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Abstract. A space Y is called an extension of a space X, if Y
contains X as a dense subspace. Two extensions of X are said to
be equivalent, if there is a homeomorphism between them which
fixes X point-wise. For two (equivalence classes of) extensions Y
and Y ′ of X let Y ≤ Y ′, if there is a continuous function of Y ′

into Y which fixes X point-wise. An extension Y of X is called a
one-point extension, if Y \X is a singleton. An extension Y of X
is called first-countable, if Y is first-countable at points of Y \X.
Let P be a topological property. An extension Y of X is called a
P-extension, if it has P.

In this article, for a given locally compact paracompact space
X, we consider the two classes of one-point Čech-complete; P-
extensions of X and one-point first-countable locally-P extensions
of X, and we study their order-structures, by relating them to the
topology of a certain subspace of the outgrowth βX\X. Here P is
subject to some requirements and include σ-compactness and the
Lindelöf property as special cases.

1. Introduction

A space Y is called an extension of a space X, if Y contains X as a
dense subspace. If Y is an extension of X, then the subspace Y \X of
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Y is called the remainder of Y . Extensions with a one-point remainder
are called one-point extensions. Two extensions of X are said to be
equivalent, if there exists a homeomorphism between them which fixes
X point-wise. This defines an equivalence relation on the class of all ex-
tensions of X. The equivalence classes will be identified with individuals
when this causes no confusion. For two extensions Y and Y ′ of X we let
Y ≤ Y ′, if there exists a continuous function of Y ′ into Y which fixes X
point-wise. The relation ≤ defines a partial order on the set of exten-
sions of X (see Section 4.1 of [16] for more details). An extension Y of
X is called first-countable, if Y is first-countable at points of Y \X, that
is, Y has a countable local base at every point of Y \X. Let P be a topo-
logical property. An extension Y of X is called a P-extension, if it has
P. If P is compactness, then P-extensions are called compactifications.

This work was mainly motivated by our previous work [9] (see [1], [7],
[8], [11], [12] and [13] for related results) in which we have studied the
partially ordered set of one-point P-extensions of a given locally com-
pact space X by relating it to the topologies of certain subspaces of its
outgrowth βX\X. In this article, we continue our studies by considering
the classes of one-point Čech-complete P-extensions and one-point first-
countable locally-P extensions of a given locally compact paracompact
space X. The topological property P is subject to some requirements
and include σ-compactness, the Lindelöf property and the linearly Lin-
delöf property as special cases.

We review some of the terminology, notation and well-known results
that will be used in the sequel. Our definitions mainly come from the
standard text [3] (thus, in particular, compact spaces are Hausdorff,
etc.). Other useful sources are [5] and [16].

The letters I and N denote the closed unit interval and the set of all
positive integers, respectively. For a subset A of a space X we let clXA
and intXA denote the closure and the interior of A in X, respectively. A
subset of a space is called clopen, if it is simultaneously closed and open.
A zero-set of a space X is a set of the form Z(f) = f−1(0) for some
continuous f : X → I. Any set of the form X\Z, where Z is a zero-set
of X, is called a cozero-set of X. We denote the set of all zero-sets of X
by Z (X) and the set of all cozero-sets of X by Coz(X).

For a Tychonoff space X the Stone-Čech compactification of X is
the largest (with respect to the partial order ≤) compactification of X
and is denoted by βX. The Stone-Čech compactification of X can be
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One-point extensions of locally compact paracompact spaces 201

characterized among all compactifications of X by either of the following
properties:

(1) Every continuous function of X to a compact space is continu-
ously extendible over βX.

(2) Every continuous function of X to I is continuously extendible
over βX.

(3) For every Z, S ∈ Z (X) we have

clβX(Z ∩ S) = clβXZ ∩ clβXS.

A Tychonoff space is called zero-dimensional, if it has an open base
consisting of its clopen subsets. A Tychonoff space is called strongly
zero-dimensional, if its Stone-Čech compactification is zero-dimensional.
A Tychonoff space X is called Čech-complete, if its outgrowth βX\X
is an Fσ in βX. Locally compact spaces are Čech-complete, and in the
realm of metrizable spaces X, Čech-completeness is equivalent to the
existence of a compatible complete metric on X.

Let P be a topological property. A topological space X is called
locally-P, if for every x ∈ X there exists an open neighborhood Ux of x
in X such that clXUx has P.

A topological property P is said to be hereditary with respect to closed
subsets, if each closed subset of a space with P also has P. A topological
property P is said to be preserved under finite (closed) sums of subspaces,
if a Hausdorff space has P, provided that it is the union of a finite
collection of its (closed) P-subspaces.

Let (P,≤) and (Q,≤) be two partially ordered sets. A mapping
f : (P,≤) → (Q,≤) is said to be an order-homomorphism (anti-order-
homomorphism, respectively), if f(a) ≤ f(b) (f(b) ≤ f(a), respectively)
whenever a ≤ b. An order-homomorphism (anti-order-homomorphism,
respectively) f : (P,≤) → (Q,≤) is said to be an order-isomorphism
(anti-order-isomorphism, respectively), if f−1 : (Q,≤) → (P,≤) (ex-
ists and) is an order-homomorphism (anti-order-homomorphism, respec-
tively). Two partially ordered sets (P,≤) and (Q,≤) are called order-
isomorphic (anti-order-isomorphic, respectively), if there exists an order-
isomorphism (anti-order-isomorphism, respectively) between them.
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2. Motivations, notations and definitions

In this article we will be dealing with various sets of one-point exten-
sions of a given topological space X. For the reader’s convenience we
list all these sets at the beginning.

Notation 2.1. Let X be a topological space. Denote
• E (X) = {Y : Y is a one-point Tychonoff extension of X}
• E ∗(X) = {Y ∈ E (X) : Y is first-countable at Y \X}
• E C(X) = {Y ∈ E (X) : Y is Čech-complete}
• E K(X) = {Y ∈ E (X) : Y is locally compact}

and when P is a topological property
• EP(X) = {Y ∈ E (X) : Y has P}
• E local−P(X) = {Y ∈ E (X) : Y is locally-P}.

Also, we may use notations which are obtained by combinations of the
above notations, e.g.

E ∗
local−P(X) = E ∗(X) ∩ E local−P(X).

Definition 2.2 ([10]). For a Tychonoff space X and a topological prop-
erty P, let

λPX =
⋃ {

intβXclβXC : C ∈ Coz(X) and clXC has P
}
.

Definition 2.3 ([14]). We say that a topological property P satisfies
Mrówka’s condition (W), if it satisfies the following: If X is a Tychonoff
space in which there exists a point p with an open base B for X at p
such that X\B has P, for each B ∈ B, then X has P.

Mrówka’s condition (W) is satisfied by a large number of topological
properties; among them are (regularity +) the Lindelöf property, para-
compactness, metacompactness, subparacompactness, the para-Lindelöf
property, the σ-para-Lindelöf property, weak θ-refinability, θ-refinability
(or submetacompactness), weak δθ-refinability, δθ-refinability (or the
submeta-Lindelöf property), countable paracompactness, [θ, κ]-compact-
ness, κ-boundedness, screenability, σ-metacompactness, Dieudonné com-
pleteness, N -compactness [15], realcompactness, almost realcompact-
ness [4] and zero-dimensionality (see [10], [12] and [13] for proofs and
[2], [17] and [18] for definitions).
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One-point extensions of locally compact paracompact spaces 203

In [11] we have obtained the following result.

Theorem 2.4 ([11]). Let X and Y be locally compact locally-P non-
P spaces where P is either pseudocompactness or a closed hereditary
topological property which is preserved under finite closed sums of sub-
spaces and satisfies Mrówka’s condition (W). Then, the following are
equivalent:

(1) λPX\X and λPY \Y are homeomorphic.
(2) (EP(X),≤) and (EP(Y ),≤) are order-isomorphic.
(3) (E C

P (X),≤) and (E C
P (Y ),≤) are order-isomorphic.

(4) (E K
P (X),≤) and (E K

P (Y ),≤) are order-isomorphic, provided that
X and Y are moreover strongly zero-dimensional.

