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ABSTRACT. A space Y is called an extension of a space X, if Y
contains X as a dense subspace. Two extensions of X are said to
be equivalent, if there is a homeomorphism between them which
fixes X point-wise. For two (equivalence classes of) extensions Y
and Y’ of X let Y < Y’, if there is a continuous function of Y’
into Y which fixes X point-wise. An extension Y of X is called a
one-point extension, if Y\ X is a singleton. ‘An extension Y of X
is called first-countable, if Y is first-countable at points of Y\ X.
Let P be a topological property. An extension Y of X is called a
P-extension, if it has P.

In this article, for a given locally compact paracompact space
X, we consider the two classes of one-point Cech-complete; P-
extensions of X and one-point first-countable locally-P extensions
of X, and we study their order-structures, by relating them to the
topology of a certain subspace of the outgrowth SX\X. Here P is
subject to'some requirements and include o-compactness and the
Lindel6f property as special cases.

1. Introduction

A space Y is called an extension of a space X, if Y contains X as a
dense subspace. If Y is an extension of X, then the subspace Y\ X of
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Y is called the remainder of Y. Extensions with a one-point remainder
are called one-point extensions. Two extensions of X are said to be
equivalent, if there exists a homeomorphism between them which fixes
X point-wise. This defines an equivalence relation on the class of all ex-
tensions of X. The equivalence classes will be identified with individuals
when this causes no confusion. For two extensions Y and Y’ of X we let
Y <Y, if there exists a continuous function of Y’ into Y which fixes X
point-wise. The relation < defines a partial order on the set of exten-
sions of X (see Section 4.1 of [16] for more details). An extension Y of
X is called first-countable, if Y is first-countable at points of Y\ X', that
is, Y has a countable local base at every point of Y\ X. Let P be a topo-
logical property. An extension Y of X is called a P-extension, if it has
P. If P is compactness, then P-extensions are called compactifications.

This work was mainly motivated by our previous work [9] (see [1], [7],
[8], [11], [12] and [13] for related results) in which we have studied the
partially ordered set of one-point P-extensions of a given locally com-
pact space X by relating it to the topologies of certain subspaces of its
outgrowth X\ X. In this article, we continue our studies by considering
the classes of one-point Cech-complete P-extensions and one-point first-
countable locally-P extensions of a given locally compact paracompact
space X. The topological property P.is subject to some requirements
and include o-compactness, the Lindel6f property and the linearly Lin-
delof property as special cases.

We review some of the terminology, notation and well-known results
that will be used in the sequel. Our definitions mainly come from the
standard text [3] (thus, in particular, compact spaces are Hausdorff,
etc.). Other useful sources are [5] and [16].

The letters I and IN denote the closed unit interval and the set of all
positive integers, respectively. For a subset A of a space X we let clx A
and int x A denote the closure and the interior of A in X, respectively. A
subset.of a space is called clopen, if it is simultaneously closed and open.
A zero-set of a space X is a set of the form Z(f) = f~1(0) for some
continuous f : X — I. Any set of the form X\Z, where Z is a zero-set
of X, is'called a cozero-set of X. We denote the set of all zero-sets of X
by Z(X) and the set of all cozero-sets of X by Coz(X).

For a Tychonoff space X the Stone-Cech compactification of X is
the largest (with respect to the partial order <) compactification of X
and is denoted by 3X. The Stone-Cech compactification of X can be
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characterized among all compactifications of X by either of the following
properties:

(1) Every continuous function of X to a compact space is continu-
ously extendible over X.

(2) Every continuous function of X to I is continuously extendible
over 5X.

(3) For every Z,S € Z(X) we have

ClﬁX(Z N S) = CIBXz N CIBXS.

A Tychonoff space is called zero-dimensional, if it has an open base
consisting of its clopen subsets. A Tychonoff space.is-called strongly
zero-dimensional, if its Stone-Cech compactification is zero-dimensional.
A Tychonoff space X is called Cech-complete, if its outgrowth SX\X
is an F, in $X. Locally compact spaces are Cech-complete, and in the
realm of metrizable spaces X, Cech-completeness is equivalent to the
existence of a compatible complete metric on X.

Let P be a topological property. A topological space X is called
locally-P, if for every x € X there exists an open neighborhood U, of z
in X such that clxU, has P.

A topological property P is said to be hereditary with respect to closed
subsets, if each closed subset of a space with P also has P. A topological
property P is said to be preserved under finite (closed) sums of subspaces,
if a Hausdorff’ space has P, provided that it is the union of a finite
collection of its (closed) P-subspaces.

Let (P;<) and (Q,<) be two partially ordered sets. A mapping
f:(P) = (Q, <) is said to be an order-homomorphism (anti-order-
homomorphism, respectively), if f(a) < f(b) (f(b) < f(a), respectively)
whenever a < b. An order-homomorphism (anti-order-homomorphism,
respectively) f : (P, <) — (@, <) is said to be an order-isomorphism
(anti-order-isomorphism, respectively), if f~! : (Q,<) — (P, <) (ex-
ists and) is an order-homomorphism (anti-order-homomorphism, respec-
tively). Two partially ordered sets (P, <) and (@, <) are called order-
isomorphic (anti-order-isomorphic, respectively), if there exists an order-
isomorphism (anti-order-isomorphism, respectively) between them.
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2. Motivations, notations and definitions

In this article we will be dealing with various sets of one-point exten-
sions of a given topological space X. For the reader’s convenience we
list all these sets at the beginning.

Notation 2.1. Let X be a topological space. Denote
&(X)={Y :Y is a one-point Tychonoff extension of X'}
E*(X)={Y € &£(X) : Y is first-countable at Y\ X'}
EC(X)={Y € &(X) :Y is Cech-complete}
EK(X)={Y € &(X) : Y is locally compact}
and when P is a topological property

o &p(X)={Y € &X):Y has P}

o Eocal-p(X) ={Y € &X) : Y is locally-P}:
Also, we may use notations which are obtained by combinations of the
above notations, e.g.

glt)calfp (X) =& (X) N glocal—'P (X) .

Definition 2.2 ([10]). For a Tychonoff space X and a topological prop-
erty P, let

ApX = U {intgxclgxC #C € Coz(X) and clxC has P}.

Definition 2.3 ([14]). We say that a topological property P satisfies
Mréwka’s condition (W), if it satisfies the following: If X is a Tychonoff
space in which there exists a point p with an open base £ for X at p
such that X\ B has P, for each B € 4, then X has P.

Mréwka’s condition (W) is satisfied by a large number of topological
properties; among them are (regularity +) the Lindel6f property, para-
compactness, metacompactness, subparacompactness, the para-Lindelof
property, the o-para-Lindelof property, weak #-refinability, 8-refinability
(or submetacompactness), weak o06-refinability, d@-refinability (or the
submeta-Lindel6f property), countable paracompactness, [0, k]-compact-
ness, k-boundedness, screenability, o-metacompactness, Dieudonné com-
pleteness, N-compactness [15], realcompactness, almost realcompact-
ness [4] and zero-dimensionality (see [10], [12] and [13] for proofs and
[2], [17] and [18] for definitions).
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In [11] we have obtained the following result.

