If {xn} is the iterative
scheme defined by (IS) with conditions (Z1)

∑∞
n=1 tn(1− tn) = ∞ (Z2)∑∞

n=1 τn < ∞ where τn = min
{
tn, 1−tn

}
sn, then {xn} converges weakly

to a fixed point of T.

In 2004, Zhou [34] improved Theorem 1.2 by weaken condition (Z2)
to

∑∞
n=1 tn(1− tn)sn < ∞ as the following result.

Theorem 1.3. Let X, C, T be as in Theorem 1.2. If {xn} is the iterative
scheme defined by (IS) with conditions (1)

∑∞
n=1 tn(1 − tn) = ∞ (2)∑∞

n=1 tn(1 − tn)sn < ∞, then {xn} converges weakly to a fixed point of
T.

The purpose of this paper is to study the Ishikawa iteration process
in the framework of CAT(0) spaces and give analogs of some results in
[34], specially to Theorem 1.3, in this setting. It is worth mentioning
that our results also extend some results in [11].
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On the Ishikawa iteration process in CAT(0) spaces 187

2. CAT(0) spaces

A metric space X is a CAT(0) space, if it is geodesically connected,
and if every geodesic triangle in X is at least as ‘thin’ as its compari-
son triangle in the Euclidean plane. It is well-known that any complete,
simply connected Riemannian manifold having nonpositive sectional cur-
vature is a CAT(0) space. Other examples include Pre-Hilbert spaces,
R−trees (see [1]), Euclidean buildings (see [3]), the complex Hilbert
ball with a hyperbolic metric (see [14]), and many others. For a thor-
ough discussion of these spaces and of the fundamental role they play
in geometry see Bridson and Haefliger [1]. Burago et. al. [5] contains a
somewhat more elementary treatment, and Gromov [15] a deeper study.

Fixed point theory in a CAT(0) space was first studied by Kirk (see
[18] and [19]). He showed that every nonexpansive (single-valued) map-
ping defined on a bounded closed convex subset of a complete CAT(0)
space always has a fixed point. Since then the fixed point theory for
single-valued and multivalued mappings in CAT(0) spaces has been
rapidly developed and many of papers have appeared (see e. g., [20,
8, 6, 10, 13, 7, 9, 11, 32, 12, 22, 23, 31, 27, 28, 29]). It is worth men-
tioning that the results in CAT(0) spaces can be applied to any CAT(κ)
space with κ ≤ 0 since any CAT(κ) space is a CAT(κ′) space for every
κ′ ≥ κ (see [1], p. 165).

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X
(or, more briefly, a geodesic from x to y) is a map c from a closed interval
[0, l] ⊂ R to X such that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t − t′|,
for all t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l. The
image α of c is called a geodesic (or metric) segment joining x and y.
When it is unique this geodesic segment is denoted by [x, y]. The space
(X, d) is said to be a geodesic space, if every two points of X are joined
by a geodesic, and X is said to be uniquely geodesic, if there is exactly
one geodesic joining x and y, for each x, y ∈ X. A subset Y ⊆ X is said
to be convex, if Y includes every geodesic segment joining any two of its
points.

A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) con-
sists of three points x1, x2, x3 in X (the vertices of 4) and a geodesic
segment between each pair of vertices (the edges of 4). A compari-
son triangle for the geodesic triangle 4(x1, x2, x3) in (X, d) is a trian-
gle 4(x1, x2, x3) := 4(x̄1, x̄2, x̄3) in the Euclidean plane E2 such that
dE2 (x̄i, x̄j) = d(xi, xj), for i, j ∈ {1, 2, 3} .
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A geodesic space is said to be a CAT(0) space, if all geodesic triangles
satisfy the following comparison axiom.

CAT(0) : Let4 be a geodesic triangle in X and let4 be a comparison
triangle for 4. Then, 4 is said to satisfy the CAT(0) inequality, if for
all x, y ∈ 4 and all comparison points x̄, ȳ ∈ 4,

d(x, y) ≤ dE2(x̄, ȳ).

Let x, y ∈ X, by Lemma 2.1(iv) of [11], for each t ∈ [0, 1], there exists
a unique point z ∈ [x, y] such that

(2.1) d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y).

From now on, we will use the notation (1− t)x⊕ ty for the unique point
z satisfying (2.1). By using this notation Dhompongsa and Panyanak
[11] obtained the following lemma which will be used frequently in the
proof of our results.