There are topological properties, however, which do not satisfy the as-
sumption of Theorem 2.4 (σ-compactness, for example, does not satisfy
Mrówka’s condition (W); see [10]). The purpose of this article is to prove
the following version of Theorem 2.4. Specific topological properties P
which satisfy the requirements of Theorem 2.5 below are σ-compactness,
the Lindelöf property and the linearly Lindelöf property. Note that in
Theorem 3.19 of [9] we have shown that conditions (1) and (3) of The-
orem 2.5 are equivalent, if P is σ-compactness, and in Theorem 3.21 of
[9] we have shown that conditions (1) and (2) of Theorem 2.5 are equiv-
alent, if P is the Lindelöf property. Thus, in some sense, Theorem 2.5
generalizes Theorems 3.19 and 3.21 of [9], and at the same time, brings
them under a same umbrella.

Theorem 2.5. Let X and Y be locally compact paracompact spaces
and let P be a closed hereditary topological property of compact spaces
which is preserved under finite sums of subspaces and coincides with σ-
compactness in the realm of locally compact paracompact spaces. Then,
the following are equivalent:

(1) λPX\X and λPY \Y are homeomorphic.
(2) (E C

P (X),≤) and (E C
P (Y ),≤) are order-isomorphic.

(3) (E ∗
local−P(X),≤) and (E ∗

local−P(Y ),≤) are order-isomorphic.

We now introduce some notation which will be widely used in this
article.
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Notation 2.6. Let X be a Tychonoff space X. For a subset A of X
denote

A∗ = clβXA\X.
In particular, X∗ = βX\X.

Remark 2.7. Note that the notation given in Notation 2.6 can be am-
biguous, as A∗ can mean either βA\A or clβXA\X. However, since for
C∗-embedded subsets these two notions coincide, this will not cause any
confusion.

Definition 2.8 ([7]). For a Tychonoff space X, let

σX =
⋃
{clβXH : H ⊆ X is σ-compact}.

Notation 2.9. Let X be a locally compact paracompact non-compact
space. Then, X can be represented as

X =
⊕
i∈I

Xi

for some index set I, with each Xi, for i ∈ I, being σ-compact and
non-compact (see Theorem 5.1.27 and Exercise 3.8.C of [3]). For J ⊆ I
denote

XJ =
⋃
i∈J

Xi.

Thus, using the notation of 2.6, we have

X∗
J = clβX

( ⋃
i∈J

Xi

)∖
X.

Remark 2.10. Note that in Notation 2.9 the set X∗
J is homeomorphic

to βXJ\XJ , as clβXXJ is homeomorphic to βXJ (see Corollary 3.6.8
of [3]). Thus, when J is countable (since XJ is σ-compact and locally
compact) X∗

J is a zero-sets in clβXXJ (see 1B of [19]). But, clβXXJ is
clopen in βX, as XJ is clopen in X (see Corollary 3.6.5 of [3]) therefore,
X∗

J is a zero-set in βX. Also, note that with the notation given in 2.9,
we have

σX =
⋃
{clβXXJ : J ⊆ I is countable}.

Note that σX is open in βX and it contains X.
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3. Partially ordered set of one-point extensions as related to
topologies of subspaces of outgrowth

In Lemma 3.5 we establish a connection between one-point Tychonoff
extensions of a given space X and compact non-empty subsets of its
outgrowth X∗. Lemma 3.5 (and its preceding lemmas) is known (see
e.g. [12]). It is included here for the sake of completeness.

Lemma 3.1. Let X be a Tychonoff space and let C be a non-empty
compact subset of X∗. Let T be the space which is obtained from βX
by contracting C to a point p. Then, the subspace Y = X ∪ {p} of T is
Tychonoff and βY = T .

Proof. Let q : βX → T be the quotient mapping. Note that T is
Hausdorff, and thus, being a continuous image of βX, it is compact.
Also, note that Y is dense in T . Therefore, T is a compactification of
Y . To show that βY = T , it suffices to verify that every continuous
h : Y → I is continuously extendable over T . Let h : Y → I be
continuous. Let G : βX → I continuously extend hq|(X∪C) : X∪C → I
(note that β(X ∪ C) = βX, as X ⊆ X ∪ C ⊆ βX, see Corollary 3.6.9
of [3]). Define H : T → I such that H|(βX\C) = G|(βX\C) and
H(p) = h(p). Then, H|Y = h, and since Hq = G is continuous, the
function H is continuous.

Notation 3.2. Let X be a Tychonoff space and let Y ∈ E (X). Denote
by

τY : βX → βY

the (unique) continuous extension of idX .

Lemma 3.3. Let X be a Tychonoff space and let Y = X ∪{p} ∈ E (X).
Let T be the space which is obtained from βX by contracting τ−1

Y (p) to
the point p, and let q : βX → T be the quotient mapping. Then, T = βY
and τY = q.

Proof. We need to show that Y is a subspace of T . Since βY is also
a compactification of X and τY |X = idX , by Theorem 3.5.7 of [3], we
have τY (X∗) = βY \X. For an open subset W of βY , the set q(τ−1

Y (W ))
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is open in T , as q−1(q(τ−1
Y (W ))) = τ−1

Y (W ) is open in βX. Therefore,

Y ∩W = Y ∩ q
(
τ−1
Y (W )

)
is open in Y , when Y is considered as a subspace of T . For the converse,
note that if V is open in T , since

Y ∩ V = Y ∩
(
βY \τY

(
βX\q−1(V )

))
and τY (βX\q−1(V )) is compact and thus closed in βY , the set Y ∩ V
is open in Y in its original topology. By Lemma 3.1 we have T = βY .
This also implies that τY = q, as τY , q : βX → βY are continuous and
coincide with idX on the dense subset X of βX.

Lemma 3.4. Let X be a Tychonoff space. Let Yi ∈ E (X), for i = 1, 2,
and denote by τi = τYi : βX → βYi the continuous extension of idX .
Then, the following are equivalent:

(1) Y1 ≤ Y2.
(2) τ−1

2 (Y2\X) ⊆ τ−1
1 (Y1\X).

Proof. Let Yi = X ∪ {pi}, for i = 1, 2. (1) implies (2). Suppose that
(1) holds. By the definition, there exists a continuous f : Y2 → Y1

such that f |X = idX . Let fβ : βY2 → βY1 continuously extend f .
Note that the continuous functions fβτ2, τ1 : βX → βY1 coincide with
idX on the dense subset X of βX, and thus fβτ2 = τ1. Note that X
is dense in βYi (for i = 1, 2), as it is dense in Yi, and therefore, βYi

is a compactification of X. Since fβ |X = idX , by Theorem 3.5.7 of
[3], we have fβ(βY2\X) = βY1\X, and thus fβ(p2) ∈ βY1\X. But,
fβ(p2) = f(p2), which implies that fβ(p2) ∈ Y1\X = {p1}. Therefore,

τ−1
2 (p2) ⊆ τ−1

2

(
f−1

β

(
fβ(p2)

))
= (fβτ2)−1

(
fβ(p2)

)
= τ−1

1

(
fβ(p2)

)
= τ−1

1 (p1).

(2) implies (1). Suppose that (2) holds. Let f : Y2 → Y1 be defined
such that f(p2) = p1 and f |X = idX . We show that f is continuous,
this will show that Y1 ≤ Y2. Note that by Lemma 3.3, the space βY2 is
the quotient space of βX which is obtained by contracting τ−1

2 (p2) to a
point, and τ2 is its corresponding quotient mapping. Thus, in particular,
Y2 is the quotient space of X ∪ τ−1

2 (p2), and therefore, to show that f
is continuous, it suffices to show that fτ2|(X ∪ τ−1

2 (p2)) is continuous.
We show this by verifying that fτ2(t) = τ1(t), for each t ∈ X ∪ τ−1

2 (p2).
This obviously holds if t ∈ X. If t ∈ τ−1

2 (p2), then τ2(t) = p2, and
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thus fτ2(t) = p1. But, since t ∈ τ−1
2 (τ2(t)), we have t ∈ τ−1

1 (p1), and
therefore τ1(t) = p1. Thus, fτ2(t) = τ1(t) in this case as well.

Lemma 3.5. Let X be a Tychonoff space. Define a function

Θ :
(
E (X),≤

)
→

(
{C ⊆ X∗ : C is compact}\{∅},⊆

)
by

Θ(Y ) = τ−1
Y (Y \X),

for Y ∈ E (X). Then, Θ is an anti-order-isomorphism.