Theorem 2.4 ([11]). Let X and Y be locally compact locally-P non-
P spaces where P is either pseudocompactness or a closed hereditary
topological property which is preserved under finite closed sums of sub-
spaces and satisfies Mrowka’s condition (W). Then, the following are
equivalent:

(1) ApX\X and A\pY'\Y are homeomorphic.

(2) (Ep(X),<) and (Ep(Y), <) are order-isomorphic.

(3) (£5(X),<) and (5 (Y), <) are order-isomorphic.

(4) (€F(X),<) and (85 (Y), <) are order-isomorphic, provided that
X and'Y are moreover strongly zero-dimensional.

There are topological properties, however, which donot satisfy the as-
sumption of Theorem 2.4 (o-compactness, for example, does not satisfy
Mréwka’s condition (W); see [10]). The purpose of this article is to prove
the following version of Theorem 2.4. Specific topological properties P
which satisfy the requirements of Theorem 2.5 below are o-compactness,
the Lindelof property and the linearly Lindelof property. Note that in
Theorem 3.19 of [9] we have shown that conditions (1) and (3) of The-
orem 2.5 are equivalent, if P is g-compactness, and in Theorem 3.21 of
[9] we have shown that conditions (1) and (2) of Theorem 2.5 are equiv-
alent, if P is the Lindelof property. Thus, in some sense, Theorem 2.5
generalizes Theorems 3.19 and 3:21 of [9], and at the same time, brings
them under a same umbrella.

Theorem 2.5. Let X and Y be locally compact paracompact spaces
and let P be a closed hereditary topological property of compact spaces
which is preserved under finite sums of subspaces and coincides with o-
compactness.in the realm of locally compact paracompact spaces. Then,
the following are equivalent:

(D) ApX\X and A\pY'\Y are homeomorphic.
(2) (£5(X),<) and (5 (Y), <) are order-isomorphic.
(3) (Epear—p(X), <) and (8 p_p(Y), <) are order-isomorphic.

We now introduce some notation which will be widely used in this
article.
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Notation 2.6. Let X be a Tychonoff space X. For a subset A of X
denote
In particular, X* = X\ X.

Remark 2.7. Note that the notation given in Notation 2.6 can be am-
biguous, as A* can mean either BA\A or clgx A\X. However, since for
C*-embedded subsets these two notions coincide, this will not cause any
confusion.

Definition 2.8 ([7]). For a Tychonoff space X, let
ocX = U{clgxﬂ : H C X is o-compact}.

Notation 2.9. Let X be a locally compact paracompact non-compact
space. Then, X can be represented as

X=x
iel
for some index set I, with each X;, for ¢ € d, being o-compact and
non-compact (see Theorem 5.1.27 and Exercise 3.8.C of [3]). For J C I
denote
X, =JX.
icJ
Thus, using the notation of 2.6, we have

Xj = el (|J X)) \X.

ieJ

Remark 2.10. Note that in Notation 2.9 the set X7} is homeomorphic
to BX\Xy, as clgx Xy is homeomorphic to 3Xy (see Corollary 3.6.8
of [3]). Thus, when J is countable (since Xy is o-compact and locally
compact) X7 is a zero-sets in clgx Xy (see 1B of [19]). But, clgx X is
clopen in fX, as X is clopen in X (see Corollary 3.6.5 of [3]) therefore,
X7 is a zero-set in 3X. Also, note that with the notation given in 2.9,
we have
oX = U{cngXJ : J C 1 is countable}.

Note that 0 X is open in X and it contains X.
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3. Partially ordered set of one-point extensions as related to
topologies of subspaces of outgrowth

In Lemma 3.5 we establish a connection between one-point Tychonoff
extensions of a given space X and compact non-empty subsets of its
outgrowth X*. Lemma 3.5 (and its preceding lemmas) is known (see
e.g. [12]). It is included here for the sake of completeness.

Lemma 3.1. Let X be a Tychonoff space and let C' be a non-empty
compact subset of X*. Let T be the space which is obtained from BX
by contracting C' to a point p. Then, the subspace Y = X U{p} of T is
Tychonoff and BY =1T.

Proof. Let q : X — T be the quotient mapping. Note that T is
Hausdorff, and thus, being a continuous image of 5X, it is compact.
Also, note that Y is dense in T'. Therefore, T is a compactification of
Y. To show that 8Y = T, it suffices to verify that every continuous
h :' Y — I is continuously extendable‘over T. Let h : ¥ — I be
continuous. Let G : BX — I continuously extend hg|(XUC) : XUC — 1
(note that (X UC) = X, as X C X UC C X, see Corollary 3.6.9
of [3]). Define H : T — I such that H|(8X\C) = G|(8X\C) and
H(p) = h(p). Then, H|Y = h, and since Hqg = G is continuous, the
function H is continuous.

Notation 3.2. Let X be a Tychonoff space and let Y € &(X). Denote
by

Ty : BX — GY

the (unique) continuous extension of idx.

Lemma 3.3. Let X be a Tychonoff space and let Y = X U{p} € &(X).
Let T' be the space which is obtained from BX by contracting T;l(p) to
the point p, and let q : BX — T be the quotient mapping. Then, T' = Y
and Ty = q.

Proof. We need to show that Y is a subspace of T. Since Y is also
a compactification of X and 7y|X = idx, by Theorem 3.5.7 of [3], we
have 7y (X*) = BY'\X. For an open subset W of 3Y’, the set ¢(7y- ' (W))
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is open in T, as ¢~ (q(73 ' (W))) = 75, " (W) is open in BX. Therefore,
YNW =Y ngq(ry (W))

isopen in Y, when Y is considered as a subspace of T'. For the converse,
note that if V' is open in 7', since

YNV =Yn(@Y\ry(8X\¢ ' (V)))

and 7y (8X\q¢ (V) is compact and thus closed in 3Y, the set Y NV
is open in Y in its original topology. By Lemma 3.1 we have T' = Y.
This also implies that 7v = ¢, as 7yv,q : X — (Y are continuous-and
coincide with idx on the dense subset X of SX.

Lemma 3.4. Let X be a Tychonoff space. Let Y; € &(X), fori= 1,2,
and denote by 7; = Ty, : fX — BY; the continuous extension of idx.
Then, the following are equivalent:

(1) Y1 <Ys.

(2) 7 H(Y2\X) C 7 (V\X).