Lemma 2.1. Let X be a CAT(0) space. Then,

(2.2) d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z),

for all x, y, z ∈ X and t ∈ [0, 1].

The following lemma is also needed for proving our main theorem
which can be found in [19].

Lemma 2.2. Let p, x, y be points of a CAT(0) space X, and let α ∈ [0, 1].
Then,

d((1− α)p⊕ αx, (1− α)p⊕ αy) ≤ αd(x, y).

If x, y1, y2 are points in a CAT(0) space and if y0 = 1
2y1 ⊕ 1

2y2, then
the CAT(0) inequality implies

(CN) d(x, y0)2 ≤ 1
2d(x, y1)2 + 1

2d(x, y2)2 − 1
4d(y1, y2)2.

This is the (CN) inequality of Bruhat and Tits [4]. In fact, (cf. [1], p.
163), a geodesic space is a CAT(0) space if and only if it satisfies (CN).

The following lemma is a generalization of the (CN) inequality which
can be found in [11].

Lemma 2.3. Let (X, d) be a CAT(0) space. Then,

(2.3) d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2,

for all t ∈ [0, 1] and x, y, z ∈ X.
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On the Ishikawa iteration process in CAT(0) spaces 189

Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X,
we set

r (x, {xn}) = lim sup
n→∞

d (x, xn) .

The asymptotic radius r ({xn}) of {xn} is given by

r ({xn}) = inf {r (x, {xn}) : x ∈ X} ,

and the asymptotic center A ({xn}) of {xn} is the set

A ({xn}) = {x ∈ X : r (x, {xn}) = r ({xn})} .

It is known from Proposition 7 of [10] that in a CAT(0) space, A({xn})
consists of exactly one point.

We now give the definition of ∆−convergence.

Definition 2.4. ([21, 25]) A sequence {xn} in a CAT(0) space X is said
to ∆−converges to x ∈ X, if x is the unique asymptotic center of {un},
for every subsequence {un} of {xn}. In this case we write ∆−limn xn = x
and call x the ∆−limit of {xn}.

The notion of ∆−convergence was first studied in a general metric
space by Lim [25]. Kirk and Panyanak [21] specialized Lim’s concept to
CAT(0) spaces and showed that many Banach space results involving
weak convergence have precise analogues in this setting. Since then
the notion of ∆−convergence has been widely studied and a number of
papers have appeared (see e. g., [11, 12, 22, 23, 27, 28]).

Definition 2.5. Let C be a nonempty subset of a CAT(0) space X and
T : C → X be a mapping. T is called nonexpansive, if for each x, y ∈ C,

d(Tx, Ty) ≤ d(x, y).

A point x ∈ C is called a fixed point of T , if x = Tx. We denote with
F (T ) the set of fixed points of T.

For arbitrary x1 ∈ C, the Ishikawa iteration scheme {xn} is defined
by

(ISCAT)

{
yn = snTxn ⊕ (1− sn)xn

xn+1 = tnTyn ⊕ (1− tn)xn, n ≥ 1,

where {sn} and {tn} are sequences in [0, 1].
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We now collect some elementary facts about CAT(0) spaces which
will be used in the proofs of our main results.

Lemma 2.6. ([21]) Every bounded sequence in a complete CAT(0) space
always has a ∆−convergent subsequence.

Lemma 2.7. ([9]) If C is a closed convex subset of a complete CAT(0)
space and if {xn} is a bounded sequence in C, then the asymptotic center
of {xn} is in C.

Lemma 2.8. ([21]) Let C be a closed convex subset of a complete CAT(0)
space X, and let T : C → X be a nonexpansive mapping. Then, the con-
ditions {xn} ∆−converges to x and d(xn, Txn) → 0, imply x ∈ C and
Tx = x.

The following lemma is also needed for proving our main results which
can be found in [34, 35].

Lemma 2.9. Let {an} and {bn} be two sequences of nonnegative num-
bers such that

(2.4) an+1 ≤ (1 + bn)an for all n ≥ 1.

If
∑∞

n=1 bn converges, then limn→∞ an exists. In particular, if there is a
subsequence of {an} which converges to 0, then limn→∞ an = 0.

3. Main results

Lemma 3.1. Let C be a nonempty convex subset of a complete CAT(0)
space X and T : C → C be a nonexpansive mapping. If {xn} is defined
by (ISCAT), then

d(Txn+1, xn+1) ≤ [1 + 4tn(1− tn)sn]d(Txn, xn) for all n ≥ 1.