Proof. To show that Θ is well-defined, let Y ∈ E (X). Note that since
X is dense in Y , the space X is dense in βY . Thus, τY : βX → βY is
onto, as τY (βX) is a compact (and therefore closed) subset of βY and it
contains X = τY (X). Thus, τ−1

Y (Y \X) 6= ∅. Also, since τY |X = idX we
have τ−1

Y (Y \X) ⊆ X∗, and since the singleton Y \X is closed in βY , its
inverse image τ−1

Y (Y \X) is closed in βX, and therefore it is compact.
Now, we show that Θ is onto, Lemma 3.4 will then complete the proof.
Let C be a non-empty compact subset of X∗. Let T be the quotient
space of βX which is obtained by contracting C to a point p. Consider
the subspace Y = X ∪{p} of T . Then, Y ∈ E (X), and thus, by Lemma
3.1 we have βY = T . The quotient mapping q : βX → T is identical to
τY , as it coincides with idX on the dense subset X of βX. Therefore,

Θ(Y ) = τ−1
Y (p) = q−1(p) = C.

Notation 3.6. For a Tychonoff space X denote by

ΘX :
(
E (X),≤

)
→

(
{C ⊆ X∗ : C is compact}\{∅},⊆

)
the anti-order-isomorphism defined by

ΘX(Y ) = τ−1
Y (Y \X),

for Y ∈ E (X).

Lemmas 3.7 and 3.8 below are known results (see [9]).

Lemma 3.7. Let X be a Tychonoff space. For Y ∈ E (X) the following
are equivalent:

(1) Y ∈ E ∗(X).
(2) ΘX(Y ) ∈ Z (βX).

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

208 Koushesh

Proof. Let Y = X ∪ {p}. (1) implies (2). Suppose that (1) holds. Let
{Vn : n ∈ N} be an open base at p in Y . For each n ∈ N, let V ′n be
an open subset of βY such that Y ∩ V ′n = Vn, and let fn : βY → I be
continuous and such that fn(p) = 0 and fn(βY \V ′n) ⊆ {1}. Let

Z =
∞⋂

n=1

Z(fn) ∈ Z (βY ).

We show that Z = {p}. Obviously, p ∈ Z. Let t ∈ Z and suppose to the
contrary that t 6= p. Let W be an open neighborhood of p in βY such
that t /∈ clβYW . Then, Y ∩W is an open neighborhood of p in Y . Let
k ∈ N be such that Vk ⊆ Y ∩W . We have

t ∈ Z(fk) ⊆ V ′k ⊆ clβY V
′
k

= clβY (Y ∩ V ′k)
= clβY Vk ⊆ clβY (Y ∩W ) ⊆ clβYW

which is a contradiction. This shows that t = p and therefore Z ⊆ {p}.
Thus, {p} = Z ∈ Z (βY ), which implies that τ−1

Y (p) ∈ Z (βX).
(2) implies (1). Suppose that (2) holds. Let τ−1

Y (p) = Z(f) where
f : βX → I is continuous. Note that by Lemma 3.3 the space βY is
obtained from βX by contracting τ−1

Y (p) to p with τY : βX → βY as
the quotient mapping. Then, for each n ∈ N, the set τY (f−1([0, 1/n)))
is an open neighborhood of p in βY . We show that the collection{

Y ∩ τY
(
f−1

([
0,

1
n

)))
: n ∈ N

}
of open neighborhoods of p in Y constitutes an open base at p in Y .
This will show (1). Let V be an open neighborhood of p in Y . Let V ′

be an open subset of βY such that Y ∩ V ′ = V . Then, p ∈ V ′ and thus
∞⋂

n=1

f−1
([

0,
1
n

])
= Z(f) = τ−1

Y (p) ⊆ τ−1
Y (V ′).

By compactness we have f−1([0, 1/k]) ⊆ τ−1
Y (V ′), for some k ∈ N.

Therefore,

Y ∩ τY
(
f−1

([
0,

1
k

)))
⊆ Y ∩ τY

(
f−1

([
0,

1
k

]))
⊆ Y ∩ τY

(
τ−1
Y (V ′)

)
⊆ Y ∩ V ′ = V.
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Lemma 3.8. Let X be a locally compact space. For Y ∈ E (X) the
following are equivalent:

(1) Y ∈ E C(X).
(2) ΘX(Y ) ∈ Z (X∗).

Proof. Let Y = X∪{p}. (1) implies (2). Suppose that (1) holds. Then,
Y ∗ is an Fσ in βY . Let Y ∗ =

⋃∞
n=1Kn where each Kn is closed in βY ,

for n ∈ N. Then,

X∗ = τ−1
Y (p) ∪

∞⋃
n=1

Kn

(recall that βY is the quotient space of βX which is obtained by con-
tracting τ−1

Y (p) to p and τY is its quotient mapping; see Lemma 3.3).
For each n ∈ N, let fn : βX → I be continuous and such that

fn

(
τ−1
Y (p)

)
= {0} and fn(Kn) ⊆ {1}.

Let f =
∑∞

n=1 fn/2n. Then, f : βX → I is continuous and

τ−1
Y (p) = Z(f) ∩X∗ ∈ Z (X∗).

(2) implies (1). Suppose that (2) holds. Let τ−1
Y (p) = Z(g) where

g : X∗ → I is continuous. Then, using Lemma 3.3, we have

Y ∗ = X∗\τ−1
Y (p) = X∗\Z(g)

= g−1
(
(0, 1]

)
=

∞⋃
n=1

g−1
([ 1
n
, 1

])
and each set g−1([1/n, 1]), for n ∈ N, being closed in X∗, is compact
(note that since X is locally compact, X∗ is compact) and thus closed
in βY . Therefore, Y ∗ is an Fσ in βY , that is, Y is Čech-complete.

Then, the following lemma justifies our requirement on P in Theorem
3.16. We simply need λPX to have a more familiar structure.

Lemma 3.9. Let P be a topological property which is preserved under
finite closed sums of subspaces. The following are equivalent:

(1) The topological property P coincides with σ-compactness in the
realm of locally compact paracompact spaces.

(2) For every locally compact paracompact space X we have

λPX = σX.

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

210 Koushesh

Proof. (1) implies (2). Suppose that (1) holds. Let X be a locally
compact paracompact space. Assume the notation of 2.9. Let J ⊆ I
be countable. Then, XJ is σ-compact and thus (since it is also locally
compact and paracompact) it has P. Note that XJ is clopen in X thus
it has a clopen closure in βX, therefore

clβXXJ = intβXclβXXJ ⊆ λPX

that is, σX ⊆ λPX. To see the reverse inclusion, let C ∈ Coz(X) be
such that clXC has P. Then, (since clXC being closed in X is also
locally compact and paracompact) clXC is σ-compact. Therefore,

intβXclβXC ⊆ clβXC ⊆ σX

which shows that λPX ⊆ σX. Thus, λPX = σX.
(2) implies (1). Suppose that (2) holds. Let X be a locally compact

paracompact space. By the assumption we have λPX = σX. We verify
that X has P if and only if X is σ-compact. Assume the notation of
Notation 2.9. Suppose that X has P. Then, λPX = βX and thus
σX = βX. Now, by compactness, we have

βX = clβXXJ1 ∪ · · · ∪ clβXXJn ,

for some n ∈ N and some countable J1, . . . , Jn ⊆ I. Therefore,

X = XJ1 ∪ · · · ∪XJn

is σ-compact. For the converse, suppose that X is σ-compact. Then,
σX = βX and (since λPX = σX) we have βX = λPX. Thus, by
compactness, we have

βX = intβXclβXC1 ∪ · · · ∪ intβXclβXCn,

for some n ∈ N and some C1, . . . , Cn ∈ Coz(X) such that clXCi has P,
for i = 1, . . . , n. Now, using our assumption, the space

X = clXC1 ∪ · · · ∪ clXCn

being a finite union of its closed P-subspaces, has P.