Proof. Let Y; = X U {p;}, for i = 1,2. (1) smplies (2). Suppose that
(1) holds. By the definition, there exists a continuous f : Yo — Y;
such that f|X = idx. Let fg : g¥3 — (Y7 continuously extend f.
Note that the continuous functions fg7e,m : BX — BY; coincide with
idx on the dense subset X of X, and'thus fgm = 7. Note that X
is dense in BY; (for i = 1,2); as it is dense in Y;, and therefore, [5Y;
is a compactification of X. Since f3|X = idx, by Theorem 3.5.7 of
[3], we have f3(f¥2\X) = BY1\X, and thus fz(p2) € BY1\X. But,
fa(p2) = f(p2), which implies that fg(p2) € Y1\ X = {p1}. Therefore,

75 (p2) (C 7y (5 (fa(p2)))

= (F5m2) " (f(p2) = 71 (F5(p2) = 1 (1)

(2) implies (1). Suppose that (2) holds. Let f : Yo — Y7 be defined
such that f(pa) = p1 and f|X = idx. We show that f is continuous,
this will show that Y7 < Y5. Note that by Lemma 3.3, the space 8Y> is
the quotient space of 3X which is obtained by contracting 7, 1(102) to a
point, and 7 is its corresponding quotient mapping. Thus, in particular,
Y5 is the quotient space of X U 7, 1(p2), and therefore, to show that f
is continuous, it suffices to show that f7|(X U7, '(p2)) is continuous.
We show this by verifying that fr2(t) = 71(t), for each t € X U, *(pa).
This obviously holds if t € X. If t € 7, *(pa), then m(t) = pa, and
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thus fra(t) = p1. But, since t € 7, '(m2(t)), we have t € 7, *(p1), and
therefore 71(t) = py. Thus, fr2(t) = 71(¢) in this case as well.

Lemma 3.5. Let X be a Tychonoff space. Define a function
0:(£(X), <) — ({C CX*:C is compact}\{0},C )
by
oY) = (Y\X),
forY € &(X). Then, © is an anti-order-isomorphism.

Proof. To show that © is well-defined, let Y € &(X). Note that since
X is dense in Y, the space X is dense in Y. Thus, 7v : X — (Y is
onto, as 7y (X)) is a compact (and therefore closed)subset of 5Y and it
contains X = 7y (X). Thus, 73} (Y\X) # 0. Also, since 7y |X = idx we
have 75,1 (Y\X) C X*, and since the singleton Y\ X is closed in 8Y, its
inverse image Ty Y(Y\X) is closed in 38X, and therefore it is compact.
Now, we show that © is onto, Lemma 3.4 will then complete the proof.
Let C' be a non-empty compact subset of X*. Let T be the quotient
space of X which is obtained by contracting C' to a point p. Consider
the subspace Y = X U{p} of T". Then, Y € &(X), and thus, by Lemma
3.1 we have BY = T. The quotient mapping ¢q : X — T is identical to
Ty, as it coincides with idx on the dense subset X of X . Therefore,

aY)=n'(p)=q¢ ') =C.

Notation 3.6. For/a Tychonoff space X denote by
Ox : ((X),<) — ({C C X*:C is compact}\{0}, C )
the anti-order-isomorphism defined by
Ox(Y) = 77 (Y\X),
for Y € &(X).

Lemmas 3.7 and 3.8 below are known results (see [9]).

Lemma 3.7. Let X be a Tychonoff space. ForY € &(X) the following
are equivalent:

(1) Y e &*X).

(2) Ox(Y) € Z(BX).
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Proof. Let Y = X U{p}. (1) implies (2). Suppose that (1) holds. Let
{V,, : n € N} be an open base at p in Y. For each n € N, let V! be
an open subset of BY such that Y NV, =V, and let f, : BY — I be
continuous and such that f,(p) =0 and f,(BY\V,)) C {1}. Let

Z =) 2(fa) € Z(BY).

n=1

We show that Z = {p}. Obviously, p € Z. Let t € Z and suppose to the
contrary that ¢t # p. Let W be an open neighborhood of p in ¥ such
that ¢ ¢ clgyW. Then, Y N W is an open neighborhood of pin Y. Let
k € N be such that V, CY NW. We have

teZ(f) S Vi S cayVy
= Clﬁy(Y N Vk/)
= C]ﬁka - Clﬁy(y N W) - ClﬁyW
which is a contradiction. This shows that ¢ = p and therefore Z C {p}.
Thus, {p} = Z € Z(BY), which implies that'r,*(p) € Z(3X).
(2) implies (1). Suppose that (2) holds. Let 7y.'(p) = Z(f) where
f : BX — I is continuous. Note that by Lemma 3.3 the space BY is
obtained from X by contracting 'r;l(p) to p with 7y : BX — BY as

the quotient mapping. Then, for each n € N, the set 7y (f~1([0,1/n)))
is an open neighborhood of p in BY. We show that the collection

{rapte ' ([0:5)) s nen}

of open neighborhoods of p in Y constitutes an open base at p in Y.
This will show (1). Let V be an open neighborhood of p in Y. Let V'
be an open subset of 3Y such that Y N V' = V. Then, p € V/ and thus

A ([0.2]) =200 = ') < 5 (),
n=1

By compactness we have f~'([0,1/k]) C 7' (V’), for some k € N.

Therefore,
von{r (1)) < von(r (o)
Yy (' (V) CYnv' =V.

N 1N
I =
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Lemma 3.8. Let X be a locally compact space. For' Y € &(X) the
following are equivalent:

(1) Y e £9(X).
(2) Ox(Y) € Z(X*).

Proof. Let Y = XU{p}. (1) implies (2). Suppose that (1) holds. Then,
Y*isan F, in Y. Let Y* = Uff;l K,, where each K, is closed in Y,
for n € N. Then,

(recall that BY is the quotient space of X which is obtained by con-
tracting 7y 1(p) to p and 7y is its quotient mapping; see Lemma 3.3).
For each n € N, let f, : 6X — I be continuous and such that

fn(T;I(p)) = {O} and fn(Kn) C {1}
Let f=73 7", fn/2". Then, f: X — Iis continuous and
v i(p) = Z(f)N XT e Z(XY).
(2) implies (1). Suppose that (2) holds. Let 7,'(p) = Z(g) where
g : X* — Iis continuous. Then, using Lemma 3.3, we have

Y*=X"\r'(p) = X*\Z(9)
= g '(0,1)) = 9‘1([%,1])
n=1

and each set g~1([1/n,1]), for n € N, being closed in X*, is compact
(note that since X is locally compact, X* is compact) and thus closed
in BY. Therefore, Y* is an F, in 8Y, that is, Y is Cech-complete.

Then, the following lemma justifies our requirement on P in Theorem
3.16. We simply need Ap X to have a more familiar structure.