Proof. By Lemma 2.2 and the nonexpansiveness of T , we have

d (Txn+1, xn+1) ≤ d (Txn+1, T (tnTxn ⊕ (1− tn)xn))

+ d (T (tnTxn ⊕ (1− tn)xn), Txn)

+ d (Txn, tnTxn ⊕ (1− tn)xn)

+ d (tnTxn ⊕ (1− tn)xn, xn+1)

≤ 2d (tnTxn ⊕ (1− tn)xn, xn+1)

+ d (tnTxn ⊕ (1− tn)xn, xn)
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+ (1− tn)d(Txn, xn)

≤ 2tnd (Txn, T yn) + d(Txn, xn)

≤ 2tnd(xn, yn) + d(Txn, xn)

≤ (1 + 2tnsn)d(Txn, xn)

and hence,

(3.1) (1− tn)d (Txn+1, xn+1) ≤ [1− tn + 2tn(1− tn)sn]d(Txn, xn).

On the other hand,

d (Txn+1, xn+1) ≤ d (Txn+1, T (tnTyn ⊕ (1− tn)yn))

+ d (T (tnTyn ⊕ (1− tn)yn), T yn)

+ d (Tyn, tnTyn ⊕ (1− tn)yn)

+ d (tnTyn ⊕ (1− tn)yn, xn+1)

≤ 2d (tnTyn ⊕ (1− tn)yn, xn+1)

+ d (tnTyn ⊕ (1− tn)yn, yn)

+ (1− tn)d(Tyn, yn)

≤ 2(1− tn)d(xn, yn) + d(Tyn, yn)

≤ 2(1− tn)d(xn, yn) + d(Tyn, Txn) + d(Txn, yn)

≤ 2(1− tn)d(xn, yn) + d(yn, xn) + d(Txn, yn)

≤ 2(1− tn)snd(xn, Txn)

+ snd(Txn, xn) + (1− sn)d(Txn, xn)

≤ (1 + 2(1− tn)sn)d(Txn, xn).

Thus,

(3.2) tnd (Txn+1, xn+1) ≤ [tn + 2tn(1− tn)sn]d(Txn, xn).

Combining (3.1) with (3.2), we can obtain the desired result. �

Lemma 3.2. Let C be a nonempty closed convex (not necessarily bounded)
subset of a complete CAT(0) space X and T : C → C be a nonexpan-
sive mapping with nonempty fixed point set F (T ) and let {xn} be de-
fined by (ISCAT) with the restrictions that

∑∞
n=1 tn(1 − tn) = ∞ and∑∞

n=1 tn(1− tn)sn < ∞. Then,

lim
n→∞

d(Txn, xn) = 0.
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Proof. It follows from Lemmas 2.9 and 3.1 that limn d(Txn, xn) exists.
Fix p ∈ F (T ), by Lemma 2.3, we have

d(xn+1, p)2 = d(tnTyn ⊕ (1− tn)xn, p)2

≤ tnd(Tyn, p)2 + (1− tn)d(xn, p)2 − tn(1− tn)d(Tyn, xn)2

≤ tnd(yn, p)2 + (1− tn)d(xn, p)2 − tn(1− tn)d(Tyn, xn)2.

That is,

(3.3) d(xn+1, p)2 ≤ tnd(yn, p)2+(1−tn)d(xn, p)2−tn(1−tn)d(Tyn, xn)2.

On the other hand,

d(yn, p)2 = d(snTxn ⊕ (1− sn)xn, p)2

≤ snd(Txn, p)2 + (1− sn)d(xn, p)2 − sn(1− sn)d(Txn, xn)2

≤ snd(xn, p)2 + (1− sn)d(xn, p)2 − sn(1− sn)d(Txn, xn)2

= d(xn, p)2 − sn(1− sn)d(Txn, xn)2

≤ d(xn, p)2.

Thus,

(3.4) d(yn, p)2 ≤ d(xn, p)2.

From (3.3) and (3.4), we get

(3.5) d(xn+1, p)2 ≤ d(xn, p)2 − tn(1− tn)d(Tyn, xn)2.

This implies

(3.6)
∞∑

n=1

tn(1− tn)d(Tyn, xn)2 ≤ d(x1, p)2 < ∞.