Lemma 3.10. Let X be a locally compact paracompact space and let P
be a closed hereditary topological property of compact spaces which is pre-
served under finite sums of subspaces and coincides with σ-compactness
in the realm of locally compact paracompact spaces. For Y ∈ E (X) the
following are equivalent:

(1) Y ∈ E C
P (X).

(2) ΘX(Y ) ∈ Z (X∗) and βX\λPX ⊆ ΘX(Y ).
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Thus, in particular

ΘX

(
E C
P (X)

)
=

{
Z ∈ Z (X∗) : βX\λPX ⊆ Z

}
\{∅}.

Proof. Let Y = X ∪ {p}. (1) implies (2). Suppose that (1) holds.
By Lemma 3.8 we have τ−1

Y (p) ∈ Z (X∗). Note that by Lemma 3.9 we
have λPX = σX. Let t ∈ βX\σX and suppose to the contrary that
t /∈ τ−1

Y (p). Let f : βX → I be continuous and such that f(t) = 0 and
f(τ−1

Y (p)) = {1}. Since τY (f−1([0, 1/2])) is compact, the set

T = X ∩ f−1
([

0,
1
2

])
= Y ∩ τY

(
f−1

([
0,

1
2

]))
being closed in Y , has P. But, T , being closed in X, is locally compact
and paracompact, and thus, having P, it is σ-compact. Therefore, by
definition of σX we have clβXT ⊆ σX. But, since

t ∈ f−1
([

0,
1
2

))
⊆ clβXf

−1
([

0,
1
2

))
= clβX

(
X ∩ f−1

([
0,

1
2

)))
⊆ clβX

(
X ∩ f−1

([
0,

1
2

]))
= clβXT

we have t ∈ σX, which contradicts the choice of t. Thus, t ∈ τ−1
Y (p) and

therefore βX\σX ⊆ τ−1
Y (p).

(2) implies (1). Suppose that (2) holds. Note that since X is locally
compact, the set X∗ is closed in (the normal space) βX and thus, since
τ−1
Y (p) ∈ Z (X∗) (using the Tietze-Urysohn Theorem) we have τ−1

Y (p) =
Z ∩ X∗, for some Z ∈ Z (βX). Note that by Lemma 3.9 we have
λPX = σX. Now, since βX\σX ⊆ τ−1

Y (p) ⊆ Z we have βX\Z ⊆ σX.
Therefore, assuming the notation of 2.9 (since βX\Z, being a cozero-set
in βX, is σ-compact) we have

βX\Z ⊆
∞⋃

n=1

clβXXJn ⊆ clβXXJ

where J1, J2, . . . ⊆ I are countable and J = J1 ∪ J2 ∪ · · · . But,

Y = τY (Z) ∪ (X\Z) ⊆ τY (Z) ∪XJ

and thus we have

(3.1) Y = τY (Z) ∪XJ .
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Now, since XJ has P, as it is σ-compact (and being closed in X, it is
locally compact and paracompact) and τY (Z) has P, as it is compact,
from (3.1) it follows that the space Y , being a finite union of its P-
subspaces, has P. The fact that Y is Čech-complete follows from Lemma
3.8.

The following generalizes Lemma 3.18 of [9].

Lemma 3.11. Let X be a locally compact paracompact space and let P
be a closed hereditary topological property of compact spaces which is pre-
served under finite sums of subspaces and coincides with σ-compactness
in the realm of locally compact paracompact spaces. For Y ∈ E (X) the
following are equivalent:

(1) Y ∈ E ∗
local−P(X).

(2) ΘX(Y ) ∈ Z (βX) and ΘX(Y ) ⊆ λPX.
Thus, in particular

ΘX

(
E ∗

local−P(X)
)

=
{
Z ∈ Z (βX) : Z ⊆ λPX\X

}
\{∅}.

Proof. Let Y = X ∪{p}. (1) implies (2). Suppose that (1) holds. Since
Y ∈ E ∗(X), by Lemma 3.7 we have τ−1

Y (p) ∈ Z (βX). Let τ−1
Y (p) =

Z(f), for some continuous f : βX → I. Since Y is locally-P, there exists
an open neighborhood V of p in Y such that clY V has P. Let V ′ be an
open subset of βY such that Y ∩ V ′ = V . Then, p ∈ V ′, and thus since

∞⋂
n=1

f−1
([

0,
1
n

])
= Z(f) = τ−1

Y (p) ⊆ τ−1
Y (V ′)

by compactness, we have f−1([0, 1/k]) ⊆ τ−1
Y (V ′), for some k ∈ N. Now,

for each n ≥ k, since

Y ∩ τY
(
f−1

([
0,

1
n

])∖
f−1

([
0,

1
n+ 1

)))
⊆ Y ∩ τY

(
f−1

([
0,

1
k

]))
⊆ Y ∩ τY

(
τ−1
Y (V ′)

)
⊆ Y ∩ V ′ = V ⊆ clY V

the set

Kn = X ∩
(
f−1

([
0,

1
n

])∖
f−1

([
0,

1
n+ 1

)))
= Y ∩ τY

(
f−1

([
0,

1
n

])∖
f−1

([
0,

1
n+ 1

)))
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being closed in clY V , has P, and therefore (since being closed in X
it is locally compact and paracompact) it is σ-compact. (It might be
helpful to recall that by Lemma 3.3 the space βY is obtained from βX
by contracting τ−1

Y (p) to p with τY as its quotient mapping.) Thus, the
set

X ∩ f−1
([

0,
1
k

])
=

∞⋃
n=k

Kn

is σ-compact, and therefore, by the definition of σX, we have

clβX

(
X ∩ f−1

([
0,

1
k

]))
⊆ σX.

But,

Z(f) ⊆ f−1
([

0,
1
k

))
⊆ clβXf

−1
([

0,
1
k

))
= clβX

(
X ∩ f−1

([
0,

1
k

)))
⊆ clβX

(
X ∩ f−1

([
0,

1
k

]))
from which it follows that τ−1

Y (p) ⊆ σX. Finally, note that by Lemma
3.9 we have λPX = σX.

(2) implies (1). Suppose that (2) holds. By Lemma 3.7 we have
Y ∈ E ∗(X). Therefore, it suffices to verify that Y is locally-P. Also,
since by the assumption X is locally compact, it is locally-P, as P is
assumed to be a topological property of compact spaces. Thus, we only
need to verify that p has an open neighborhood in Y whose closure in
Y has P. Let g : βX → I be continuous and such that Z(g) = τ−1

Y (p).
Then, since

∞⋂
n=1

g−1
([

0,
1
n

])
= Z(g) ⊆ λPX

by compactness (and since λPX is open in βX) we have g−1([0, 1/k]) ⊆
λPX, for some k ∈ N. Note that by Lemma 3.9 we have λPX = σX.
Assume the notation of Notation 2.9. By compactness, we have

g−1
([

0,
1
k

])
⊆ clβXXJ1 ∪ · · · ∪ clβXXJn = clβXXJ

where n ∈ N, the sets J1, . . . , Jn ⊆ I are countable and J = J1∪· · ·∪Jn.
The set X ∩ g−1([0, 1/k]) ⊆ XJ , being closed in the latter (σ-compact
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space) is σ-compact, and therefore (since being closed in X, it is locally
compact and paracompact) it has P. Let

V = Y ∩ τY
(
g−1

([
0,

1
k

)))
.

Then, V is an open neighborhood of p in Y . We show that clY V has P.
But, this follows, since

clY V ⊆ Y ∩ τY
(
g−1

([
0,

1
k

]))
=

(
X ∩ τY

(
g−1

([
0,

1
k

])))
∪ {p}

=
(
X ∩ g−1

([
0,

1
k

]))
∪ {p}

and the latter, being a finite union of its P-subspaces (note that the
singleton {p}, being compact, has P) has P, and thus, its closed subset
clY V , also has P.

Lemmas 3.12–3.14 are from [8].

Lemma 3.12. Let X be a locally compact paracompact space. If Z ∈
Z (βX) in non-empty, then Z ∩ σX 6= ∅

Proof. Let {xn}∞n=1 be a sequence in σX. Assume the notation of 2.9.
Then, {xn : n ∈ N} ⊆ clβXXJ , for some countable J ⊆ I. Therefore,
{xn : n ∈ N} has a limit point in clβXXJ ⊆ σX. Thus, σX is countably
compact, and therefore is pseudocompact, and υ(σX) = β(σX) = βX
(note that the latter equality holds, as X ⊆ σX ⊆ βX). The result
now follows, as for any Tychonoff space T , any non-empty zero-set of
υT meets T (see Lemma 5.11 (f) of [16]).