Lemma 3.9. Let P be a topological property which is preserved under
finite closed sums of subspaces. The following are equivalent:

(1) The topological property P coincides with o-compactness in the
realm of locally compact paracompact spaces.
(2) For every locally compact paracompact space X we have

ApX =0X.
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Proof. (1) implies (2). Suppose that (1) holds. Let X be a locally
compact paracompact space. Assume the notation of 2.9. Let J C I
be countable. Then, X ; is o-compact and thus (since it is also locally
compact and paracompact) it has P. Note that X is clopen in X thus
it has a clopen closure in X, therefore

ClngJ = intﬁxcl/ngJ CApX

that is, 0 X C ApX. To see the reverse inclusion, let C' € Coz(X) be
such that clxC has P. Then, (since clyC being closed in X is also
locally compact and paracompact) clxC' is o-compact. Therefore;

intgxclgxC C clgxC C o X

which shows that ApX C o X. Thus, \pX =0cX.

(2) implies (1). Suppose that (2) holds. Let X bealocally compact
paracompact space. By the assumption we have ApX = aX. We verify
that X has P if and only if X is o-compact. Assume the notation of
Notation 2.9. Suppose that X has P. Then, A\pX = X and thus
ocX = 6X. Now, by compactness, we have

ﬁX = ClﬁXle y--- UclngJn,
for some n € N and some countable Ji,...;J, € I. Therefore,
X=X,U- -UX;,

is o-compact. For the converse, suppose that X is o-compact. Then,
0cX = (X and (since ApX = 0X) we have X = ApX. Thus, by
compactness, we have

08X = intBXcngcl U---u intgxclngn,

for some n € N and some C1,...,C, € Coz(X) such that clxC; has P,
for i =1,...,n. Now, using our assumption, the space

X =clxCiU---UclxC,

being a finite union of its closed P-subspaces, has P.

Lemma 3.10. Let X be a locally compact paracompact space and let P
be a closed hereditary topological property of compact spaces which is pre-
served under finite sums of subspaces and coincides with o-compactness
in the realm of locally compact paracompact spaces. For'Y € &(X) the
following are equivalent:

(1) Y e cg"g (X).

(2) ©x(Y) € Z(X*) and X\ \pX COx(Y).
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Thus, in particular

Ox(65(X)) = {Z € Z(X*): BX\\pX C Z}\{0}.

Proof. Let Y = X U{p}. (1) implies (2). Suppose that (1) holds.
By Lemma 3.8 we have 7y, (p) € 2°(X*). Note that by Lemma 3.9 we
have A\pX = 0X. Let t € fX\oX and suppose to the contrary that
t ¢ 7' (p). Let f: BX — I be continuous and such that f(t) = 0 and
f(ry (p)) = {1}. Since 7y (f~1([0,1/2])) is compact, the set

r=xa 1 ([o.4]) =y nm (51([0.2]))

being closed in Y, has P. But, T', being closed in X, is locally compact
and paracompact, and thus, having P, it is o-compact. Therefore, by
definition of 0 X we have clgxT C ¢ X. But, since

ter([o.3) < dns(g))
= ClﬁX(X“f_l([O’%)»
(X0 F0.5])) = chaxr

we have t € 0 X, which contradicts the choice of ¢. Thus, t € 7y '(p) and
therefore X \oX C 73" (p).

(2) implies (1). Suppese that (2) holds. Note that since X is locally
compact, the set X* is closed in (the normal space) X and thus, since
71 (p) € Z(X*) (using the Tietze-Urysohn Theorem) we have ! (p) =
Z N X*, for some Z € Z(X). Note that by Lemma 3.9 we have
ApX = oX. Now, since BX\oX C 7,,'(p) C Z we have fX\Z C 0 X.
Therefore, assuming the notation of 2.9 (since 3X\Z, being a cozero-set
in 8X, is o-compact) we have

N

BX\Z - U ClngJn - CIBXXJ

n=1

where Ji,Js,... C I are countable and J = J; U JyU---. But,
Y = Ty(Z) U (X\Z) - Ty(Z) UXy
and thus we have

(3.1) Y:Ty(Z)UXJ.
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Now, since X; has P, as it is o-compact (and being closed in X, it is
locally compact and paracompact) and 7y (Z) has P, as it is compact,
from (3.1) it follows that the space Y, being a finite union of its P-
subspaces, has P. The fact that Y is Cech-complete follows from Lemma
3.8.

The following generalizes Lemma 3.18 of [9].

Lemma 3.11. Let X be a locally compact paracompact space and let P
be a closed hereditary topological property of compact spaces which is pre-
served under finite sums of subspaces and coincides with o-compactness
in the realm of locally compact paracompact spaces. For'Y € &(X) the
following are equivalent:

( ) Y e éalocal P(X>
(2) ©x(Y) € Z(BX) and Ox(Y) C ApX.

Thus, in particular

ex(gl:;cal—P(X)) = {Z € g(ﬁX) 1 ZC APX\X}\{(Z)}

Proof. Let Y = X U{p}. (1) implies (2). Suppose that (1) holds. Since
Y € £*(X), by Lemma 3.7 we have 7' (p)r€ Z(BX). Let 75! (p) =
Z(f), for some continuous f : X = L. Since Y is locally-P, there exists
an open neighborhood V of p in'Y such that clyV has P. Let V' be an
open subset of 3Y such that:Y N'V/ =7V. Then, p € V', and thus since

N (o D=2 =7 € (V)

by compactness, we have f ([0, 1/k]) C 7' (V"), for some k € N. Now,

for each n > k, since
van (7 (o))

v (o)) ([0 59)))
Y Ny (' (V)

-
C YNV =V CeclyV

K, = xn(r(o D\f (o n+1>>)
:YﬂTy( ([ ])\f ([ +1>)>

N

the set
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being closed in clyV, has P, and therefore (since being closed in X
it is locally compact and paracompact) it is o-compact. (It might be
helpful to recall that by Lemma 3.3 the space BY is obtained from /X
by contracting T;l(p) to p with 7y as its quotient mapping.) Thus, the

set
s (fpg]) = U,

is o-compact, and therefore, by the definition of o X, we have

clsx (X n f*1<[0, %])) CoX.

clox f7 ( [O’ %))
_ clﬁX(Xﬂf_1<[O’%)>)

C ClﬁX<X”f_1([O’%D>

from which it follows that 7y l(p) C ¢ X. FEinally, note that by Lemma
3.9 we have \pX =0 X.

(2) implies (1). Suppose that (2) holds. By Lemma 3.7 we have
Y € &£*(X). Therefore, it suffices to verify that Y is locally-P. Also,
since by the assumption X is'locally compact, it is locally-P, as P is
assumed to be a topological property of compact spaces. Thus, we only
need to verify that p has an open neighborhood in Y whose closure in
Y has P. Let g+fX — I be continuous and such that Z(g) = 7' (p).
Then, since

But,

A
=
|
—
L
/
=
T =
~—
~—
IN

Mo ([0.2]) = 2 < rex

n=1

by compactness (and since Ap X is open in 3X) we have g~1([0,1/k]) C
Ap X, for some k € N. Note that by Lemma 3.9 we have \pX = oX.
Assume the notation of Notation 2.9. By compactness, we have

a7 ([o. %D Celgx Xy, U Uclgy X, = clgx Xy

where n € N, the sets Ji, ..., J, C I are countable and J = J1U---UJ,.
The set X N g~1([0,1/k]) € X, being closed in the latter (o-compact
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space) is o-compact, and therefore (since being closed in X, it is locally
compact and paracompact) it has P. Let

=y ()

Then, V is an open neighborhood of p in Y. We show that clyV has P.
But, this follows, since

wveran(e (P ) = (rom(e (1) oo

- (xor (i) v

and the latter, being a finite union of its P-subspaces (note that the
singleton {p}, being compact, has P) has P, and thus, its closed subset
cly'V, also has P.