Since
∑∞

n=1 tn(1− tn)sn < ∞, combining this with (3.6) we have
∞∑

n=1

tn(1− tn)
[
d(Tyn, xn)2 + sn

]
< ∞.

Since
∑∞

n=1 tn(1− tn) = ∞, we have

lim inf
n→∞

[
d(Tyn, xn)2 + sn

]
= 0.

There exists a subsequence {nk} of {n} such that

(3.7) lim
k→∞

d(Tynk
, xnk

) = 0 and lim
k→∞

snk
= 0.
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On the other hand,

d(Txnk
, xnk

) ≤ d(Txnk
, T ynk

) + d(Tynk
, xnk

)

≤ d(xnk
, ynk

) + d(Tynk
, xnk

)

= snk
d(Txnk

, xnk
) + d(Tynk

, xnk
),

that is,

(3.8) (1− snk
)d(Txnk

, xnk
) ≤ d(Tynk

, xnk
).

By (3.7) and (3.8), we have

lim
k→∞

d(Txnk
, xnk

) = 0.

But, since limn d(Txn, xn) exists, we have limn d(Txn, xn) = 0 as de-
sired. �

Now, we are ready to prove our main result.

Theorem 3.3. Let C be a nonempty closed convex subset of a com-
plete CAT(0) space X and T : C → C be a nonexpansive mapping with
nonempty fixed point set F (T ) and let {xn} be defined by (ISCAT) with
the restrictions that

∑∞
n=1 tn(1− tn) = ∞ and

∑∞
n=1 tn(1− tn)sn < ∞.

Then, {xn} ∆−converges to a fixed point of T.

Proof. By Lemma 3.2, lim
n→∞

d(Txn, xn) = 0. We now let ωw(xn) :=⋃
A({un}) where the union is taken over all subsequences {un} of {xn}.

We claim that ωw(xn) ⊂ F (T ). Let u ∈ ωw(xn), then there exists a
subsequence {un} of {xn} such that A({un}) = {u}. By Lemmas 2.6
and 2.7 there exists a subsequence {vn} of {un} such that ∆− limn vn =
v ∈ C. Since limn d(Tvn, vn) = 0, then v ∈ F (T ) by Lemma 2.8 and
limn d(xn, v) exists by (3.5). We claim that u = v. Suppose not, by the
uniqueness of asymptotic centers,

lim sup
n

d(vn, v) < lim sup
n

d(vn, u)

≤ lim sup
n

d(un, u)

< lim sup
n

d(un, v)

= lim sup
n

d(xn, v)

= lim sup
n

d(vn, v)
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a contradiction, and hence u = v ∈ F (T ). To show that {xn} ∆−
converges to a fixed point of T, it suffices to show that ωw(xn) consists
of exactly one point. Let {un} be a subsequence of {xn}. By Lemmas 2.6
and 2.7 there exists a subsequence {vn} of {un} such that ∆− limn vn =
v ∈ C. Let A({un}) = {u} and A({xn}) = {x}. We have seen that
u = v and v ∈ F (T ). We can complete the proof by showing that x = v.
Suppose not, since {d(xn, v)} is convergent, then by the uniqueness of
asymptotic centers,

lim sup
n

d(vn, v) < lim sup
n

d(vn, x)

≤ lim sup
n

d(xn, x)

< lim sup
n

d(xn, v)

= lim sup
n

d(vn, v)

a contradiction, and hence the conclusion follows. �

Finally, we give a strong convergence theorem of the Ishikawa iteration
which is an analog of Theorem 2.4 of [34]. Recall that a mapping T :
C → C is said to satisfy Condition I [30], if there exists a nondecreasing
function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0, for all r > 0
such that d(x, Tx) ≥ f(d(x, F (T ))), for all x ∈ C, where d(x, F (T )) =
infz∈F (T ) d(x, z).

Theorem 3.4. Let X, C, T and {xn} be as in Theorem 3.3. Suppose
that T satisfies Condition I. Then, {xn} converges strongly to a fixed
point of T.

Proof. By Condition I, we have

d(xn, Txn) ≥ f (d(xn, F (T ))) for all n ≥ 1.

It follows from (3.5) that the sequence {d(xn, F (T ))} is decreasing, and
hence limn d(xn, F (T )) = 0 by Lemma 3.2. We can prove, by using a
standard argument, that {xn} converges strongly to a fixed point of T.

�
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