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CONNECTIONS BETWEEN C(X) AND C(Y ), WHERE Y
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Abstract. In this paper, we introduce a method by which we
can find a close connection between the set of prime z-ideals of
C(X) and the same of C(Y ), for some special subset Y of X. For
instance, if Y = Coz(f) for some f ∈ C(X), then there exists a one-
to-one correspondence between the set of prime z-ideals of C(Y )
and the set of prime z-ideals of C(X) not containing f . Moreover,
considering these relations, we obtain some new characterizations
of classical concepts in the context of C(X). For example, X is an
F -space if and only if the extension Φ : βY → βX of the identity
map ı : Y → X is one-to-one, for each z-embedded subspace Y of
X. Supposing p is a non-isolated Gδ-point in X and Y = X \ {p},
we prove that Mp(X) contains no non-trivial maximal z-ideal if
and only if p ∈ βX is a quasi P -point if and only if each point of
βY \ Y is a P -point with respect to Y .

1. Introduction

In this article, any topological space X is Tychonoff and any ideal
of C(X) (i.e., the ring of all real valued continuous functions on X) is
proper. For any f ∈ C(X), we denote f−1{0} and X \ f−1{0} by Z(f)
and Coz(f), respectively. Supposing A ⊆ C(X) and B ⊆ Z(X), we
define Z(A) = {Z(f) : f ∈ A} and Z−1(B) = {f ∈ C(X) : Z(f) ∈ B}.

MSC(2000): Primary: 54C40; Secondary: 54C45, 54G05, 54G10.

Keywords: z-filter, prime z-ideal, prime z◦-ideal, P -space, quasi P -space, F -space, CC-space,

Gδ-point.

Received: 29 November 2009, Accepted: 3 June 2010.

∗Corresponding author

c© 2011 Iranian Mathematical Society.
109

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

110 Aliabad and Badie

Suppose p ∈ βX, then by Mp(X) and Op(X) we mean the sets {f ∈
C(X) : p ∈ clβXZ(f)} and {f ∈ C(X) : p ∈ intβXclβXZ(f)}, respec-
tively. For any p ∈ βX, we denote the set Z(Mp(X)) = {Z(f) : f ∈
Mp(X)} (Z(Op(X)) = {Z(f) : f ∈ Op(X)}) by Ap(X) (Op(X)). An
ideal I in C(X) is called a z-ideal (z◦-ideal), if whenever Z(f) ⊆ Z(g)(
intXZ(f) ⊆ intXZ(g)) and f ∈ I, then g ∈ I. Clearly, a z◦-ideal is a
z-ideal; every minimal prime ideal is a z◦-ideal and every maximal ideal,
a z-ideal.

A point p ∈ βX is called P -point (F -point) with respect to X, if
Op(X) is a maximal ideal (prime ideal). A space X is called a P -space
(F -space), if every p ∈ βX is a P -point (F -point) with respect to X.
Also, X is called a quasi P -space, if every prime z-ideal of C(X) is
maximal or minimal. The concept of quasi P -space was first defined in
[1] as MZD-space and later considered as quasi P -space in [9].

A space X is called a CC-space, if every prime z◦-ideal of C(X) is
minimal. The root of this concept can be traced in [3]. However, this
concept was first defined in [1] as MZ◦D-space. Later, it was explained
in [11] as Cozero complemented space, in [4] as m-space and in [15] as
z-good space, respectively.

A subset Y of X is called z-embedded, if for every Z ′ ∈ Z(Y ) there
exists a Z ∈ Z(X) such that Z ∩ Y = Z ′. This means that Z(Y ) =
{Z ∩ Y : Z ∈ Z(X)}. Every Lindelöf subspace and cozero subset of X
is z-embedded, see [5] for more information. The reader is referred to
[8] for undefined terms and notations.

Definition 1.1. Let F be a z-filter on a topological space X. We call F
an invariant interior z-filter (briefly I.I. z-filter), if whenever intXZ1 ⊆
intXZ2 and Z1 ∈ F , then Z2 ∈ F .

(a) If F is an I.I. z-filter, then Z−1(F) is a z◦-ideal.
(b) If I is a z◦-ideal, then Z(I) is an I.I. z-filter.
(c) Let I be a z-ideal, then I is a z◦-ideal if and only if Z(I) is an

I.I. z-filter.

Definition 1.2. Let X be a topological space. We denote by F(X) the
set of all z-filters on X. Let Y be a subspace of X and F ∈ F(X). We
call F a ZY -filter whenever for each Z1, Z2 ∈ Z(X), if Z1 ∩ Y ⊆ Z2 ∩ Y
and Z1 ∈ F , then Z2 ∈ F . We denote the set of all ZY -filter on X by
FY (X).

We can easily verify that if Y is subspace of X and FY (X) = F(X),
then Y is z-dense inX (i.e., every zero set ofX intersects Y nontrivially).
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Let Y ⊆ X and ı be the identity map from Y to X. Clearly, ı has
a continuous extension from βY to βX. It is obvious that Φ(βY ) =
clβXY and Φ(βY \ Y ) = clβXY \ Y . Define γ : F(Y ) → FY (X) with
γ(G) = {Z ∈ Z(X) : Z ∩ Y ∈ G} and λ : FY (X) → F(Y ) such that
λ(F) is the z-filter on Y generated by {Z ∩ Y : Z ∈ F}. Clearly,
ψ = Z−1γZ is a map from the set of all z-ideals of C(Y ) to the same of
C(X). Throughout the paper we use Φ, γ, λ and ψ with the meanings
that have been mentioned previously.