Lemmas 3.12-3.14 are from [8].

Lemma 3.12. Let X be a locally compact paracompact space. If Z €
Z(BX) in non-empty, then ZNoX # ()

Proof. Let {z,};2; be a sequence in 0 X. Assume the notation of 2.9.
Then, {z, : n € N} C clgx X, for some countable J C I. Therefore,
{zy, : n € N} has a limit point in.clgx X ;€ 0 X. Thus, 0X is countably
compact, and therefore is pseudocompact, and v(c X) = (0 X) = X
(note that the latter equality holds, as X C 0X C (X). The result
now follows, as for any Tychonoff space T', any non-empty zero-set of
vT meets T (see Lemma 5.11 (f) of [16]).

Lemma 3.13. Let X be a locally compact paracompact space. If Z €
Z(X*) is non-empty, then ZNoX # 0.

Proof. Let S € Z(5X) be such that SN X* = Z (which exists, as
X* is closed in (the normal space) X, as X is locally compact, and
thus, by the Tietze-Urysohn Theorem, every continuous function from
X* to I'is continuously extendible over 5X). By Lemma 3.12 we have
SNoX # (. Suppose that SN (6 X\X) = 0. Then, SNoX = X NS.
Assume the notation of 2.9. Let J ={i € I:X; NS # 0}. Then, J is
finite. Note that since X j is clopen in X, it has a clopen closure in 5X.

Now,
T =5n(BX\clgxXy) € Z(BX)
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misses 0 X, and therefore, by Lemma 3.12 we have T' = (). But, this is a
contradiction, as Z = SN (X \oX) C T. This shows that

ZN(@X\X)=SN(cX\X) #0.

Lemma 3.14. Let X be a locally compact paracompact space. For S, T €
Z(X*),if SNoX CTNoX, then SCT.

Proof. Suppose to the contrary that S\T # 0, let s € S\Z. Let
f : X — I be continuous and such that f(s) = 0 and f(7) C {1}.
Then, Z(f) NS is non-empty, and thus by Lemma 3.13 it follows that
Z(f)yNnSNoX # (. But, this is not possible, as

Z(f)NnSNoX C Z(f)NT = b

The following lemma is from [9].

Lemma 3.15. Let X and Y be locally compact spaces. The following
are equivalent:

(1) X* and Y* are homeomorphic.
(2) (£9(X),<) and (&€ (Y), <) are order-isomorphic.

Proof. This follows from the fact that in a compact space the order-
structure of the set of its all zero-sets (partially ordered with C) deter-
mines its topology.

The proof of the following theorem is essentially a combination of
the proofs we have given for Theorems 3.19 and 3.21 in [9] with the
appropriate usage of the preceding lemmas. The reasonably detailed
proof is included here for the reader’s convenience.

Theorem 3.16. Let X and Y be locally compact paracompact (non-
compact) spaces and let P be a closed hereditary topological property of
compact spaces which is preserved under finite sums of subspaces and co-
incides with o-compactness in the realm of locally compact paracompact
spaces. Then, the following are equivalent:

(1) MpX\X and A\pY'\Y are homeomorphic.
(2) (£5(X),<) and (5 (Y), <) are order-isomorphic.
(3) (Epear—p(X), <) and (8 0_p(Y), <) are order-isomorphic.
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Proof. Let
X=P X andY =Py,
i€l jeJ
for some index sets I and J with each X; and Y;, for i € I and j € J
being o-compact and non-compact. We will use notation of 2.9 and

Remark 2.10 without mentioning. Note that by Lemma 3.9 we have
ApX =0X and \pY =Y. Let

woX =o0X U{Q} and woY = oY U{Q'}

denote the one-point compactifications of X and oY, respectively.

(1) implies (2). Suppose that (1) holds. Suppose that either X or Y,
say X, is o-compact. Then, cY'\Y is compact, as it is homeomorphic to
o X\X = X*, and the latter is compact, as X is locally compact. Thus,

oY\Y =Yj U---uYy =Yg
where n € N, the sets Hy, ..., H, C J are countable and
H=HU---UH,.
Now, if there exists some u € J\H, then since Y;, 0 Yy = () we have
ClﬁyYu N CIByYH = (.
Therefore, clgyY, C Y, contradicting the fact that Y, is non-compact.
Thus, J = H and Y is o-compact. Therefore, cY'\Y = Y*. Note that by
Lemmas 3.8 and 3.10 we have £5/(X)=¢&(X) and £5(Y) = £°(Y).
The result now follows from Lemma 3.15.

Suppose that X and Y are non-o-compact. Let f: c X\X — oY\Y
denote a homeomorphism. We define an order-isomorphism

¢: (0x(65(X)),C) — (B (65 (V). C).
Since O x and Oy are anti-order-isomorphisms, this will prove (2). Let
D € Ox(&5(X)). By Lemma 3.10 we have D € 2°(X*) and BX\o X C
D. Since X*\D C oX, being a cozero-set in X* is o-compact, there
exists a countable G C I such that X*\D C X(. Now, since DN X7, €
Z(X(), we have
f(DNXg) e Z(f(XE)).
Since X¢ is open in 0 X\X, its homeomorphic image f(X¢) is open
in oY'\Y, and thus, is open in Y*. But, f(X{) is compact, as it is a
continuous image of a compact space, and therefore, f(X¢) is clopen in
Y*. Thus,
F(DNXE) U (Y\f(XE) € Z(V").
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Let
¢(D) = f(DN (0 X\X)) U(BY\oY).
Note that since
f(DN(eX\X)) = f(DNXEH U ((eX\X)\XE))
= f(DNXE) U ((Y\Y)\F(XE))

we have

¢(D)

f(DN(eX\X)) U(BY\oY)
FDNXE) U ((eV\Y)\f(XE) U (BY\aY)
= f(DNXE) U (Y\f(XE)

which shows that ¢ is well-defined. The function ¢-is clearly an order-
homomorphism. Since f~! : 0Y\Y — 0 X\ X alsois a homeomorphism,
as above, it induces an order-homomorphism

v (0y (65 (Y)),C) — (0x(65 (X)), C)
which is defined by
Y(D) = fH(DN(eY\Y)) U(BX\oX),

for D € Oy (&5 (Y)). It is now easy to see that ¢ = ¢!, which shows
that ¢ is an order-isomorphism.

