ONE-POINT EXTENSIONS OF LOCALLY COMPACT PARACOMPACT SPACES

M. R. KOUSHESH

Communicated by Fereidoun Ghahramani

ABSTRACT. A space Y is called an extension of a space X, if Y contains X as a dense subspace. Two extensions of X are said to be equivalent, if there is a homeomorphism between them which fixes X point-wise. For two (equivalence classes of) extensions Y and Y' of X let $Y \leq Y'$, if there is a continuous function of Y' into Y which fixes X point-wise. An extension Y of X is called a one-point extension, if $Y \setminus X$ is a singleton. An extension Y of X is called first-countable, if Y is first-countable at points of $Y \setminus X$. Let \mathcal{P} be a topological property. An extension Y of X is called a \mathcal{P} -extension, if it has \mathcal{P} .

In this article, for a given locally compact paracompact space X, we consider the two classes of one-point Čech-complete; \mathcal{P} -extensions of X and one-point first-countable locally- \mathcal{P} extensions of X, and we study their order-structures, by relating them to the topology of a certain subspace of the outgrowth $\beta X \backslash X$. Here \mathcal{P} is subject to some requirements and include σ -compactness and the Lindelöf property as special cases.

1. Introduction

A space Y is called an *extension* of a space X, if Y contains X as a dense subspace. If Y is an extension of X, then the subspace $Y \setminus X$ of

 $\label{eq:MSC(2010):Primary: 54D20; Secondary: 54D35, 54D40, 54D45, 54E50.}$

Keywords: Stone-Čech compactification, one-point extension, one-point compactification,

locally compact, paracompact, Čech complete; first-countable.

Received: 16 March 2010, Accepted: 21 July 2010.

© 2011 Iranian Mathematical Society.

Y is called the remainder of Y. Extensions with a one-point remainder are called one-point extensions. Two extensions of X are said to be equivalent, if there exists a homeomorphism between them which fixes X point-wise. This defines an equivalence relation on the class of all extensions of X. The equivalence classes will be identified with individuals when this causes no confusion. For two extensions Y and Y' of X we let $Y \leq Y'$, if there exists a continuous function of Y' into Y which fixes X point-wise. The relation \leq defines a partial order on the set of extensions of X (see Section 4.1 of [16] for more details). An extension Y of X is called first-countable, if Y is first-countable at points of $Y \setminus X$, that is, Y has a countable local base at every point of $Y \setminus X$. Let \mathcal{P} be a topological property. An extension Y of X is called a \mathcal{P} -extension, if it has \mathcal{P} . If \mathcal{P} is compactness, then \mathcal{P} -extensions are called compactifications.

This work was mainly motivated by our previous work [9] (see [1], [7], [8], [11], [12] and [13] for related results) in which we have studied the partially ordered set of one-point \mathcal{P} -extensions of a given locally compact space X by relating it to the topologies of certain subspaces of its outgrowth $\beta X \setminus X$. In this article, we continue our studies by considering the classes of one-point Čech-complete \mathcal{P} -extensions and one-point first-countable locally- \mathcal{P} extensions of a given locally compact paracompact space X. The topological property \mathcal{P} is subject to some requirements and include σ -compactness, the Lindelöf property and the linearly Lindelöf property as special cases.

We review some of the terminology, notation and well-known results that will be used in the sequel. Our definitions mainly come from the standard text [3] (thus, in particular, compact spaces are Hausdorff, etc.). Other useful sources are [5] and [16].

The letters **I** and **N** denote the closed unit interval and the set of all positive integers, respectively. For a subset A of a space X we let $\operatorname{cl}_X A$ and $\operatorname{int}_X A$ denote the closure and the interior of A in X, respectively. A subset of a space is called *clopen*, if it is simultaneously closed and open. A *zero-set* of a space X is a set of the form $Z(f) = f^{-1}(0)$ for some continuous $f: X \to \mathbf{I}$. Any set of the form $X \setminus Z$, where Z is a zero-set of X, is called a *cozero-set* of X. We denote the set of all zero-sets of X by $\mathscr{Z}(X)$ and the set of all cozero-sets of X by Coz(X).