In the main theorem of his paper [13] Kohls considered some connec-
tions between C(X) and C(Y ), where Y = X\{p} and p is a non-isolated
Gδ-point of X. In this paper, we try to extend this point of view. In
Section 2, we explain the primary properties of functions Φ, γ, λ and ψ,
for arbitrary subspaces Y of X. In Section 3, we use those properties to
show that γ (λ) is one-to-one (onto) if and only if the subspace Y of X
is z-embedded. In the same section, we will observe that there exists a
close connection between (prime) z-ideals of C(Y ) and (prime) z-ideals
of C(X), for any z-embedded subset Y of X. In Section 4, we will show
that if f ∈ C(X) and Y = Coz(f), then there exists a one-to-one corre-
spondence between prime z-ideals of C(Y ) and prime z-ideals of C(X)
not containing f . In this section, we obtain some useful results as the
applications. For instance, we show that the main theorem of Kohls in
[13, 2.3] is not only necessary but also sufficient, and consider some ap-
plications of those relations mentioned earlier to determine non-trivial
maximal prime z-ideals; some spaces and points such as quasi P -space
(point), CC-space (point), P -space (point) and F -space (point). In Sec-
tion 5, we draw our attention to z-embedded zero subsets Y of X and
considered connections between C(X) and C(Y ).

2. Arbitrary subsets of X

In the following lemma, we explain primary properties of functions γ
and λ.

Lemma 2.1. Let Y be a subspace of X. Then,

(a) λγ(G) ⊆ G, for each G ∈ F(Y );
(b) γλ(F) = F , for each F ∈ FY (X);
(c) For each G1,G2 ∈ F(Y ) If G1 ⊆ G2, then γ(G1) ⊆ γ(G2);
(d) λ(F1) ⊆ λ(F2) if and only if F1 ⊆ F2;
(e) λ is one-to-one and γ is onto;
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(f) For each z-filter P ∈ FY (X), if λ(P) is prime, then P is also
prime;

(g) γ(Q) is prime, for each prime z-filter Q on Y ;
(h) γ(

⋂
α∈A Gα) =

⋂
α∈A γ(Gα), for each family {Gα}α∈A of z-filters

on Y ;
(i) If Y is open, then γ(G) is an I.I. z-filter, for each I.I. z-filter G

on Y .

Proof. (a). If Z ′ ∈ λγ(G), then there exist Z ∈ γ(G) such that Z∩Y ⊆ Z ′

so Z ∩ Y ∈ G and therefore Z ′ ∈ G.
(b). If Z ∈ γλ(F), then Z ∩ Y ∈ λ(F), so there is Z ′ ∈ F such

that Z ′ ∩ Y ⊆ Z ∩ Y and hence Z ∈ F . Thus, γλ(F) ⊆ F . If Z ∈ F ,
then Z ∩ Y ∈ λ(F) and consequently Z ∈ γλ(F). Thus, γλ(F) ⊇ F .
Therefore, γλ(F) = F .

(c) is clear. (d) and (e) follows from (b) and (c).
(f). If Z1 ∪ Z2 ∈ P, then (Z1 ∩ Y ) ∪ (Z2 ∩ Y ) ∈ λ(P). Since λ(P)

is prime, without loss of generality, we can assume that Z1 ∩ Y ∈ λ(P).
Thus, there is Z ′ ∈ P such that Z ′ ∩ Y ⊆ Z1 ∩ Y , so Z1 ∈ P.

(g). If Z1∪Z2 ∈ γ(Q), then (Z1∩Y )∪(Z2∩Y ) ∈ Q and so Z1∩Y ∈ Q
or Z2 ∩ Y ∈ Q. Thus, Z1 ∈ γ(Q) or Z2 ∈ γ(Q).

(h). By (c), it is clear that γ(
⋂

α∈A Gα) ⊆
⋂

α∈A γ(Gα). If Z ∈⋂
α∈A γ(Gα), then

∀α ∈ A, Z ∈ γ(Gα) ⇒ ∀α ∈ A, Z ∩ Y ∈ Gα

⇒ Z ∩ Y ∈
⋂
α∈A

Gα ⇒ Z ∈ γ(
⋂
α∈A

Gα).

(i). Suppose Z◦1 ⊆ Z◦2 and Z1 ∈ γ(G). Then, Z1 ∩ Y ∈ G and
(Z1 ∩ Y )◦ = Z◦1 ∩ Y ⊆ Z◦2 ∩ Y = (Z2 ∩ Y )◦ and so Z2 ∩ Y ∈ G. Hence,
Z2 ∈ γ(G). �

An immediate conclusion of the above lemma is the fact that λ(F) is
the smallest z-filter G that γ(G) = F (i.e., λ(F) =

⋂
{G ∈ F(Y ) : γ(G) =

F}).

Proposition 2.2. Let Y be a subspace of X and suppose that for every
z-filter Q on Y , Q is prime whenever γ(Q) is prime. Then, γ is one-
to-one on the set of minimal prime z-filters.
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Proof. Suppose that γ(Q1) = γ(Q2), where Q1 and Q1 are minimal
prime z-filters on Y . Thus,

γ(Q1 ∩Q2) = γ(Q1) ∩ γ(Q2) = γ(Q1).

Since γ(Q1 ∩ Q2) is prime, Q1 ∩ Q2 is prime. It follows that Q1 ⊆ Q2

or Q2 ⊆ Q1 and consequently Q1 = Q2. �

Now, in the following theorem, we explain the relation between func-
tions γ and Φ. Note that if F is a z-filter on X, then one can easily
see that there exists a family {Hα}α∈A of prime z-filters on X such that
F = ∩α∈AHα. In fact, this is true more generally for P-filters, see [18]
for some information about P-filters.