(2) implies (1). Suppose that (2) holds. Suppose that either X or Y,
say X, is o-compact (and non-compact). Then, 0 X = X, and thus,
by Lemmas 3.8 and 3.10, we have &5 (X) = & “(X). Suppose that Y is
non-o-compact. Note that X, being paracompact and non-compact, is
non-pseudocompact (see Theorems 3.10.21, 5.1.5 and 5.1.20 of [3]) and
therefore, X* contains at least two elements, as almost compact spaces
are pseudocompact (see Problem 5U (1) of [16]; recall that a Tychonoff
space T is called almost compact if ST\T has at most one element).
Thus, there exist two disjoint non-empty zero-sets of X* corresponding
to two elements in & (X) with no common upper bound in & ¢(X).
But, this is not true, as &“(X) is order-isomorphic to &5 (Y), and
any two elements in the latter have a common upper bound in éapc (Y).
(Note that since Y is non-o-compact, the set 3Y\oY is non-empty, and
by Lemma 3.10, the image of any element in gg (Y') under ©y contains
BY\oY.) Therefore, Y also is o-compact and by Lemmas 3.8 and 3.10,
we have £5(Y) = £°(Y). Now, since oY = Y, the result follows from
Lemma 3.15.
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Next, suppose that X and Y are both non-o-compact. We show that
the two compact spaces woX\X and woY\Y are homeomorphic, by
showing that their corresponding sets of zero-sets (partially ordered with
C) are order-isomorphic. Since © x and ©y are anti-order-isomorphisms,
condition (2) implies the existence of an order-isomorphism

6+ (Ox(65(X)).C) = (Or (E5(V)).C ).
We define an order-isomorphism
V: (Z(woX\X),C) — (Z(woY\Y),C)

as follows. Let Z € Z(woX\X). Suppose that Q2 € Z. Then, since
(wo X\X)\Z is a cozero-set in (the compact space) waX\X, it is o-
compact. Thus, (woX\X)\Z C X, for some countable G C I. Since
X, is clopen in X*, we have

(2\{2}) U (BX\0X) = (2N X§) U(X™\X§) € Z(X7).

In this case, we let

¥(Z) = (¢((2\{2}) U (BX\e X))\ (BY\oY)) U{Q'}.

Now, suppose that Q ¢ Z. Then, Z.C 0 X\ X, and therefore Z C X},
for some countable G C I, and thus, using this, one can write

(32)  Z=X"\|J Zn where 8X\0X C Z, € Z(X*) for n € N.

n=1

In this case, we let
w(2) =Y\ ¢(Zn).
n=1

We check that 1) is well-defined. Assume the representation given in
(3.2): Since Y*\@(Z,) C oY, for n € N, there exists a countable H C .J
such that ¥Y*\¢(Z,,) C Y}, for all n € N.

Claim. For Z € Z(woX\X) with Q ¢ Z assume the representation
gwen in (3.2). Let H C J be countable and such that Y*\¢(Z,) C Y},
for alln € N. Let A be such that $(A) =Y *\Y};. Then,

Y\ 6(Zn) = 6(AU 2)\$(A).
n=1
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Proof of the claim. Suppose that y € Y* and y ¢ ¢(Z,), for each n €
N. Ify ¢ ¢p(AU Z2)\¢p(A), then since y ¢ ¢(Z1) 2 ¢(A) we have
y ¢ (AU Z). Therefore, there exists some B € Z(Y™*) containing y
such that BN¢(AUZ) =0 and BN ¢(Z,) = 0, for n € N. Let C be
such that ¢(C) = BU¢(AU Z), and let Sy, for n € N, be such that

¢(Sn) = @(C)NP(Zn)
= (BU®(AUZ))N¢(Zy)
= (BN(Zy)) U (6(AUZ)NG(Zn)) = ¢(AUZ) N §(Zy).

Since A C Z,, as ¢(A) C ¢(Z,) and Z N Z, = (), we have AN Z = 0,
which implies that

(AUZ)N Zy = (AN Zp) U(Z N Zp). =4,

for n € N. Clearly, S, C (AU Z) N Z,, as by above ¢(S,) € ¢p(AU Z)
and ¢(S,) C ¢(Z,), for n € N. Thus, ¢(S,) C ¢(A), for'n € N. But,
since ¢(A) C ¢(Zy,), we have ¢p(A) C ¢(Sy), and therefore

H(CNZn) € G(C) N G(Zn) =6(Sn) = ¢(A),
for n € N. This implies that C'N Z,, C A, for n € N. Thus,

C\Z:Cm[jz 4 D(szn)gA.

n=1 n=1

Therefore, C C AU Z and wehave B C ¢(C) C ¢(A U Z), which is a
contradiction, as BN.¢(AU Z) = (). This shows that

YA\ | 6(Zn) C o(AUZ2)\p(A).

Now, suppose that y € ¢(A U Z)\¢(A). Suppose to the contrary that
y € d(Z,), for some n € N. Then,

y € d(Zn) NG(AU Z) = ¢(D),

for some D. Clearly, D C Z, and D C AU Z, as ¢(D) C ¢(Z,) and
#(D) C (AU Z). This implies that

DCZ,Nn(AUZ)=(Z,NnAU(Z,NZ)=Z,NACA

and thus y € ¢(A), as ¢(D) C ¢(A), which is a contradiction. This
proves the claim.
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Now, suppose that

o o0
Z=X"\|JSnand Z=X"\{] Z,
n=1 n=1
are two representations for Z € 2 (wo X\ X) with Q ¢ Z such that each
Sny Zn € Z(X*) contains fX\oX, for n € N. Choose a countable
H C J such that

Y™ \G(Sn) € Vi and Y"\$(Zn) C Y,
for n € N. Then, by the claim, we have

Y\ 6(Sn) = d(AU2)\$(A) = Y™\ | 6(Zn)
n=1 n=1

where A is such that ¢(A) = Y*\Y};. This shows that v is well-defined.
Next, we show that v is an order-isomorphism. Suppose that S, 7 €
Z(woX\X) and S C Z. We consider the following cases.