For a Tychonoff space X the Stone-Čech compactification of X is the largest (with respect to the partial order \leq) compactification of X and is denoted by βX . The Stone-Čech compactification of X can be

characterized among all compactifications of X by either of the following properties:

- (1) Every continuous function of X to a compact space is continuously extendible over βX .
- (2) Every continuous function of X to \mathbf{I} is continuously extendible over βX .
- (3) For every $Z, S \in \mathcal{Z}(X)$ we have

$$\operatorname{cl}_{\beta X}(Z \cap S) = \operatorname{cl}_{\beta X} Z \cap \operatorname{cl}_{\beta X} S.$$

A Tychonoff space is called *zero-dimensional*, if it has an open base consisting of its clopen subsets. A Tychonoff space is called *strongly zero-dimensional*, if its Stone-Čech compactification is zero-dimensional. A Tychonoff space X is called $\check{C}ech\text{-}complete$, if its outgrowth $\beta X \setminus X$ is an F_{σ} in βX . Locally compact spaces are Čech-complete, and in the realm of metrizable spaces X, Čech-completeness is equivalent to the existence of a compatible complete metric on X.

Let \mathcal{P} be a topological property. A topological space X is called $locally-\mathcal{P}$, if for every $x \in X$ there exists an open neighborhood U_x of x in X such that $\operatorname{cl}_X U_x$ has \mathcal{P} .

A topological property \mathcal{P} is said to be hereditary with respect to closed subsets, if each closed subset of a space with \mathcal{P} also has \mathcal{P} . A topological property \mathcal{P} is said to be preserved under finite (closed) sums of subspaces, if a Hausdorff space has \mathcal{P} , provided that it is the union of a finite collection of its (closed) \mathcal{P} -subspaces.

Let (P, \leq) and (Q, \leq) be two partially ordered sets. A mapping $f: (P, \leq) \to (Q, \leq)$ is said to be an order-homomorphism (anti-order-homomorphism, respectively), if $f(a) \leq f(b)$ ($f(b) \leq f(a)$, respectively) whenever $a \leq b$. An order-homomorphism (anti-order-homomorphism, respectively) $f: (P, \leq) \to (Q, \leq)$ is said to be an order-isomorphism (anti-order-isomorphism, respectively), if $f^{-1}: (Q, \leq) \to (P, \leq)$ (exists and) is an order-homomorphism (anti-order-homomorphism, respectively). Two partially ordered sets (P, \leq) and (Q, \leq) are called order-isomorphic (anti-order-isomorphic, respectively), if there exists an order-isomorphism (anti-order-isomorphism, respectively) between them.

2. Motivations, notations and definitions

In this article we will be dealing with various sets of one-point extensions of a given topological space X. For the reader's convenience we list all these sets at the beginning.

Notation 2.1. Let X be a topological space. Denote

- $\mathcal{E}(X) = \{Y : Y \text{ is a one-point Tychonoff extension of } X\}$
- $\mathscr{E}^*(X) = \{Y \in \mathscr{E}(X) : Y \text{ is first-countable at } Y \setminus X\}$
- $\mathscr{E}^{C}(X) = \{Y \in \mathscr{E}(X) : Y \text{ is Čech-complete}\}$
- $\mathscr{E}^K(X) = \{Y \in \mathscr{E}(X) : Y \text{ is locally compact}\}$

and when \mathcal{P} is a topological property

- $\mathscr{E}_{\mathcal{P}}(X) = \{ Y \in \mathscr{E}(X) : Y \text{ has } \mathcal{P} \}$
- $\mathscr{E}_{local-\mathcal{P}}(X) = \{Y \in \mathscr{E}(X) : Y \text{ is locally-}\mathcal{P}\}.$

Also, we may use notations which are obtained by combinations of the above notations, e.g.

$$\mathscr{E}_{local-\mathcal{P}}^{*}(X) = \mathscr{E}^{*}(X) \cap \mathscr{E}_{local-\mathcal{P}}(X).$$