Theorem 2.3. Let Y be a subspace of X. For each z-filter G in F(Y ),
if G → b, then γ(G) → Φ(b). So, for each prime z-filter Q in F(Y ),
γ(Q) → a if and only if Q converges to one point of Φ−1(a).

Proof. First, assume that G is a prime z-filter on Y converging to b.
Then, by Lemma 2.1, γ(G) is prime and so there exists a ∈ βX such
that γ(G) → a. We must show Φ(b) = a. Otherwise, there exist two
open sets U and V in βX such that

U ∩ V = ∅ , a ∈ U , Φ(b) ∈ V (1).

Since γ(G) → a, G → b and Φ is continuous there exist Z ∈ γ(G) such
that Z ⊆ U and Z ′ ∈ G such that Z ′ ⊆ Φ−1(V ). Thus,

Z ∩ Y ⊆ U ∩ Y , Z ∩ Y ∈ G (2)

and Z ′ ⊆ Φ−1(V ) ∩ Y = V ∩ Y. (3)
Then, by (1), (2) and (3), it follows that Z ′ ∩ (Z ∩ Y ) ∈ G and

Z ′ ∩ (Z ∩ Y ) ⊆ (V ∩ Y ) ∩ (U ∩ Y ) ⊆ V ∩ U = ∅
which is a contradiction. Now, Suppose that G ∈ F(Y ) and G → b.
There is a family {Qα}α∈A of prime z-filters on Y such that G =⋂

α∈AQα. Clearly, Qα → b, for every α ∈ A. So, by the previ-
ous γ(Qα) → Φ(b), for each α ∈ A. By Lemma 2.1, it follows that
γ(G) =

⋂
α∈A γ(Qα) → Φ(b). �

The converse of Theorem 2.3 is not true, for example, let b1, b2 ∈ βY
be distinct and Φ(b1) = Φ(b2) = a. Then, G = Ab1(Y ) ∩ Ab2(Y ) does
not converge whereas γ(G) = γ(Ab1(Y )) ∩ γ(Ab2(Y )) → a.

Theorem 2.4. Let Y be a subspace of X.
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(a) If for each Z ∈ Ap(X) we have Z∩Y 6= ∅, then there is a z-filter
G on Y such that γ(G) = Ap(X).

(b) Suppose that P ⊆ Ap(X) is a prime z-filter on X, Z ∩ Y 6= ∅,
for each Z ∈ P and there exists Z◦ 6∈ P such that Z◦ ⊇ X \ Y .
Then, there is a z-filter G on Y such that γ(G) = P.

Proof. (a). By part (e) of Lemma 2.1, it is enough to show that Ap(X) ∈
FY (X). Suppose Z1 ∩ Y ⊆ Z2 ∩ Y and Z1 ∈ Ap(X). If Z2 6∈ Ap(X),
then for some Z◦ ∈ Ap(X) we have Z◦ ∩ Z2 = ∅. Thus,

Z◦ ∩ Z1 ∩ Y ⊆ Z◦ ∩ Z2 ∩ Y = ∅

which is a contradiction. Hence, Ap(X) ∈ FY (X).
(b). Suppose Z1 ∩ Y ⊆ Z2 ∩ Y and Z1 ∈ P, then

Z1 ⊆ Z2 ∪ (X \ Y ) ⊆ Z2 ∪ Z◦.

Thus, Z2 ∪ Z◦ ∈ P and therefore Z2 ∈ P. Hence, P ∈ FY (X) and by
part (e) of Lemma 2.1, we are done. �

By the above discussion and using the map ψ, the following is imme-
diate.

Theorem 2.5. Suppose Y is subspace of X. Then,
(a) If I ⊆ J , then ψ(I) ⊆ ψ(J), for every pair of z-ideals I, J of

C(Y );
(b) ψ(Q) is a prime z-ideal in C(X), for each prime z-ideal Q of

C(Y );
(c) ψ(

⋂
α∈A Iα) =

⋂
α∈A ψ(Iα), for each family {Iα}α∈A of z-ideals

of C(Y );
(d) If Y is open, then ψ(I) is a z◦-ideal in C(X), for each z◦-ideal

of C(Y );
(e) Let I be a z-ideal of C(Y ). If I ⊇ Oq(Y ), then ψ(I) ⊇ OΦ(q)(X);
(f) If Q is a prime z-ideal of C(Y ), then ψ(Q) ⊇ Op(X) if and only

if Q ⊇ Oq(Y ), for some q ∈ Φ−1({p});
(g) If for each f ∈ Mp(X) we have f |Y is not unit, then there is a

z-ideal I of C(Y ) such that ψ(I) = Mp(X);
(h) Suppose that P ⊆Mp(X) is a prime z-ideal of C(X), f |Y is not

unit for each f ∈ P and there exists f◦ 6∈ P such that f◦(X\Y ) =
{0}. Then, there exists a z-ideal I of C(Y ) such that ψ(I) = P .
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3. z-embedded subsets of X

Theorem 3.1. Let Y be a subspace of X. The following statements are
equivalent.

(a) γ is one-to-one.
(b) λ is onto.
(c) Y is z-embedded.
(d) For each z-filters G1 and G2 on Y , if γ(G1) ⊆ γ(G2), then G1 ⊆

G2.
(e) For each prime z-filters Q1 and Q2 on Y , if γ(Q1) ⊆ γ(Q2),

then Q1 ⊆ Q2.
(f) For each prime z-filters Q1 and Q2 on Y , if γ(Q1) = γ(Q2),

then Q1 = Q2.
(g) λγ(Q) = Q, for each prime z-filter Q on Y .
(h) λγ(G) = G, for each z-filter G on Y (i.e., γ−1 = λ).