Lemma 3.13. Let X be a locally compact paracompact space. If Z ∈
Z (X∗) is non-empty, then Z ∩ σX 6= ∅.

Proof. Let S ∈ Z (βX) be such that S ∩ X∗ = Z (which exists, as
X∗ is closed in (the normal space) βX, as X is locally compact, and
thus, by the Tietze-Urysohn Theorem, every continuous function from
X∗ to I is continuously extendible over βX). By Lemma 3.12 we have
S ∩ σX 6= ∅. Suppose that S ∩ (σX\X) = ∅. Then, S ∩ σX = X ∩ S.
Assume the notation of 2.9. Let J = {i ∈ I : Xi ∩ S 6= ∅}. Then, J is
finite. Note that since XJ is clopen in X, it has a clopen closure in βX.
Now,

T = S ∩ (βX\clβXXJ) ∈ Z (βX)
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misses σX, and therefore, by Lemma 3.12 we have T = ∅. But, this is a
contradiction, as Z = S ∩ (βX\σX) ⊆ T . This shows that

Z ∩ (σX\X) = S ∩ (σX\X) 6= ∅.

Lemma 3.14. Let X be a locally compact paracompact space. For S, T ∈
Z (X∗), if S ∩ σX ⊆ T ∩ σX, then S ⊆ T .

Proof. Suppose to the contrary that S\T 6= ∅, let s ∈ S\T . Let
f : βX → I be continuous and such that f(s) = 0 and f(T ) ⊆ {1}.
Then, Z(f) ∩ S is non-empty, and thus by Lemma 3.13 it follows that
Z(f) ∩ S ∩ σX 6= ∅. But, this is not possible, as

Z(f) ∩ S ∩ σX ⊆ Z(f) ∩ T = ∅.

The following lemma is from [9].

Lemma 3.15. Let X and Y be locally compact spaces. The following
are equivalent:

(1) X∗ and Y ∗ are homeomorphic.
(2) (E C(X),≤) and (E C(Y ),≤) are order-isomorphic.

Proof. This follows from the fact that in a compact space the order-
structure of the set of its all zero-sets (partially ordered with ⊆) deter-
mines its topology.

The proof of the following theorem is essentially a combination of
the proofs we have given for Theorems 3.19 and 3.21 in [9] with the
appropriate usage of the preceding lemmas. The reasonably detailed
proof is included here for the reader’s convenience.

Theorem 3.16. Let X and Y be locally compact paracompact (non-
compact) spaces and let P be a closed hereditary topological property of
compact spaces which is preserved under finite sums of subspaces and co-
incides with σ-compactness in the realm of locally compact paracompact
spaces. Then, the following are equivalent:

(1) λPX\X and λPY \Y are homeomorphic.
(2) (E C

P (X),≤) and (E C
P (Y ),≤) are order-isomorphic.

(3) (E ∗
local−P(X),≤) and (E ∗

local−P(Y ),≤) are order-isomorphic.
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Proof. Let
X =

⊕
i∈I

Xi and Y =
⊕
j∈J

Yj ,

for some index sets I and J with each Xi and Yj , for i ∈ I and j ∈ J
being σ-compact and non-compact. We will use notation of 2.9 and
Remark 2.10 without mentioning. Note that by Lemma 3.9 we have
λPX = σX and λPY = σY . Let

ωσX = σX ∪ {Ω} and ωσY = σY ∪ {Ω′}
denote the one-point compactifications of σX and σY , respectively.

(1) implies (2). Suppose that (1) holds. Suppose that either X or Y ,
say X, is σ-compact. Then, σY \Y is compact, as it is homeomorphic to
σX\X = X∗, and the latter is compact, as X is locally compact. Thus,

σY \Y = Y ∗H1
∪ · · · ∪ Y ∗Hn

= Y ∗H

where n ∈ N, the sets H1, . . . ,Hn ⊆ J are countable and

H = H1 ∪ · · · ∪Hn.

Now, if there exists some u ∈ J\H, then since Yu ∩ YH = ∅ we have

clβY Yu ∩ clβY YH = ∅.
Therefore, clβY Yu ⊆ Y , contradicting the fact that Yu is non-compact.
Thus, J = H and Y is σ-compact. Therefore, σY \Y = Y ∗. Note that by
Lemmas 3.8 and 3.10 we have E C

P (X) = E C(X) and E C
P (Y ) = E C(Y ).

The result now follows from Lemma 3.15.
Suppose that X and Y are non-σ-compact. Let f : σX\X → σY \Y

denote a homeomorphism. We define an order-isomorphism

φ :
(
ΘX

(
E C
P (X)

)
,⊆

)
→

(
ΘY

(
E C
P (Y )

)
,⊆

)
.

Since ΘX and ΘY are anti-order-isomorphisms, this will prove (2). Let
D ∈ ΘX(E C

P (X)). By Lemma 3.10 we have D ∈ Z (X∗) and βX\σX ⊆
D. Since X∗\D ⊆ σX, being a cozero-set in X∗ is σ-compact, there
exists a countable G ⊆ I such that X∗\D ⊆ X∗

G. Now, since D ∩X∗
G ∈

Z (X∗
G), we have

f(D ∩X∗
G) ∈ Z

(
f(X∗

G)
)
.

Since X∗
G is open in σX\X, its homeomorphic image f(X∗

G) is open
in σY \Y , and thus, is open in Y ∗. But, f(X∗

G) is compact, as it is a
continuous image of a compact space, and therefore, f(X∗

G) is clopen in
Y ∗. Thus,

f(D ∩X∗
G) ∪

(
Y ∗\f(X∗

G)
)
∈ Z (Y ∗).
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Let
φ(D) = f

(
D ∩ (σX\X)

)
∪ (βY \σY ).

Note that since

f
(
D ∩ (σX\X)

)
= f

(
(D ∩X∗

G) ∪
(
(σX\X)\X∗

G

))
= f(D ∩X∗

G) ∪
(
(σY \Y )\f(X∗

G)
)

we have

φ(D) = f
(
D ∩ (σX\X)

)
∪ (βY \σY )

= f(D ∩X∗
G) ∪

(
(σY \Y )\f(X∗

G)
)
∪ (βY \σY )

= f(D ∩X∗
G) ∪

(
Y ∗\f(X∗

G)
)

which shows that φ is well-defined. The function φ is clearly an order-
homomorphism. Since f−1 : σY \Y → σX\X also is a homeomorphism,
as above, it induces an order-homomorphism

ψ :
(
ΘY

(
E C
P (Y )

)
,⊆

)
→

(
ΘX

(
E C
P (X)

)
,⊆

)
which is defined by

ψ(D) = f−1
(
D ∩ (σY \Y )

)
∪ (βX\σX),

for D ∈ ΘY (E C
P (Y )). It is now easy to see that ψ = φ−1, which shows

that φ is an order-isomorphism.
(2) implies (1). Suppose that (2) holds. Suppose that either X or Y ,

say X, is σ-compact (and non-compact). Then, σX = βX, and thus,
by Lemmas 3.8 and 3.10, we have E C

P (X) = E C(X). Suppose that Y is
non-σ-compact. Note that X, being paracompact and non-compact, is
non-pseudocompact (see Theorems 3.10.21, 5.1.5 and 5.1.20 of [3]) and
therefore, X∗ contains at least two elements, as almost compact spaces
are pseudocompact (see Problem 5U (1) of [16]; recall that a Tychonoff
space T is called almost compact if βT\T has at most one element).
Thus, there exist two disjoint non-empty zero-sets of X∗ corresponding
to two elements in E C(X) with no common upper bound in E C(X).
But, this is not true, as E C(X) is order-isomorphic to E C

P (Y ), and
any two elements in the latter have a common upper bound in E C

P (Y ).
(Note that since Y is non-σ-compact, the set βY \σY is non-empty, and
by Lemma 3.10, the image of any element in E C

P (Y ) under ΘY contains
βY \σY .) Therefore, Y also is σ-compact and by Lemmas 3.8 and 3.10,
we have E C

P (Y ) = E C(Y ). Now, since σY = βY , the result follows from
Lemma 3.15.
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Next, suppose that X and Y are both non-σ-compact. We show that
the two compact spaces ωσX\X and ωσY \Y are homeomorphic, by
showing that their corresponding sets of zero-sets (partially ordered with
⊆) are order-isomorphic. Since ΘX and ΘY are anti-order-isomorphisms,
condition (2) implies the existence of an order-isomorphism

φ :
(
ΘX

(
E C
P (X)

)
,⊆

)
→

(
ΘY

(
E C
P (Y )

)
,⊆

)
.