Definition 2.2 ([10]). For a Tychonoff space X and a topological property \mathcal{P} , let

$$\lambda_{\mathcal{P}}X = \bigcup \left\{ \operatorname{int}_{\beta X} \operatorname{cl}_{\beta X} C : C \in Coz(X) \text{ and } \operatorname{cl}_{X}C \text{ has } \mathcal{P} \right\}.$$

Definition 2.3 ([14]). We say that a topological property \mathcal{P} satisfies Mr'owka's condition (W), if it satisfies the following: If X is a Tychonoff space in which there exists a point p with an open base \mathscr{B} for X at p such that $X \setminus B$ has \mathcal{P} , for each $B \in \mathscr{B}$, then X has \mathcal{P} .

Mrówka's condition (W) is satisfied by a large number of topological properties; among them are (regularity +) the Lindelöf property, paracompactness, metacompactness, subparacompactness, the para-Lindelöf property, the σ -para-Lindelöf property, weak θ -refinability, θ -refinability (or submetacompactness), weak $\delta\theta$ -refinability, $\delta\theta$ -refinability (or the submeta-Lindelöf property), countable paracompactness, $[\theta, \kappa]$ -compactness, κ -boundedness, screenability, σ -metacompactness, Dieudonné completeness, N-compactness [15], realcompactness, almost realcompactness [4] and zero-dimensionality (see [10], [12] and [13] for proofs and [2], [17] and [18] for definitions).

In [11] we have obtained the following result.

Theorem 2.4 ([11]). Let X and Y be locally compact locally-P non- \mathcal{P} spaces where \mathcal{P} is either pseudocompactness or a closed hereditary topological property which is preserved under finite closed sums of subspaces and satisfies Mrówka's condition (W). Then, the following are equivalent:

- (1) $\lambda_{\mathcal{P}}X\backslash X$ and $\lambda_{\mathcal{P}}Y\backslash Y$ are homeomorphic.
- (2) $(\mathscr{E}_{\mathcal{P}}(X), \leq)$ and $(\mathscr{E}_{\mathcal{P}}(Y), \leq)$ are order-isomorphic.
- (3) $(\mathscr{E}_{\mathcal{P}}^{C}(X), \leq)$ and $(\mathscr{E}_{\mathcal{P}}^{C}(Y), \leq)$ are order-isomorphic. (4) $(\mathscr{E}_{\mathcal{P}}^{K}(X), \leq)$ and $(\mathscr{E}_{\mathcal{P}}^{K}(Y), \leq)$ are order-isomorphic, provided that X and Y are moreover strongly zero-dimensional.

There are topological properties, however, which do not satisfy the assumption of Theorem 2.4 (σ -compactness, for example, does not satisfy Mrówka's condition (W); see [10]). The purpose of this article is to prove the following version of Theorem 2.4. Specific topological properties \mathcal{P} which satisfy the requirements of Theorem 2.5 below are σ -compactness, the Lindelöf property and the linearly Lindelöf property. Note that in Theorem 3.19 of [9] we have shown that conditions (1) and (3) of Theorem 2.5 are equivalent, if \mathcal{P} is σ -compactness, and in Theorem 3.21 of [9] we have shown that conditions (1) and (2) of Theorem 2.5 are equivalent, if \mathcal{P} is the Lindelöf property. Thus, in some sense, Theorem 2.5 generalizes Theorems 3.19 and 3.21 of [9], and at the same time, brings them under a same umbrella.

Theorem 2.5. Let X and Y be locally compact paracompact spaces and let \mathcal{P} be a closed hereditary topological property of compact spaces which is preserved under finite sums of subspaces and coincides with σ compactness in the realm of locally compact paracompact spaces. Then, the following are equivalent:

- (1) $\lambda_{\mathcal{P}}X \setminus X$ and $\lambda_{\mathcal{P}}Y \setminus Y$ are homeomorphic. (2) $(\mathscr{E}_{\mathcal{P}}^{C}(X), \leq)$ and $(\mathscr{E}_{\mathcal{P}}^{C}(Y), \leq)$ are order-isomorphic. (3) $(\mathscr{E}_{local-\mathcal{P}}^{*}(X), \leq)$ and $(\mathscr{E}_{local-\mathcal{P}}^{*}(Y), \leq)$ are order-isomorphic.