Proof. (a) ⇒ (b). It follows from part (b) of Lemma 2.1.
(b) ⇒ (c). Suppose that Z ′ ∈ Z(Y ). Consider the z-filter G on Y

generated by Z ′. Since λ is onto, there is a z-filter F on X such that
λ(F) = G, hence Z ∩ Y ⊆ Z ′, for some Z ∈ F . Since G is the z-filter
generated by Z ′ and Z∩Y ∈ G, it follows that Z ′ ⊆ Z∩Y , so Z∩Y = Z ′.
Therefore, Y is z-embedded.

(c) ⇒ (d). Let G1 and G2 be z-filters on Y and γ(G1) ⊆ γ(G2). Now,
suppose Z ′ ∈ G1. By hypothesis, there exists Z ∈ Z(X) such that
Z ′ = Z ∩ Y . Obviously Z ∈ γ(G1) and consequently Z ∈ γ(G2). Hence,
Z ′ ∈ G2.

(d) ⇒ (e) ⇒ (f). These implications are clear.
(f) ⇒ (g). By part (b) of Lemma 2.1, for every prime z-filter Q on

Y , we have γλγ(Q) = γ(Q) and so by (f), λγ(Q) = Q.
(g) ⇒ (h). Since every z-filter is an intersection of prime z-filters, it

is also easy to prove.
(h) ⇒ (a). This implications is evident. �

Corollary 3.2. Let Y be a z-embedded subspace of X. For each z-filter
Q, γ(Q) is prime if and only if Q is prime.

Proof. By part (g) of Lemma 2.1 it is sufficient to show that if γ(Q) is
prime, then Q is prime. The z-filter Q is an intersection of prime z-
filters {Qα}α∈A. Since γ(Q) = ∩α∈Aγ(Qα), and γ(Q) and {γ(Qα)}α∈A
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are prime, {γ(Qα)}α∈A forms a chain. Hence, , by part (d) of Theorem
3.1, {Qα}α∈A forms a chain and Q = ∩α∈AQα. Thus, Q is prime. �

As an immediate consequence of Corollary 3.2, it follows that every
z-embedded subset of an F -space is also an F -space. Although, this
fact can be obtained from [6, Proposition 4.5] in which Blair and Hager
showed that X is an F -space if and only if every z-embedded subset
is C∗-embedded. Now, we give a different proof for this and an extra
equivalent condition.

Theorem 3.3. The following statements are equivalent.
(a) X is an F -space.
(b) Φ is one-to-one for every z-embedded subspace Y of X.
(c) Every z-embedded subspace Y of X is C∗-embedded.

Proof. (a)⇒ (b). If Φ(q1) = p = Φ(q2), then by Theorem 2.3, γ(Aq1(X)∩
Aq2(X)) → p, so Op ⊆ γ(Aq1(X) ∩ Aq2(X)). Since X is an F -space, it
follows that γ(Aq1(X) ∩ Aq2(X)) is prime, since Y is z-embedded, we
conclude that Aq1(X) ∩ Aq2(X) is prime and hence q1 = q2.

(b) ⇒ (c). If Φ is one-to-one, then βY is homeomorphic with clβXY
and so βY is C∗-embedded in βX. Thus, Y is C∗-embedded in X.

(c)⇒ (a). If U is cozero subset of X, then U is z-embedded and hence
it is C∗-embedded in X. Therefore, by [8, 14.25], X is an F -space. �

Theorem 3.4. Let Y be a z-embedded subspace of X.
(a) If for each Z ∈ Ap(X) we have Z ∩ Y 6= ∅, then γ(Aq(Y )) =

Ap(X) in which Φ(q) = p.
(b) Suppose P ⊆ Ap(X) is a prime z-filter on X, Z∩Y 6= ∅ for each

Z ∈ P and there exists Z◦ 6∈ P such that Z◦ ⊇ X \Y , then there
is a prime z-filter Q on Y such that Q ⊆ Aq(Y ) and γ(Q) = P,
for some unique q ∈ Φ−1({p}).

Proof. (a). By Theorem 2.4, there is a z-filter G on Y such that γ(G) =
Ap(X). By Theorem 3.1, γ is one-to-one and thus G = Ap(Y ), for some
q ∈ βY . By Theorem 2.3, Φ(q) = p.

(b). By Theorem 2.4, there is a z-filter Q on Y such that γ(Q) = P.
By Corollary 3.2, Q is a prime z-filter on Y and by Theorem 2.3, there
exists q ∈ Φ−1{p} such that Q ⊆ Aq(Y ). Obviously, by Theorem 3.1, Q
is unique and so q is too. �
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4. Cozero subsets of X

In this section, supposing f ∈ C(X) and Y = X \ Z(f), we obtain
a one to one correspondence between the set of all (prime) z-ideals of
C(X) not containing f and the set of all (prime) z-ideals of C(Y ).

Theorem 4.1. Let Z◦ ∈ Z(X), Y = X \ Z◦. Then,
(a) FY (X) is the set of all z-filters on X not containing Z◦;
(b) γ is invertible; more precisely, γ−1 = λ;
(c) Suppose that p ∈ clβXY , γ is a one-to-one map from the set of

all prime z-filters on Y converging to one point of Φ−1({p}) onto
the set of all prime z-filters of FY (X) converging to p;

(d) If Q is a prime z-filter on Y and there exists a prime z-filter P
on X such that P ⊆ γ(Q), then Q belongs to the range of γ;

(e) A z-filter Q on Y is a z-ultrafilter, if and only if γ(Q) is maximal
in FY (X). Also, Q is a minimal prime z-filter if and only if γ(Q)
is too;

(f) Assuming p ∈ clβXY , γ is a one-to-one map from the set of all
prime I. I. z-filters on Y converging to one point of Φ−1({p})
onto the set of all prime I. I. z-filters of FY (X) converging to p.