Case 1: Suppose that 2 € §. Then, 2 € Z, and clearly,
D(S) = (o((S\{Q}) U (BX\oX))\(BY \oY)) U {Q'}
C (o((2\{2}) U (BX\a X))\ (BY\eY)) U{Q'} = (2).
Case 2: Suppose that Q ¢ .5 but Q€ Z. Let
E = 6((2\{Q}) u(5X\0 X))
and let -
S=x\J S
n=1
where each S,, € Z(X*) contains fX\o X, for n € N. Clearly,
Y*\E.C aY. Let H C J be countable and such that Y*\¢(S,,) C
Yy, for all n e N and Y*\E C Y};. By the claim, we have
P(S) = ¢(AU S)\¢(A), where ¢(A) = Y*\Y};. Since Y*\Y}; C
E, we have
AC (Z\{Q}) U (BX\oX).
Now,
P(S) = d(AUS)\p(A) C ¢(AUS) C o((2\{Q}) U (BX\0 X))
which implies that

Y(8) € (((2\{2}) U (BX\e X))\(BY\oY)) U{Q'} = 4(2).
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Case 3: Suppose that Q ¢ Z. Then, Q ¢ S. Let

S=X"\J S and Z=x"\ ] Z,
n=1 n=1
where each Sp,Z, € Z(X*) contains fX\oX, for n € N.
Clearly,

S=8nZ= (X*\ U sn) N (X*\ U Zn> = X"\ | (50U Zy)
n=1 n=1 n=1
and thus, since ¢(Z,) C ¢(S, U Z,), for n € N, it follows that

n=1 n=1

Note that since
o' (By (65 (Y)),C ) — (Ox(¢5 (X)).€)
also is an order-isomorphism, as above, it-induces an order-isomorphism
7: (Z(woY\Y),C ) — (Z(woX\X),C)

which is easy to see that v = 1)~ Therefore, 1) is an order-isomorphism.
It then follows that there exists a homeomorphism f : woX\X —
woY\Y such that f(Z) = ¢(Z), for any Z € Z(woX\X). Now, since
for each countable G C I we have

f(Xg) = ¢(Xg) CoV\Y

it follows that f(cX\X) = oY \Y. Thus, cX\X and ocY\Y are home-
omorphic.

(1) implies (3). Suppose that (1) holds. Suppose that either X or
Y, say X4 is o-compact. Then, 0 X = X and thus, arguing as in part
(1)=(2), it follows that Y also is o-compact. Therefore, cY = fY. Note
that by Lemmas 3.7 and 3.11 we have & ,,_p(X) = &£*(X) and since
X* e Z(6X) (as X is o-compact and locally compact, see 1B of [19]) by
Lemmas 3.7 and 3.8 we have &*(X) = &¢(X). Thus, &, p(X) =
&Y(X) and similarly &, p(Y) = &°(Y). The result now follows
from Lemma 3.15.

Suppose that X and Y are non-o-compact. Let f: cX\X — oY\Y
be a homeomorphism. We define an order-isomorphism

¢ (Ox(Erap(X)),C) = (Ov(Efar_p(¥)), ),
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as follows. Let Z € Ox (&) ,_p(X)). By Lemma 3.11 we have Z €
Z(BX) and Z C o X\X. Thus, Z C X, for some countable G C I.
Now, f(Z) € Z(oY\Y) and since f(Z) is compact, as it is a continuous
image of a compact space, it follows that f(Z) C Y7, for some countable
H C J. Therefore, f(Z) € Z(Y};) and then f(Z) € 2 (clgyYn). Since
clgy Yy is clopen in Y we have f(Z) € Z(8Y). Define

(Z) = f(2).

It is obvious that ¢ is an order-homomorphism. If we let

¥ Oy (Eloca—p(Y)): S ) = (Ox (Eipcar—p(X)): € )
be defined by
W(Z)=f1(2),
then 1) = ¢! which shows that ¢ is an order-isomorphism.

(3) implies (1). Suppose that (3) holds. Suppose that either X or Y,
say X, is o-compact (and non-compact). Then, 0 X = 38X, and thus, by
Lemmas 3.7 and 3.11, we have &%, »(X) =& *(X). Therefore, since
X* € Z(BX) the set & ,,_p(X) has a smallest element (namely, its
one-point compactification wX). Thus, &} ,,_p(Y") also has a smallest
element; denote this element by 7'. Then, for each countable H C J we
have

Yy € Oy (Epca-p(Y))
and therefore cY'\Y C Oy (7). By Lemma 3.14 (with Oy (7)) and Y™ as
the zero-sets in its statement) we have Y* C Oy (7). This implies that
Y* € Z(8Y) which shows that Y is o-compact. Thus, oY = Y, and
by Lemmas 3.7 and 3.11, we have & ., »(Y) = &*(Y). Therefore, in
this case (and since by Lemmas 3.7 and 3.8 we have &*(X) = & “(X)
and &*(Y) = £9(Y")) the result follows from Lemma 3.15.

Next, suppose that X and Y are both non-o-compact. Since © x and
Oy are both anti-order-isomorphisms, there exists an order-isomorphism

¢ (Ox (Elocar—p(X)), S ) = (O (Elpcar—p(Y)), S ).
We extend ¢ by letting ¢(0)) = (). We define a function
V: (Z(woX\X),C) = (Z(woY\Y),C)
and verify that it is an order-isomorphism. Let Z € 2/ (woX\X) with

Q¢ Z. Since Z C X, for some countable G C I, we have Z € Z(8X),
and therefore,

Z €Oy (@((}lzcal—’P(X)) U {(Z)}
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In this case, let

W(Z) = ¢(2).
Now, suppose that Z € 2 (woX\X) and Q € Z. Then, (woX\X)\Z is
a cozero-set in wo X\ X, and we have

(3.3)  Z=(woX\X)\ | J Zn where Z, € Z(woX\X) for n € N.
n=1

Thus, as above, it follows that

Zn € ®X (éalf)calfP(X)) U {0}7
for n € N. We verify that

(3.4) U (Zy) € Coz(woY\Y).

To show this, note that since ¢(Z,) C oY'\Y there exists a countable
HCJsuchthat¢( n) C Yy, forn € N.

Claim. For Z € Z(woX\X) with Q € Z assume the representation
gwen in (3.3). Let H C J be countable and such that ¢(Z,) C Y}, for
alln € N. Let A be such that ¢(A) =Yy Then,

$(ANZ) = \U¢

Proof of the claim. For eachhn € N, since ANZNZ, = (), we have
d(ANZ)NP(Z,) = 0, as otherwise, ¢(A N Z) and ¢(Z,) will have a
common lower bound in Oy (&} .,,_»(Y)), that is, ¢(A N Z) N ¢(Z,),
whereas AN Z and Z,, do not have. Also, $(AN Z) C ¢(A). Therefore,

G(ANZ) C ¢(A \U¢

To ‘show the reverse inclusion, let y € (;5( ) be such that y ¢ ¢(Z,), for
n € N. There exists B € Z°(8Y) such that y € B and BN ¢(Z,) = 0,
for alln € N. If y ¢ (AN Z), then there exists some C' € Z(8Y) such
that ye€ C and CN¢p(ANZ)=0. Let D =¢(A)NBNC and let E be
such that ¢(E) = D. For each n € N, since ¢(E) N ¢(Zy,) = 0, we have
EnZ, =0, and thus E C Z. On the other hand, since ¢(E) C ¢(A)
we have £ C A, and therefore E C AN Z. Thus, ¢(E) C ¢p(AN Z),
which implies that ¢(E) = (), as ¢(E) C C. This contradiction shows
that y € (AN Z), which proves the claim.