We now introduce some notation which will be widely used in this article.

Notation 2.6. Let X be a Tychonoff space X. For a subset A of X denote

$$A^* = \operatorname{cl}_{\beta X} A \backslash X.$$

In particular, $X^* = \beta X \backslash X$.

Remark 2.7. Note that the notation given in Notation 2.6 can be ambiguous, as A^* can mean either $\beta A \setminus A$ or $\operatorname{cl}_{\beta X} A \setminus X$. However, since for C^* -embedded subsets these two notions coincide, this will not cause any confusion.

Definition 2.8 ([7]). For a Tychonoff space X, let

$$\sigma X = \bigcup \{ \operatorname{cl}_{\beta X} H : H \subseteq X \text{ is } \sigma\text{-compact} \}.$$

Notation 2.9. Let X be a locally compact paracompact non-compact space. Then, X can be represented as

$$X = \bigoplus_{i \in I} X_i$$

 $X = \bigoplus_{i \in I} X_i$ for some index set I, with each X_i , for $i \in I$, being σ -compact and non-compact (see Theorem 5.1.27 and Exercise 3.8.C of [3]). For $J \subseteq I$ denote

$$X_J = \bigcup_{i \in J} X_i.$$

 $X_J = \bigcup_{i \in J} X_i.$ Thus, using the notation of 2.6, we have

$$X_J^* = \operatorname{cl}_{\beta X} \Big(\bigcup_{i \in J} X_i \Big) \backslash X.$$

Remark 2.10. Note that in Notation 2.9 the set X_J^* is homeomorphic to $\beta X_J \setminus X_J$, as $\operatorname{cl}_{\beta X} X_J$ is homeomorphic to βX_J (see Corollary 3.6.8 of [3]). Thus, when J is countable (since X_J is σ -compact and locally compact) X_I^* is a zero-sets in $\operatorname{cl}_{\beta X} X_J$ (see 1B of [19]). But, $\operatorname{cl}_{\beta X} X_J$ is clopen in βX , as X_J is clopen in X (see Corollary 3.6.5 of [3]) therefore, X_J^* is a zero-set in βX . Also, note that with the notation given in 2.9, we have

$$\sigma X = \bigcup \{ \operatorname{cl}_{\beta X} X_J : J \subseteq I \text{ is countable} \}.$$

Note that σX is open in βX and it contains X.

3. Partially ordered set of one-point extensions as related to topologies of subspaces of outgrowth

In Lemma 3.5 we establish a connection between one-point Tychonoff extensions of a given space X and compact non-empty subsets of its outgrowth X^* . Lemma 3.5 (and its preceding lemmas) is known (see e.g. [12]). It is included here for the sake of completeness.

Lemma 3.1. Let X be a Tychonoff space and let C be a non-empty compact subset of X^* . Let T be the space which is obtained from βX by contracting C to a point p. Then, the subspace $Y = X \cup \{p\}$ of T is Tychonoff and $\beta Y = T$.

Proof. Let $q: \beta X \to T$ be the quotient mapping. Note that T is Hausdorff, and thus, being a continuous image of βX , it is compact. Also, note that Y is dense in T. Therefore, T is a compactification of Y. To show that $\beta Y = T$, it suffices to verify that every continuous $h: Y \to \mathbf{I}$ is continuously extendable over T. Let $h: Y \to \mathbf{I}$ be continuous. Let $G: \beta X \to \mathbf{I}$ continuously extend $hq|(X \cup C): X \cup C \to \mathbf{I}$ (note that $\beta(X \cup C) = \beta X$, as $X \subseteq X \cup C \subseteq \beta X$, see Corollary 3.6.9 of [3]). Define $H: T \to \mathbf{I}$ such that $H|(\beta X \setminus C) = G|(\beta X \setminus C)$ and H(p) = h(p). Then, H|Y = h, and since Hq = G is continuous, the function H is continuous.