We define an order-isomorphism

ψ :
(
Z (ωσX\X),⊆

)
→

(
Z (ωσY \Y ),⊆

)
as follows. Let Z ∈ Z (ωσX\X). Suppose that Ω ∈ Z. Then, since
(ωσX\X)\Z is a cozero-set in (the compact space) ωσX\X, it is σ-
compact. Thus, (ωσX\X)\Z ⊆ X∗

G, for some countable G ⊆ I. Since
X∗

G is clopen in X∗, we have(
Z\{Ω}

)
∪ (βX\σX) = (Z ∩X∗

G) ∪ (X∗\X∗
G) ∈ Z (X∗).

In this case, we let

ψ(Z) =
(
φ
((
Z\{Ω}

)
∪ (βX\σX)

)
\(βY \σY )

)
∪ {Ω′}.

Now, suppose that Ω /∈ Z. Then, Z ⊆ σX\X, and therefore Z ⊆ X∗
G,

for some countable G ⊆ I, and thus, using this, one can write

(3.2) Z = X∗\
∞⋃

n=1

Zn where βX\σX ⊆ Zn ∈ Z (X∗) for n ∈ N.

In this case, we let

ψ(Z) = Y ∗\
∞⋃

n=1

φ(Zn).

We check that ψ is well-defined. Assume the representation given in
(3.2). Since Y ∗\φ(Zn) ⊆ σY , for n ∈ N, there exists a countable H ⊆ J
such that Y ∗\φ(Zn) ⊆ Y ∗H , for all n ∈ N.

Claim. For Z ∈ Z (ωσX\X) with Ω /∈ Z assume the representation
given in (3.2). Let H ⊆ J be countable and such that Y ∗\φ(Zn) ⊆ Y ∗H ,
for all n ∈ N. Let A be such that φ(A) = Y ∗\Y ∗H . Then,

Y ∗\
∞⋃

n=1

φ(Zn) = φ(A ∪ Z)\φ(A).
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Proof of the claim. Suppose that y ∈ Y ∗ and y /∈ φ(Zn), for each n ∈
N. If y /∈ φ(A ∪ Z)\φ(A), then since y /∈ φ(Z1) ⊇ φ(A) we have
y /∈ φ(A ∪ Z). Therefore, there exists some B ∈ Z (Y ∗) containing y
such that B ∩ φ(A ∪ Z) = ∅ and B ∩ φ(Zn) = ∅, for n ∈ N. Let C be
such that φ(C) = B ∪ φ(A ∪ Z), and let Sn, for n ∈ N, be such that

φ(Sn) = φ(C) ∩ φ(Zn)
=

(
B ∪ φ(A ∪ Z)

)
∩ φ(Zn)

=
(
B ∩ φ(Zn)

)
∪

(
φ(A ∪ Z) ∩ φ(Zn)

)
= φ(A ∪ Z) ∩ φ(Zn).

Since A ⊆ Zn, as φ(A) ⊆ φ(Zn) and Z ∩ Zn = ∅, we have A ∩ Z = ∅,
which implies that

(A ∪ Z) ∩ Zn = (A ∩ Zn) ∪ (Z ∩ Zn) = A,

for n ∈ N. Clearly, Sn ⊆ (A ∪ Z) ∩ Zn, as by above φ(Sn) ⊆ φ(A ∪ Z)
and φ(Sn) ⊆ φ(Zn), for n ∈ N. Thus, φ(Sn) ⊆ φ(A), for n ∈ N. But,
since φ(A) ⊆ φ(Zn), we have φ(A) ⊆ φ(Sn), and therefore

φ(C ∩ Zn) ⊆ φ(C) ∩ φ(Zn) = φ(Sn) = φ(A),

for n ∈ N. This implies that C ∩ Zn ⊆ A, for n ∈ N. Thus,

C\Z = C ∩
∞⋃

n=1

Zn =
∞⋃

n=1

(C ∩ Zn) ⊆ A.

Therefore, C ⊆ A ∪ Z and we have B ⊆ φ(C) ⊆ φ(A ∪ Z), which is a
contradiction, as B ∩ φ(A ∪ Z) = ∅. This shows that

Y ∗\
∞⋃

n=1

φ(Zn) ⊆ φ(A ∪ Z)\φ(A).

Now, suppose that y ∈ φ(A ∪ Z)\φ(A). Suppose to the contrary that
y ∈ φ(Zn), for some n ∈ N. Then,

y ∈ φ(Zn) ∩ φ(A ∪ Z) = φ(D),

for some D. Clearly, D ⊆ Zn and D ⊆ A ∪ Z, as φ(D) ⊆ φ(Zn) and
φ(D) ⊆ φ(A ∪ Z). This implies that

D ⊆ Zn ∩ (A ∪ Z) = (Zn ∩A) ∪ (Zn ∩ Z) = Zn ∩A ⊆ A

and thus y ∈ φ(A), as φ(D) ⊆ φ(A), which is a contradiction. This
proves the claim.
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Now, suppose that

Z = X∗\
∞⋃

n=1

Sn and Z = X∗\
∞⋃

n=1

Zn

are two representations for Z ∈ Z (ωσX\X) with Ω /∈ Z such that each
Sn, Zn ∈ Z (X∗) contains βX\σX, for n ∈ N. Choose a countable
H ⊆ J such that

Y ∗\φ(Sn) ⊆ Y ∗H and Y ∗\φ(Zn) ⊆ Y ∗H ,

for n ∈ N. Then, by the claim, we have

Y ∗\
∞⋃

n=1

φ(Sn) = φ(A ∪ Z)\φ(A) = Y ∗\
∞⋃

n=1

φ(Zn)

where A is such that φ(A) = Y ∗\Y ∗H . This shows that ψ is well-defined.
Next, we show that ψ is an order-isomorphism. Suppose that S,Z ∈
Z (ωσX\X) and S ⊆ Z. We consider the following cases.

Case 1: Suppose that Ω ∈ S. Then, Ω ∈ Z, and clearly,

ψ(S) =
(
φ
((
S\{Ω}

)
∪ (βX\σX)

)
\(βY \σY )

)
∪ {Ω′}

⊆
(
φ
((
Z\{Ω}

)
∪ (βX\σX)

)
\(βY \σY )

)
∪ {Ω′} = ψ(Z).

Case 2: Suppose that Ω /∈ S but Ω ∈ Z. Let

E = φ
((
Z\{Ω}

)
∪ (βX\σX)

)
and let

S = X∗\
∞⋃

n=1

Sn

where each Sn ∈ Z (X∗) contains βX\σX, for n ∈ N. Clearly,
Y ∗\E ⊆ σY . LetH ⊆ J be countable and such that Y ∗\φ(Sn) ⊆
Y ∗H , for all n ∈ N and Y ∗\E ⊆ Y ∗H . By the claim, we have
ψ(S) = φ(A ∪ S)\φ(A), where φ(A) = Y ∗\Y ∗H . Since Y ∗\Y ∗H ⊆
E, we have

A ⊆
(
Z\{Ω}

)
∪ (βX\σX).