Proof. (a). Suppose F ∈ FY (X), then clearly Z◦ /∈ F . Now, let F be a
z-filter on X such that Z◦ /∈ F and Z1 ∩ Y ⊆ Z2 ∩ Y in which Z1, Z2 ∈
Z(X) and Z1 ∈ F , we have to show Z2 ∈ F . Since every z-filter is an
intersection of prime z-filters, without loss of generality, we can suppose
that F is a prime z-filter. Clearly, by hypothesis, Z1∪Z◦ ⊆ Z2∪Z◦ and
Z1 ∪ Z◦ ∈ F . Hence, Z2 ∪ Z◦ ∈ F and consequently Z2 ∈ F .

(b) is obtained from Theorem 3.1, (c) is obtained from Theorem 2.3,
and (d) and (e) are evident. To prove (f), by part (i) of Lemma 2.1, it is
enough to show that if γ(G) is an I. I. z-filter, then G is an I. I. z-filter.
Suppose intY (Z1 ∩ Y ) ⊆ intY (Z2 ∩ Y ) and Z1 ∩ Y ∈ G. Since Y is open
in X and X \ Y = Z◦, then

intXZ1 ∩ Y = intY (Z1 ∩ Y ) ⊆ intY (Z2 ∩ Y ) = intXZ2 ∩ Y

⇒ intXZ1 ⊆ intX(Z2 ∪ Z◦) ⇒ Z2 ∪ Z◦ ∈ γ(G)

⇒ Z2 ∈ γ(G) ⇒ Z2 ∩ Y ∈ G.
�

The following is an immediate consequence of Theorems 2.5 and 4.1.
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Theorem 4.2. Suppose f ∈ C(X), Y = X \ Z(f). Then,
(a) The map ψ induces a one-to-one correspondence, invariant in-

clusion, between the set of prime z-ideals of C(Y ) and the set of
prime z-ideals of C(X) not containing f ;

(b) If P is a prime z-ideal of C(X) such that f 6∈ P and Op(X) ⊆
P , where p ∈ clβXY , then ψ−1(P ) is a prime z-ideal of C(Y )
containing Oq(Y ), where Φ(q) = p;

(c) P is a prime z◦-ideal in C(Y ) if and only if ψ(P ) is so in C(X);
(d) The set of all prime z-ideals of C(X) containing Op(X) and not

containing f is equal to⋃
Φ(q)=p

{ψ(Q) : Q is a prime ideal of C(Y ) and Oq(Y ) ⊆ Q}

and {ψ(Q) : Oq1(Y ) ⊆ Q} ∩ {ψ(Q) : Oq2(Y ) ⊆ Q} = ∅ if and
only if Φ(q1) 6= Φ(q2).

An Immediate conclusion of the above theorem is the following.

Corollary 4.3. Suppose that Y ⊆ X and p ∈ intXY . Then, there is a
one-to-one correspondence between (prime ) z-ideals of C(X) containing
Op(X) and (prime ) z-ideals of C(Y ) containing Op(Y ).

Proposition 4.4. Suppose f ∈ C(X), Y = X \ Z(f) and Q1, Q2 are
two prime z-ideals in C(Y ). Then,

(a) Q1 +Q2 = C(Y ) if and only if f ∈ ψ(Q1) + ψ(Q2);
(b) If Q1 +Q2 6= C(Y ), then ψ(Q1 +Q2) = ψ(Q1) + ψ(Q2).

Proof. (a). Assume that Q1 +Q2 = C(Y ) and f 6∈ ψ(Q1) + ψ(Q2). So,

Q1 +Q2 = ψ−1(ψ(Q1)) + ψ−1(ψ(Q2)) ⊆ ψ−1(ψ(Q1) + ψ(Q2)) 6= C(Y )

⇒ Q1 +Q2 6= C(Y )
which is a contradiction. Now, suppose f ∈ ψ(Q1) + ψ(Q2). So, there
exist h1 ∈ ψ(Q1) and h2 ∈ ψ(Q2) such that f = h1 + h2. Then, clearly
h1|Y ∈ Q1, h2|Y ∈ Q2 and Z(h1) ∩ Z(h2) ⊆ Z(f). Hence,

Z(h1|Y ) ∩ Z(h2|Y ) = Z(h1) ∩ Z(h2) ∩ Y ⊆ Z(f) ∩ Y = ∅
⇒ Z(h1|Y ) ∩ Z(h2|Y ) = ∅ ⇒ P +Q = C(Y ).

(b). Suppose that Q1 + Q2 6= C(Y ). It is enough to prove that
ψ(Q1 + Q2) ⊆ ψ(Q1) + ψ(Q2). If g ∈ ψ(Q1 + Q2), then Z(g) ∩ Y ∈
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Z(Q1 +Q2) and consequently there exist h1 ∈ Q1 and h2 ∈ Q2 so that
Z(h1) ∩ Z(h2) ⊆ Z(h1 + h2) = Z(g) ∩ Y . Without loss of generality,
there exist g1 ∈ ψ(Q1) and g2 ∈ ψ(Q2) such that g1, g2 are nonnegative,
Z(g1) ∩ Y = Z(h1) and Z(g2) ∩ Y = Z(h2). Therefore,

Z(g) ∩ Y ⊇ Z(h1) ∩ Z(h2) = Z(g1) ∩ Z(g2) ∩ Y = Z(g1 + g2) ∩ Y

⇒ Z(g1 + g2) ⊆ Z(g) ∪ Z(f) = Z(fg). (1)

Since Q1 + Q2 6= C(Y ), by (a), f 6∈ ψ(Q1) + ψ(Q2) and consequently
ψ(Q1) + ψ(Q2) is a prime z-ideal and so by (1),

fg ∈ ψ(Q1) + ψ(Q2) ⇒ g ∈ ψ(Q1) + ψ(Q2).