www.SID.ir

224 Koushesh

Let A be such that ¢(A) = Y}, Now, ¢(ANZ) € Z(woY\Y), as
(AN Z) C ¢(A). By the claim we have

wo\WN\J 6(Z) = (e(A\ U 6(Z0) U ((woY\Y)\6(4))
n=1

n=1

= GANZ)U ((woV\Y)\G(A)) € Z(wo¥\Y)

and (3.4) is verified. In this case, we let

Y(Z) = (woY\Y)\ () ¢(Zn).

n=1

Next, we show that ¢ is well-defined. Assume that

oo
Z = (woX\X)\ | Sn
n=1
with S, € Z(woX\X), for n € N, is another representation of Z. We
need to show that
oo

(3.5) ¢(Zn) = | #(8).
1 n=1

n=

Without any loss of generality, suppose to the contrary that there exists
some m € N and y € ¢(Z,)-such thaty ¢ ¢(S,), for all n € N. Then,
there exists some A € Z(8Y) such that y € A and AN ¢(S,) = 0, for
n € N. Consider

AN (Z)(Zm) € Oy (@@lzcalf’P(Y))'

Let B be such that ¢(B) = AN ¢(Zy,). Since ¢(B) C A we have
#(B) N ¢(Sp) = O from which it follows that BN S, = 0, for n € N.
But, B C Z,,, as ¢(B) C ¢(Z,,), and we have

BC|JZn=J 5

n=1 n=1
which implies that B = (). But, this is a contradiction, as ¢(B) # 0.
Therefore, (3.5) holds, and thus % is well-defined. To prove that v is an
order-isomorphism, let S, Z € Z(woX\X) and S C Z. The case when
S = (0 holds trivially. Assume that S # (). We consider the following

cases.
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Case 1: Suppose that Q ¢ Z. Then, 2 ¢ S and we have

Y(S) = #(S) C ¢(Z2) = ¢(2).
Case 2: Suppose that Q ¢ S but Q € Z. Let

Z = (woX\X)\ | Zn

n=1

with Z,, € 2 (woX\X), for n € N. Then, since S C Z we have
SN Z, =0, and therefore ¢(S) N ¢(Z,) = 0, for n € N. Thus,

P(8) = ¢(S) € (woV\Y )\ | ¢(Zn) = ¥(2).

n=1

Case 3: Suppose that Q € S. Then, Q € Z. Let

S = (woX\X)\ | J Sn and Z = (woX\X)\ | J 2,

n=1 n=1

where S, Z,, € Z(woX\X), for n.€ N. Therefore,

S=8nZ = ((waX\X)\ fj sn) N ((waX\X)\ G Zn>
n=1 n=1

= (woX\X)\ | J (.U Z,).

n=1

Thus, since ¢(Z,,) € ¢(S, U Zy,), for n € N, we have

»(S) = (woY \Y N J ¢(Sn U Zy) € (woY\Y)\ | ¢(Zn) = %(2).
n=1

n=1

This shows that ¢ is an order-homomorphism. To show that v is an
order-isomorphism, we note that

¢~ (O (Elocar—p(Y)), S ) = (Ox (Elocar—p(X)), S )
is an order-isomorphism. Let
v (ff(waY\Y), C ) — (Q"(waX\X), C )

be the induced order-homomorphism which is defined as above. Then, it
is straightforward to see that v = 1!, that is, v is an order-isomorphism.
This implies the existence of a homeomorphism f: woX\X — woY\Y
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such that f(Z) = ¢(Z), for every Z € Z(woX\X). Therefore, for any
countable G C I, since X, € Z(woX\X), we have

F(Xg) = ¥(X5) = ¢(Xg) CoV\Y.

Thus, f(eX\X) C oY\Y, which shows that f(2) = €. Therefore,
cX\X and oY'\Y are homeomorphic.

Example 3.17. The Lindel6f property and the linearly Lindelof prop-
erty (besides o-compactness itself) are examples of topological properties
P satisfying the assumption of Theorem 3.16. To see this, let X be a lo-
cally compact paracompact space. Assume a representation for X as in
Notation 2.9. Recall that a Hausdorff space X is said to be linearly Lin-
deldf [6] provided that every linearly ordered (by set-inclusion C) open
cover of X has a countable subcover, equivalently, if every uncountable
subset of X has a complete accumulation point in X. (Reecall that a
point x € X is called a complete accumulation point of a-set A C X if
for every neighborhood U of z in X we have |[U N A| = |A].) Note that
if X is non-o-compact, then (using the notation of Notation 2.9) the set
I is uncountable. Let A = {x; : i € I} where z; € X;, for i € I. Then,
A is an uncountable subset of X without (even) accumulation points.
Thus, X cannot be linearly Lindelof as well. For the converse, note that
if X is not linearly Lindelof, then, obviously, X is not Lindelof, and
therefore, is non-o-compact, as it is well-known that o-compactness and
the Lindel6f property coincide in the realm of locally compact paracom-
pact spaces (this fact is evident from the representation given for X in
Notation 2.9).

Theorem 3.16 above might leave the impression that (£5(X), <) and
(&) ai—p(X), <) are order-isomorphic. The following is to settle this,
showing that in most cases this is indeed not going to be the case.

Theorem 3.18. Let X be a locally compact paracompact (non-compact)
space and let P be a closed hereditary topological property of compact
spaces which is preserved under finite sums of subspaces and coincides
with o-compactness in the realm of locally compact paracompact spaces.
Then, the following are equivalent:

(1) X is o-compact.
(2) (65(X), <) and (8 pu_p(X), <) are order-isomorphic.
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Proof. Since X is locally compact, the set X* is closed in (the normal
space) X and thus, using the Tietze-Urysohn Theorem, every zero-set
of X* is extendible to a zero-set of X. Now, if X is o-compact (since
X is also locally compact) we have X* € Z2(8X) and therefore every
zero-set of X* is a zero-set of 5X. Note that A\pX = ¢ X = X. Thus,
using Lemmas 3.10 and 3.11 we have

Ox (€5 (X)) = Z(X)N\{0} = Ox (Epear_p(X))
from which it follows that
g’/g(X) = @(dlt)cal—'P(X)'

If X is non-o-compact, then any two elements of &5 (X) have a com-
mon upper bound while this is not the case for &} ;. »(X). To see
this, note that by Lemma 3.10 the set © x (&5 (X)) s closed under finite
intersections (note that the finite intersections are non-empty, as they
contain SX\oX and the latter is non-empty, as X is non-o-compact)
while there exist (at least) two elements in © x(&')..,_p(X)) with empty
intersection; simply consider X and X7, for some distinct ¢, j € I (we
are assuming the representation for X given in Notation 2.9).

Project 3.19. Let X be a (locally compact paracompact) space and
let P be a (closed hereditary) topological property (of compact spaces
which is preserved under finite sums of subspaces and coincides with
o-compactness in the realm of locally compact paracompact spaces).
Explore the relationship between the order structures of (&5 (X), <)
and (&) . _p(X), <).
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