Now,

ψ(S) = φ(A ∪ S)\φ(A) ⊆ φ(A ∪ S) ⊆ φ
((
Z\{Ω}

)
∪ (βX\σX)

)
which implies that

ψ(S) ⊆
(
φ
((
Z\{Ω}

)
∪ (βX\σX)

)
\(βY \σY )

)
∪ {Ω′} = ψ(Z).
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Case 3: Suppose that Ω /∈ Z. Then, Ω /∈ S. Let

S = X∗\
∞⋃

n=1

Sn and Z = X∗\
∞⋃

n=1

Zn

where each Sn, Zn ∈ Z (X∗) contains βX\σX, for n ∈ N.
Clearly,

S = S ∩ Z =
(
X∗\

∞⋃
n=1

Sn

)
∩

(
X∗\

∞⋃
n=1

Zn

)
= X∗\

∞⋃
n=1

(Sn ∪ Zn)

and thus, since φ(Zn) ⊆ φ(Sn ∪ Zn), for n ∈ N, it follows that

ψ(S) = Y ∗\
∞⋃

n=1

φ(Sn ∪ Zn) ⊆ Y ∗\
∞⋃

n=1

φ(Zn) = ψ(Z).

Note that since

φ−1 :
(
ΘY

(
E C
P (Y )

)
,⊆

)
→

(
ΘX

(
E C
P (X)

)
,⊆

)
also is an order-isomorphism, as above, it induces an order-isomorphism

γ :
(
Z (ωσY \Y ),⊆

)
→

(
Z (ωσX\X),⊆

)
which is easy to see that γ = ψ−1. Therefore, ψ is an order-isomorphism.
It then follows that there exists a homeomorphism f : ωσX\X →
ωσY \Y such that f(Z) = ψ(Z), for any Z ∈ Z (ωσX\X). Now, since
for each countable G ⊆ I we have

f(X∗
G) = ψ(X∗

G) ⊆ σY \Y
it follows that f(σX\X) = σY \Y . Thus, σX\X and σY \Y are home-
omorphic.

(1) implies (3). Suppose that (1) holds. Suppose that either X or
Y , say X, is σ-compact. Then, σX = βX and thus, arguing as in part
(1)⇒(2), it follows that Y also is σ-compact. Therefore, σY = βY . Note
that by Lemmas 3.7 and 3.11 we have E ∗

local−P(X) = E ∗(X) and since
X∗ ∈ Z (βX) (as X is σ-compact and locally compact, see 1B of [19]) by
Lemmas 3.7 and 3.8 we have E ∗(X) = E C(X). Thus, E ∗

local−P(X) =
E C(X) and similarly E ∗

local−P(Y ) = E C(Y ). The result now follows
from Lemma 3.15.

Suppose that X and Y are non-σ-compact. Let f : σX\X → σY \Y
be a homeomorphism. We define an order-isomorphism

φ :
(
ΘX

(
E ∗

local−P(X)
)
,⊆

)
→

(
ΘY

(
E ∗

local−P(Y )
)
,⊆

)
,
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as follows. Let Z ∈ ΘX(E ∗
local−P(X)). By Lemma 3.11 we have Z ∈

Z (βX) and Z ⊆ σX\X. Thus, Z ⊆ X∗
G, for some countable G ⊆ I.

Now, f(Z) ∈ Z (σY \Y ) and since f(Z) is compact, as it is a continuous
image of a compact space, it follows that f(Z) ⊆ Y ∗H , for some countable
H ⊆ J . Therefore, f(Z) ∈ Z (Y ∗H) and then f(Z) ∈ Z (clβY YH). Since
clβY YH is clopen in βY we have f(Z) ∈ Z (βY ). Define

φ(Z) = f(Z).

It is obvious that φ is an order-homomorphism. If we let

ψ :
(
ΘY

(
E ∗

local−P(Y )
)
,⊆

)
→

(
ΘX

(
E ∗

local−P(X)
)
,⊆

)
be defined by

ψ(Z) = f−1(Z),
then ψ = φ−1 which shows that φ is an order-isomorphism.

(3) implies (1). Suppose that (3) holds. Suppose that either X or Y ,
say X, is σ-compact (and non-compact). Then, σX = βX, and thus, by
Lemmas 3.7 and 3.11, we have E ∗

local−P(X) = E ∗(X). Therefore, since
X∗ ∈ Z (βX) the set E ∗

local−P(X) has a smallest element (namely, its
one-point compactification ωX). Thus, E ∗

local−P(Y ) also has a smallest
element; denote this element by T . Then, for each countable H ⊆ J we
have

Y ∗H ∈ ΘY

(
E ∗

local−P(Y )
)

and therefore σY \Y ⊆ ΘY (T ). By Lemma 3.14 (with ΘY (T ) and Y ∗ as
the zero-sets in its statement) we have Y ∗ ⊆ ΘY (T ). This implies that
Y ∗ ∈ Z (βY ) which shows that Y is σ-compact. Thus, σY = βY , and
by Lemmas 3.7 and 3.11, we have E ∗

local−P(Y ) = E ∗(Y ). Therefore, in
this case (and since by Lemmas 3.7 and 3.8 we have E ∗(X) = E C(X)
and E ∗(Y ) = E C(Y )) the result follows from Lemma 3.15.

Next, suppose that X and Y are both non-σ-compact. Since ΘX and
ΘY are both anti-order-isomorphisms, there exists an order-isomorphism

φ :
(
ΘX

(
E ∗

local−P(X)
)
,⊆

)
→

(
ΘY

(
E ∗

local−P(Y )
)
,⊆

)
.

We extend φ by letting φ(∅) = ∅. We define a function

ψ :
(
Z (ωσX\X),⊆

)
→

(
Z (ωσY \Y ),⊆

)
and verify that it is an order-isomorphism. Let Z ∈ Z (ωσX\X) with
Ω /∈ Z. Since Z ⊆ X∗

G, for some countable G ⊆ I, we have Z ∈ Z (βX),
and therefore,

Z ∈ ΘX

(
E ∗

local−P(X)
)
∪ {∅}.
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In this case, let
ψ(Z) = φ(Z).

Now, suppose that Z ∈ Z (ωσX\X) and Ω ∈ Z. Then, (ωσX\X)\Z is
a cozero-set in ωσX\X, and we have

(3.3) Z = (ωσX\X)\
∞⋃

n=1

Zn where Zn ∈ Z (ωσX\X) for n ∈ N.

Thus, as above, it follows that

Zn ∈ ΘX

(
E ∗

local−P(X)
)
∪ {∅},

for n ∈ N. We verify that

(3.4)
∞⋃

n=1

φ(Zn) ∈ Coz(ωσY \Y ).

To show this, note that since φ(Zn) ⊆ σY \Y there exists a countable
H ⊆ J such that φ(Zn) ⊆ Y ∗H , for n ∈ N.

Claim. For Z ∈ Z (ωσX\X) with Ω ∈ Z assume the representation
given in (3.3). Let H ⊆ J be countable and such that φ(Zn) ⊆ Y ∗H , for
all n ∈ N. Let A be such that φ(A) = Y ∗H . Then,

φ(A ∩ Z) = φ(A)\
∞⋃

n=1

φ(Zn).

Proof of the claim. For each n ∈ N, since A ∩ Z ∩ Zn = ∅, we have
φ(A ∩ Z) ∩ φ(Zn) = ∅, as otherwise, φ(A ∩ Z) and φ(Zn) will have a
common lower bound in ΘY (E ∗

local−P(Y )), that is, φ(A ∩ Z) ∩ φ(Zn),
whereas A ∩ Z and Zn do not have. Also, φ(A ∩ Z) ⊆ φ(A). Therefore,

φ(A ∩ Z) ⊆ φ(A)\
∞⋃

n=1

φ(Zn).

To show the reverse inclusion, let y ∈ φ(A) be such that y /∈ φ(Zn), for
n ∈ N. There exists B ∈ Z (βY ) such that y ∈ B and B ∩ φ(Zn) = ∅,
for all n ∈ N. If y /∈ φ(A∩Z), then there exists some C ∈ Z (βY ) such
that y ∈ C and C ∩ φ(A ∩ Z) = ∅. Let D = φ(A) ∩B ∩ C and let E be
such that φ(E) = D. For each n ∈ N, since φ(E) ∩ φ(Zn) = ∅, we have
E ∩ Zn = ∅, and thus E ⊆ Z. On the other hand, since φ(E) ⊆ φ(A)
we have E ⊆ A, and therefore E ⊆ A ∩ Z. Thus, φ(E) ⊆ φ(A ∩ Z),
which implies that φ(E) = ∅, as φ(E) ⊆ C. This contradiction shows
that y ∈ φ(A ∩ Z), which proves the claim.