Notation 3.2. Let X be a Tychonoff space and let $Y \in \mathcal{E}(X)$. Denote by

$$\tau_Y: \beta X \to \beta Y$$

the (unique) continuous extension of id_X .

Lemma 3.3. Let X be a Tychonoff space and let $Y = X \cup \{p\} \in \mathcal{E}(X)$. Let T be the space which is obtained from βX by contracting $\tau_Y^{-1}(p)$ to the point p, and let $q: \beta X \to T$ be the quotient mapping. Then, $T = \beta Y$ and $\tau_Y = q$.

Proof. We need to show that Y is a subspace of T. Since βY is also a compactification of X and $\tau_Y|X=\mathrm{id}_X$, by Theorem 3.5.7 of [3], we have $\tau_Y(X^*)=\beta Y\backslash X$. For an open subset W of βY , the set $q(\tau_Y^{-1}(W))$

is open in T, as $q^{-1}(q(\tau_V^{-1}(W))) = \tau_V^{-1}(W)$ is open in βX . Therefore, $Y \cap W = Y \cap q(\tau_V^{-1}(W))$

is open in Y, when Y is considered as a subspace of T. For the converse, note that if V is open in T, since

$$Y \cap V = Y \cap (\beta Y \setminus \tau_Y (\beta X \setminus q^{-1}(V)))$$

and $\tau_Y(\beta X \setminus q^{-1}(V))$ is compact and thus closed in βY , the set $Y \cap V$ is open in Y in its original topology. By Lemma 3.1 we have $T = \beta Y$. This also implies that $\tau_Y = q$, as $\tau_Y, q : \beta X \to \beta Y$ are continuous and coincide with id_X on the dense subset X of βX .

Lemma 3.4. Let X be a Tychonoff space. Let $Y_i \in \mathcal{E}(X)$, for i = 1, 2, and denote by $\tau_i = \tau_{Y_i} : \beta X \to \beta Y_i$ the continuous extension of id_X . Then, the following are equivalent:

- (1) $Y_1 \leq Y_2$. (2) $\tau_2^{-1}(Y_2 \backslash X) \subseteq \tau_1^{-1}(Y_1 \backslash X)$.

Proof. Let $Y_i = X \cup \{p_i\}$, for i = 1, 2. (1) implies (2). Suppose that (1) holds. By the definition, there exists a continuous $f: Y_2 \to Y_1$ such that $f|X = \mathrm{id}_X$. Let $f_\beta : \beta Y_2 \to \beta Y_1$ continuously extend f. Note that the continuous functions $f_{\beta}\tau_2, \tau_1: \beta X \to \beta Y_1$ coincide with id_X on the dense subset X of βX , and thus $f_{\beta}\tau_2=\tau_1$. Note that X is dense in βY_i (for i = 1, 2), as it is dense in Y_i , and therefore, βY_i is a compactification of X. Since $f_{\beta}|X = \mathrm{id}_X$, by Theorem 3.5.7 of [3], we have $f_{\beta}(\beta Y_2 \backslash X) = \beta Y_1 \backslash X$, and thus $f_{\beta}(p_2) \in \beta Y_1 \backslash X$. But, $f_{\beta}(p_2) = f(p_2)$, which implies that $f_{\beta}(p_2) \in Y_1 \backslash X = \{p_1\}$. Therefore,

$$\tau_2^{-1}(p_2) \subseteq \tau_2^{-1}(f_\beta^{-1}(f_\beta(p_2)))$$

$$= (f_\beta \tau_2)^{-1}(f_\beta(p_2)) = \tau_1^{-1}(f_\beta(p_2)) = \tau_1^{-1}(p_1).$$