Hence, ψ(Q1 +Q2) ⊆ ψ(Q1) + ψ(Q2). �

We conclude this section with some applications.

Corollary 4.5. Suppose that Z = Z(f) ∈ Z(X), Y = X \ Y and
p ∈ clβXY . Every point of Φ−1{p} is an F -point with respect to Y if
and only if for every two distinct minimal prime ideals P1, P2 containing
Op(X) and not containing f , we have f ∈ P1 + P2

Proof. (⇒). Assume that every point of Φ−1{p} is an F -point and
P1, P2 are two distinct minimal prime ideal containing Op(X), then by
Theorem 4.1,(c) ψ−1(P1) ⊇ Oq1(Y ) and ψ−1(P2) ⊇ Oq2(Y ), in which
Φ(q1) = Φ(q2) = p, are two distinct minimal prime ideal of C(Y ). Since
q1 and q2 are F -point, it follows that q1 6= q2 and hence ψ−1(P1) +
ψ−1(P2) = C(Y ). Therefore, by Proposition 4.4, f ∈ P1 + P2.

(⇐). If Φ(q) = p and Q1, Q2 are minimal prime ideal containing
Oq(Y ), then by Theorem 4.1,(c) ψ(Q1), ψ(Q2) are minimal prime ideals
containing Op(X). Since Q1 + Q2 ⊆ M q(Y ) 6= C(Y ), by part (a) of
Proposition 4.4, f 6∈ ψ(Q1) + ψ(Q2). Hence, by hypothesis, we must
have ψ(Q1) = ψ(Q2) and so Q1 = Q2. Therefore, q is an F -point. �

An immediate conclusion of the above corollary is the following.

Corollary 4.6. Let p ∈ X be a non-isolated Gδ-point and Y = X \ {p}.
Every point of Φ−1{p} is an F -point with respect to Y if and only if
every two distinct chains of prime ideals over Op(X) have one element
Mp(X) in common.
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Proposition 2.3 in [13] states that “Let p be a non-isolated Gδ-point
of X, and let I and J be prime z-ideals contained in Mp such that
γ−1(Z(I)), and γ−1(Z(J)) are contained in distinct z-ultrafilters on
X \ {p}, then the chain of prime ideals of C(X) containing I and the
chain of prime ideals of C(X) containing J have only the element Mp

in common.” By Proposition 4.4, the proof of this is obvious. In the
following we prove that the condition is not only necessary but also
sufficient.

Corollary 4.7. Let p be a non-isolated Gδ-point of X, and let I and
J be prime z-ideals contained in Mp. Then, γ−1(Z(I)) and γ−1(Z(J))
are contained in distinct z-ultrafilters on X \{p} if and only if the chain
of prime ideals of C(X) containing I and the chain of prime ideals of
C(X) containing J have only the element Mp in common.

Proof. To see this, let f be such that {p} = Z(f) and Y = X\Z(f). Note
that the fact “two chain of prime ideals containing I and J , separately,
have only the element Mp in common” is equivalent to the fact I + J =
Mp. So, by Proposition 4.4, we can continue

I + J = Mp ⇔ ψψ−1(I) + ψψ−1(J) = Mp ⇔

f ∈ ψψ−1(I) + ψψ−1(J) ⇔ ψ−1(I) + ψ−1(J) = C(Y )
and the latest equation is equivalent to the fact that γ−1Z(I) and
γ−1Z(J) are in distinct z-ultrafilters . �

Remark 4.8. We call p ∈ βX is a CC-point with respect to X, if every
prime z◦-ideal containing Op(X) is a minimal prime ideal. Obviously X
is a CC-space if and only if every p ∈ βX is a CC-point with respect to
X. Therefore, βN is a CC-space whereas we know that the Stone-Čech
compactification of every infinite discrete space is not quasi P -space (see
[9]) and consequently βN is not quasi P -space.

Corollary 4.9. Suppose that Y = X \ Z for some zero-set Z of X and
p ∈ clβXY . Then,

(a) If p is an F -point with respect to X, then Φ−1{p} has only one
point;

(b) If p is a quasi P -point with respect to X, then q is a quasi P -point
with respect to Y , for every q ∈ Φ−1{p};

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Connections between C(X) and C(Y ), where Y is a subspace of X 121

(c) If p is a quasi P -point with respect to X and p ∈ clβXZ, then q
is a P -point, for each q ∈ Φ−1{p};

(d) If p is CC-point with respect to X, then q is CC-point with
respect to Y , for every q ∈ Φ−1{p}.

Proof. (a). If Φ(q1) = p = Φ(q2), then γ(Aq1(X) ∩ Aq2(X)) → p. So,
similar to the proof of part “(a)⇒(b)” of Theorem 3.3, it follows that
q1 = q2.

(b). Applying Theorem 4.2, it is obvious.
(c). Suppose that Z = Z(f) and p ∈ clβXZ. By part (b), ψ(M q(Y ))

is maximal or minimal. Since f ∈ Mp(X), it follows that ψ(M q(Y )) 6=
Mp(X) and so ψ(M q(Y )) is minimal. Hence, q is a P -point.