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

224 Koushesh

Let A be such that φ(A) = Y ∗H . Now, φ(A ∩ Z) ∈ Z (ωσY \Y ), as
φ(A ∩ Z) ⊆ φ(A). By the claim we have

(ωσY \Y )\
∞⋃

n=1

φ(Zn) =
(
φ(A)\

∞⋃
n=1

φ(Zn)
)
∪

(
(ωσY \Y )\φ(A)

)
= φ(A ∩ Z) ∪

(
(ωσY \Y )\φ(A)

)
∈ Z (ωσY \Y )

and (3.4) is verified. In this case, we let

ψ(Z) = (ωσY \Y )\
∞⋃

n=1

φ(Zn).

Next, we show that ψ is well-defined. Assume that

Z = (ωσX\X)\
∞⋃

n=1

Sn

with Sn ∈ Z (ωσX\X), for n ∈ N, is another representation of Z. We
need to show that

(3.5)
∞⋃

n=1

φ(Zn) =
∞⋃

n=1

φ(Sn).

Without any loss of generality, suppose to the contrary that there exists
some m ∈ N and y ∈ φ(Zm) such that y /∈ φ(Sn), for all n ∈ N. Then,
there exists some A ∈ Z (βY ) such that y ∈ A and A ∩ φ(Sn) = ∅, for
n ∈ N. Consider

A ∩ φ(Zm) ∈ ΘY

(
E ∗

local−P(Y )
)
.

Let B be such that φ(B) = A ∩ φ(Zm). Since φ(B) ⊆ A we have
φ(B) ∩ φ(Sn) = ∅ from which it follows that B ∩ Sn = ∅, for n ∈ N.
But, B ⊆ Zm, as φ(B) ⊆ φ(Zm), and we have

B ⊆
∞⋃

n=1

Zn =
∞⋃

n=1

Sn

which implies that B = ∅. But, this is a contradiction, as φ(B) 6= ∅.
Therefore, (3.5) holds, and thus ψ is well-defined. To prove that ψ is an
order-isomorphism, let S,Z ∈ Z (ωσX\X) and S ⊆ Z. The case when
S = ∅ holds trivially. Assume that S 6= ∅. We consider the following
cases.
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Case 1: Suppose that Ω /∈ Z. Then, Ω /∈ S and we have

ψ(S) = φ(S) ⊆ φ(Z) = ψ(Z).

Case 2: Suppose that Ω /∈ S but Ω ∈ Z. Let

Z = (ωσX\X)\
∞⋃

n=1

Zn

with Zn ∈ Z (ωσX\X), for n ∈ N. Then, since S ⊆ Z we have
S ∩ Zn = ∅, and therefore φ(S) ∩ φ(Zn) = ∅, for n ∈ N. Thus,

ψ(S) = φ(S) ⊆ (ωσY \Y )\
∞⋃

n=1

φ(Zn) = ψ(Z).

Case 3: Suppose that Ω ∈ S. Then, Ω ∈ Z. Let

S = (ωσX\X)\
∞⋃

n=1

Sn and Z = (ωσX\X)\
∞⋃

n=1

Zn

where Sn, Zn ∈ Z (ωσX\X), for n ∈ N. Therefore,

S = S ∩ Z =
(
(ωσX\X)\

∞⋃
n=1

Sn

)
∩

(
(ωσX\X)\

∞⋃
n=1

Zn

)
= (ωσX\X)\

∞⋃
n=1

(Sn ∪ Zn).

Thus, since φ(Zn) ⊆ φ(Sn ∪ Zn), for n ∈ N, we have

ψ(S) = (ωσY \Y )\
∞⋃

n=1

φ(Sn ∪ Zn) ⊆ (ωσY \Y )\
∞⋃

n=1

φ(Zn) = ψ(Z).

This shows that ψ is an order-homomorphism. To show that ψ is an
order-isomorphism, we note that

φ−1 :
(
ΘY

(
E ∗

local−P(Y )
)
,⊆

)
→

(
ΘX

(
E ∗

local−P(X)
)
,⊆

)
is an order-isomorphism. Let

γ :
(
Z (ωσY \Y ),⊆

)
→

(
Z (ωσX\X),⊆

)
be the induced order-homomorphism which is defined as above. Then, it
is straightforward to see that γ = ψ−1, that is, ψ is an order-isomorphism.
This implies the existence of a homeomorphism f : ωσX\X → ωσY \Y
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such that f(Z) = ψ(Z), for every Z ∈ Z (ωσX\X). Therefore, for any
countable G ⊆ I, since X∗

G ∈ Z (ωσX\X), we have

f(X∗
G) = ψ(X∗

G) = φ(X∗
G) ⊆ σY \Y.

Thus, f(σX\X) ⊆ σY \Y , which shows that f(Ω) = Ω′. Therefore,
σX\X and σY \Y are homeomorphic.

Example 3.17. The Lindelöf property and the linearly Lindelöf prop-
erty (besides σ-compactness itself) are examples of topological properties
P satisfying the assumption of Theorem 3.16. To see this, let X be a lo-
cally compact paracompact space. Assume a representation for X as in
Notation 2.9. Recall that a Hausdorff space X is said to be linearly Lin-
delöf [6] provided that every linearly ordered (by set inclusion ⊆) open
cover of X has a countable subcover, equivalently, if every uncountable
subset of X has a complete accumulation point in X. (Recall that a
point x ∈ X is called a complete accumulation point of a set A ⊆ X if
for every neighborhood U of x in X we have |U ∩ A| = |A|.) Note that
if X is non-σ-compact, then (using the notation of Notation 2.9) the set
I is uncountable. Let A = {xi : i ∈ I} where xi ∈ Xi, for i ∈ I. Then,
A is an uncountable subset of X without (even) accumulation points.
Thus, X cannot be linearly Lindelöf as well. For the converse, note that
if X is not linearly Lindelöf, then, obviously, X is not Lindelöf, and
therefore, is non-σ-compact, as it is well-known that σ-compactness and
the Lindelöf property coincide in the realm of locally compact paracom-
pact spaces (this fact is evident from the representation given for X in
Notation 2.9).

Theorem 3.16 above might leave the impression that (E C
P (X),≤) and

(E ∗
local−P(X),≤) are order-isomorphic. The following is to settle this,

showing that in most cases this is indeed not going to be the case.

Theorem 3.18. Let X be a locally compact paracompact (non-compact)
space and let P be a closed hereditary topological property of compact
spaces which is preserved under finite sums of subspaces and coincides
with σ-compactness in the realm of locally compact paracompact spaces.
Then, the following are equivalent:

(1) X is σ-compact.
(2) (E C

P (X),≤) and (E ∗
local−P(X),≤) are order-isomorphic.
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Proof. Since X is locally compact, the set X∗ is closed in (the normal
space) βX and thus, using the Tietze-Urysohn Theorem, every zero-set
of X∗ is extendible to a zero-set of βX. Now, if X is σ-compact (since
X is also locally compact) we have X∗ ∈ Z (βX) and therefore every
zero-set of X∗ is a zero-set of βX. Note that λPX = σX = βX. Thus,
using Lemmas 3.10 and 3.11 we have

ΘX

(
E C
P (X)

)
= Z (X∗)\{∅} = ΘX

(
E ∗

local−P(X)
)

from which it follows that

E C
P (X) = E ∗

local−P(X).

If X is non-σ-compact, then any two elements of E C
P (X) have a com-

mon upper bound while this is not the case for E ∗
local−P(X). To see

this, note that by Lemma 3.10 the set ΘX(E C
P (X)) is closed under finite

intersections (note that the finite intersections are non-empty, as they
contain βX\σX and the latter is non-empty, as X is non-σ-compact)
while there exist (at least) two elements in ΘX(E ∗

local−P(X)) with empty
intersection; simply consider X∗

i and X∗
j , for some distinct i, j ∈ I (we

are assuming the representation for X given in Notation 2.9).

Project 3.19. Let X be a (locally compact paracompact) space and
let P be a (closed hereditary) topological property (of compact spaces
which is preserved under finite sums of subspaces and coincides with
σ-compactness in the realm of locally compact paracompact spaces).
Explore the relationship between the order structures of (E C

P (X),≤)
and (E ∗

local−P(X),≤).
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