(2) implies (1). Suppose that (2) holds. Let $f: Y_2 \to Y_1$ be defined such that $f(p_2) = p_1$ and $f|X = id_X$. We show that f is continuous, this will show that $Y_1 \leq Y_2$. Note that by Lemma 3.3, the space βY_2 is the quotient space of βX which is obtained by contracting $\tau_2^{-1}(p_2)$ to a point, and τ_2 is its corresponding quotient mapping. Thus, in particular, Y_2 is the quotient space of $X \cup \tau_2^{-1}(p_2)$, and therefore, to show that fis continuous, it suffices to show that $f\tau_2|(X\cup\tau_2^{-1}(p_2))$ is continuous. We show this by verifying that $f\tau_2(t) = \tau_1(t)$, for each $t \in X \cup \tau_2^{-1}(p_2)$. This obviously holds if $t \in X$. If $t \in \tau_2^{-1}(p_2)$, then $\tau_2(t) = p_2$, and thus $f\tau_2(t) = p_1$. But, since $t \in \tau_2^{-1}(\tau_2(t))$, we have $t \in \tau_1^{-1}(p_1)$, and therefore $\tau_1(t) = p_1$. Thus, $f\tau_2(t) = \tau_1(t)$ in this case as well.

Lemma 3.5. Let X be a Tychonoff space. Define a function

$$\Theta: (\mathscr{E}(X), \leq) \to (\{C \subseteq X^* : C \text{ is compact}\} \setminus \{\emptyset\}, \subseteq)$$

by

$$\Theta(Y) = \tau_Y^{-1}(Y \backslash X),$$

for $Y \in \mathcal{E}(X)$. Then, Θ is an anti-order-isomorphism.

Proof. To show that Θ is well-defined, let $Y \in \mathscr{E}(X)$. Note that since X is dense in Y, the space X is dense in βY . Thus, $\tau_Y:\beta X\to\beta Y$ is onto, as $\tau_Y(\beta X)$ is a compact (and therefore closed) subset of βY and it contains $X=\tau_Y(X)$. Thus, $\tau_Y^{-1}(Y\backslash X)\neq\emptyset$. Also, since $\tau_Y|X=\operatorname{id}_X$ we have $\tau_Y^{-1}(Y\backslash X)\subseteq X^*$, and since the singleton $Y\backslash X$ is closed in βY , its inverse image $\tau_Y^{-1}(Y\backslash X)$ is closed in βX , and therefore it is compact. Now, we show that Θ is onto, Lemma 3.4 will then complete the proof. Let C be a non-empty compact subset of X^* . Let T be the quotient space of βX which is obtained by contracting C to a point p. Consider the subspace $Y=X\cup\{p\}$ of T. Then, $Y\in\mathscr{E}(X)$, and thus, by Lemma 3.1 we have $\beta Y=T$. The quotient mapping $q:\beta X\to T$ is identical to τ_Y , as it coincides with id_X on the dense subset X of βX . Therefore,

$$\Theta(Y) = \tau_Y^{-1}(p) = q^{-1}(p) = C.$$

Notation 3.6. For a Tychonoff space X denote by

$$\Theta_X: (\mathscr{E}(X), \leq) \to (\{C \subseteq X^* : C \text{ is compact}\} \setminus \{\emptyset\}, \subseteq)$$

the anti-order-isomorphism defined by

$$\Theta_X(Y) = \tau_Y^{-1}(Y \backslash X),$$

for $Y \in \mathscr{E}(X)$.

Lemmas 3.7 and 3.8 below are known results (see [9]).

Lemma 3.7. Let X be a Tychonoff space. For $Y \in \mathcal{E}(X)$ the following are equivalent:

- (1) $Y \in \mathscr{E}^*(X)$.
- (2) $\Theta_X(Y) \in \mathscr{Z}(\beta X)$.

Proof. Let $Y = X \cup \{p\}$. (1) implies (2). Suppose that (1) holds. Let $\{V_n : n \in \mathbf{N}\}$ be an open base at p in Y. For each $n \in \mathbf{N}$, let V'_n be an open subset of βY such that $Y \cap V'_n = V_n$, and let $f_n : \beta Y \to \mathbf{I}$ be continuous and such that $f_n(p) = 0$ and $f_n(\beta Y \setminus V'_n) \subseteq \{1\}$. Let

$$Z = \bigcap_{n=1}^{\infty} Z(f_n) \in \mathscr{Z}(\beta Y).$$

We show that $Z = \{p\}$. Obviously, $p \in Z$. Let $t \in Z$ and suppose to the contrary that $t \neq p$. Let W be an open neighborhood of p in βY such that $t \notin \operatorname{cl}_{\beta Y} W$. Then, $Y \cap W$ is an open neighborhood of p in Y. Let $k \in \mathbb{N}$ be such that $V_k \subseteq Y \cap W$. We have