(d). Applying Theorem 4.2, it is obvious. �

Corollary 4.10. Let Z ∈ Z(X) and Y = X \ Z be a P -space.
(a) If P is a non minimal prime z-ideal in C(X), then Z ∈ Z(P ).
(b) If Z is finite, then X is a quasi P -space.

Proof. (a). If, on the contrary, Z 6∈ Z(P ), then ψ−1(P ) is a non minimal
prime ideal of C(Y ) which is a contradiction.

(b). Applying (a), clearly it follows. �

Corollary 4.11. Suppose that Z ∈ Z(X), Y = X \ Z and intXZ = ∅.
Then, Y is CC-space if and only if X is too.

Proof. By part (d) of Corollary 4.9, It is obvious. �

Suppose that I is an ideal of a ring C(X). We call I a maximal
nontrivial z-ideal, if it is maximal in the set of all nonmaximal nonmini-
mal prime z-ideals of C(X). Clearly, every maximal nontrivial z-ideal is
prime. In the following we verify the existence of the maximal nontrivial
z-ideals in C(X).

Theorem 4.12. Suppose p is a non-isolated Gδ-point in X and Y =
X \ {p}. Then, the following statements are equivalent.

(a) p is a quasi P -point with respect to X.
(b) There is no maximal nontrivial prime z-ideal contained in Mp(X).
(c) Every point of βY \ Y is a P -point with respect to Y .
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Proof. Note that since p is a Gδ-point, there exists f ∈ C(X) such that
Z(f) = {p} and clearly the set of all prime z-ideals containing Op(X)
and not containing f is equal to the set of all prime z-ideals properly
contained in Mp(X).

(a) ⇒ (b). This implication is clear.
(b) ⇒ (c). If Φ(q) = p and q is not a P -point, then by Theorem 4.2,

ψ(Mp(Y )) is maximal in the set of nontrivial prime z-ideals contained
in Mp(X).

(c) ⇒ (a). Since Φ−1({p}) = βY \ Y , by Theorem 4.2, it is clear. �

Assume that αN = N ∪ {ω} is the one-point compactification of N,
then ω is non-isolated Gδ-point and N is a P -space, thus ω is a quasi
P -point and the set of nontrivial prime z-ideals has no maximal element.
Since N has 2c free maximal ideals, by Theorem 4.2, there are 2c minimal
prime z-ideals containing Oω(αN) (See [8, 14G]).

Corollary 4.13. Suppose p ∈ X is non-isolated Gδ-point, Y is a count-
able subset of X contained in a zero set Z ∈ Z(X) and p /∈ Y . If
p ∈ clXY and intXZ = ∅, then there exists a maximal nontrivial prime
z-ideal contained in Mp(X).

Proof. Since Y is countable, Y is Lindelöf and therefore Y is z-embedded
in X. Because p ∈ clXY , there is q ∈ βY such that Φ(q) = p and hence
ψ(M q(Y )) is a prime z-ideal containing Op(X). Since p /∈ Y , p is a Gδ-
point and intXZ = ∅, it follows that ψ(M q(Y )) is neither maximal nor
minimal and so p is not a quasi P -point with respect to X. Therefore,
by Theorem 4.12, we are done. �

Example 4.14. If Y = { 1
n : n ∈ N}, then clearly Y ∪ {0} ∈ Z(R) and

intR(Y ∪ {0}) = ∅. Thus, by the above corollary, there exists a maximal
nontrivial prime z-ideal contained in M0(R), see [8, 14I].

Recall that x ∈ X is said to be an almost P -point, if every zero set
containing x has non empty interior. We denote by AP (X) the set of all
almost P -points of X. One can see that X \ AP (X) is a z-open subset
of X (i.e., ∀x ∈ X \ AP (X), ∃Z ∈ Z(X) x ∈ Z ⊆ X \ AP (X)), the
subspace AP (X) is not necessarily an almost P -space but, if AP (X)
is dense in X, then it is an almost P -space. We call X weakly almost
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P -space, if AP (X) is dense in X. A point p ∈ βX is called weakly CC-
point with respect to X, if any prime z◦-ideal contained in Mp(X) is
maximal or minimal prime ideal. Also X is said to be weakly CC-space,
if every point of βX is a weakly CC-point with respect to X.

Proposition 4.15. Let X be a weakly almost P -space and X \AP (X)
be finite. If we put Y = AP (X) and A = X \ Y , then

(a) A is a zero-set in X;
(b) X is a CC-space if and only if Y is too;
(c) Every nonmaximal prime ideal in C(X) is a z-ideal if and only

if it is a z◦-ideal;
(d) X is a weakly CC-space if and only if it is a quasi P -space.

Proof. (a). Since A is z-open, it is a finite union zero-sets and necessarily
A is a zero-set.

(b). By part (a) and Corollary 4.11, it is clear.
(c). Suppose P is a nonmaximal prime z-ideal in a C(X). Since

A is finite, A 6∈ Z(P ) (Note that if A ∈ Z(P ), then P is maximal
ideal). So, Z(P ) ∈ FY (X) and by Theorem 4.2, ψ−1(P ) is a z-ideal
and consequently is a z◦-ideal in C(Y ). Therefore, ψψ−1(P ) = P is a
z◦-ideal in C(X). The converse is true everywhere.

(d). It follows from the part (c). �

5. Zero subsets of X

In this section, we consider zero-subsets of X by other method. First,
note that, by Theorems 1.17 and 1.18 of [8], every z-embedded zero
subset of X is C-imbedded in X.

Theorem 5.1. Let f◦ ∈ C(X), Y = Z(f◦) be a z-embedded subset of X
and ϕ : C(X) → C(Y ) such that ϕ(f) = f |Y . Then,

(a) ϕ is a one-to-one correspondence preserving inclusion between
the set of (prime ) z-ideals of C(Y ) and the set of (prime) z-
ideals of C(X) containing f◦;

(b) ϕ−1(Op(Y )) = Z−1Z(Op(X), f◦), for each p ∈ βY .

Proof. (a). First, we note that since Y is a z-embedded zero set, it is C-
embedded and hence the restriction homomorphism ϕ : C(X) → C(Y ) is
onto. Now, Let I ′ be a z-ideal of C(Y ), then ϕ−1(I ′) is a z-ideal of C(X).
Moreover, it is clear that ϕ(f◦) = 0 ∈ I ′ and so f◦ ∈ ϕ−1(I ′). Conversely,
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let I be a z-ideal in C(X) containing f◦. Suppose Z(ϕ(f)) ⊆ Z(ϕ(g))
and f ∈ I. Therefore,

Z(f |Y ) ⊆ Z(g|Y ) ⇒ Z(f) ∩ Z(f◦) ⊆ Z(g) ∩ Z(f◦)

⇒ Z(f2 + f2
◦ ) ⊆ Z(g2 + f2

◦ ).
Since f2 + f2

◦ ∈ I, it follows that g2 + f2
◦ ∈ I. Hence, g ∈ I and so

ϕ(g) ∈ ϕ(I). Therefore, ϕ(I) is a z-ideal. Now, let P be a prime z-ideal
in C(X) containing f◦. Suppose ϕ(f)ϕ(g) ∈ ϕ(P ), then

ϕ(f)ϕ(g) = ϕ(fg) ∈ ϕ(P ) ⇒ ∃h ∈ P � ϕ(fg − h) = 0

⇒ (fg − h)|Y = 0 ⇒ Z(fg) ∩ Z(f◦) = Z(h) ∩ Z(f◦)
⇒ Z(f2g2 + f2

◦ ) = Z(h2 + f2
◦ ) ⇒ f2g2 + f2

◦ ∈ P ⇒ f2g2 ∈ P
⇒ f ∈ P or g ∈ P ⇒ ϕ(f) ∈ ϕ(P ) or ϕ(g) ∈ ϕ(P ).

Therefore, ϕ(P ) is a prime z-ideal. To prove that ϕ is one-to-one and
preserves inclusion, it is enough to show that if I and J are two z-ideals
of C(X) containing f◦ and ϕ(I) ⊆ ϕ(J), then I ⊆ J . To see this,
suppose that f ∈ I, then ϕ(f) ∈ ϕ(I) ⊆ ϕ(J) and hence

∃g ∈ J � ϕ(f − g) = 0

⇒ Z(f) ∩ Z(f◦) = Z(g) ∩ Z(f◦) ⇒ Z(f2 + f2
◦ ) = Z(g2 + f2

◦ )
⇒ f2 + f2

◦ ∈ J ⇒ f2 ∈ J ⇒ f ∈ J.
Therefore, I ⊆ J .

(b). Suppose f ∈ Op(X), then p ∈ intβXclβXZ(f) and hence there
exists an open subset U of βX such that p ∈ U ⊆ clβXZ(f). Thus,

p ∈ U ∩ βY ⊆ clβXZ(f) ∩ βY = clβXZ(f) ∩ clβXZ(f◦)

= clβX(Z(f) ∩ Z(f◦)) = clβXZ(f |Y ) = clβY Z(f |Y )

⇒ p ∈ intβY clβY Z(f |Y ) ⇒ ϕ(f) ∈ Op(Y ) ⇒ f ∈ ϕ−1(Op(Y )).
Therefore, Op(X) ⊆ ϕ−1(Op(Y )) and since ϕ−1(Op(Y )) is a z-ideal con-
taining f◦, it follows that

Z−1Z(Op(X), f◦) ⊆ ϕ−1(Op(Y )). (1)

Now, assume that f ∈ ϕ−1(Op(Y ), then f |Y ∈ Op(Y ) and hence p ∈
intβY clβY Z(f |Y ). So, there exists an open subset U of βX such that
p ∈ U ∩βY ⊆ clβY Z(f |Y ) = clβX(Z(f)∩Z(f◦)). Therefore, there exists
gβ ∈ Op(βX) such that p ∈ Z(gβ) ∩ βY ⊆ clβY Z(f |Y ). Thus,

Z(g) ∩ Y ⊆ Z(f |Y ) ⇒ Z(g2 + f2
◦ ) ⊆ Z(f |Y ) = Z(f2 + f2

◦ )

⇒ f2 + f2
◦ ∈ Z−1Z(Op(X), f◦) ⇒ f ∈ Z−1Z(Op(X), f◦)
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∴ ϕ−1(Op(Y )) ⊆ Z−1Z(Op(X), f◦). (2)
The equality follows from (1) and (2). �

Corollary 5.2. Let Y = Z(f◦) be a z-embedded subset of X and p ∈ βY ,
then supposing I = Z−1Z(Op(X), f◦)

(a) p is a P -point with respect to Y if and only if I = Mp(X);
(b) p is an F -point with respect to Y if and only if I is a prime ideal;
(c) p is a quasi P -point with respect to Y if and only if for every

prime z-ideal P containing I either P ∈Min(I) or P = Mp(X).

Proof. By Theorem 5.1, it is clear. �
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