$$t \in Z(f_k) \subseteq V'_k \subseteq \operatorname{cl}_{\beta Y} V'_k$$

$$= \operatorname{cl}_{\beta Y} (Y \cap V'_k)$$

$$= \operatorname{cl}_{\beta Y} V_k \subseteq \operatorname{cl}_{\beta Y} (Y \cap W) \subseteq \operatorname{cl}_{\beta Y} W$$

which is a contradiction. This shows that t = p and therefore $Z \subseteq \{p\}$. Thus, $\{p\} = Z \in \mathscr{Z}(\beta Y)$, which implies that $\tau_Y^{-1}(p) \in \mathscr{Z}(\beta X)$.

(2) implies (1). Suppose that (2) holds. Let $\tau_Y^{-1}(p) = Z(f)$ where $f: \beta X \to \mathbf{I}$ is continuous. Note that by Lemma 3.3 the space βY is obtained from βX by contracting $\tau_Y^{-1}(p)$ to p with $\tau_Y: \beta X \to \beta Y$ as the quotient mapping. Then, for each $n \in \mathbf{N}$, the set $\tau_Y(f^{-1}([0, 1/n)))$ is an open neighborhood of p in βY . We show that the collection

$$\left\{Y \cap \tau_Y\left(f^{-1}\left(\left[0, \frac{1}{n}\right)\right)\right) : n \in \mathbf{N}\right\}$$

of open neighborhoods of p in Y constitutes an open base at p in Y. This will show (1). Let V be an open neighborhood of p in Y. Let V' be an open subset of βY such that $Y \cap V' = V$. Then, $p \in V'$ and thus

$$\bigcap_{n=1}^{\infty} f^{-1}\Big(\Big[0,\frac{1}{n}\Big]\Big) = Z(f) = \tau_Y^{-1}(p) \subseteq \tau_Y^{-1}(V').$$

By compactness we have $f^{-1}([0,1/k]) \subseteq \tau_Y^{-1}(V')$, for some $k \in \mathbf{N}$. Therefore,

$$Y \cap \tau_Y \left(f^{-1} \left(\left[0, \frac{1}{k} \right] \right) \right) \subseteq Y \cap \tau_Y \left(f^{-1} \left(\left[0, \frac{1}{k} \right] \right) \right)$$
$$\subseteq Y \cap \tau_Y \left(\tau_Y^{-1} (V') \right) \subseteq Y \cap V' = V.$$

Lemma 3.8. Let X be a locally compact space. For $Y \in \mathcal{E}(X)$ the following are equivalent:

- (1) $Y \in \mathscr{E}^C(X)$.
- (2) $\Theta_X(Y) \in \mathscr{Z}(X^*)$.

Proof. Let $Y = X \cup \{p\}$. (1) implies (2). Suppose that (1) holds. Then, Y^* is an F_{σ} in βY . Let $Y^* = \bigcup_{n=1}^{\infty} K_n$ where each K_n is closed in βY , for $n \in \mathbb{N}$. Then,

$$X^* = \tau_Y^{-1}(p) \cup \bigcup_{n=1}^{\infty} K_n$$

(recall that βY is the quotient space of βX which is obtained by contracting $\tau_Y^{-1}(p)$ to p and τ_Y is its quotient mapping; see Lemma 3.3). For each $n \in \mathbb{N}$, let $f_n : \beta X \to \mathbf{I}$ be continuous and such that

$$f_n(\tau_Y^{-1}(p)) = \{0\} \text{ and } f_n(K_n) \subseteq \{1\}.$$

Let $f = \sum_{n=1}^{\infty} f_n/2^n$. Then, $f : \beta X \to \mathbf{I}$ is continuous and

$$\tau_Y^{-1}(p) = Z(f) \cap X^* \in \mathscr{Z}(X^*).$$

(2) implies (1). Suppose that (2) holds. Let $\tau_Y^{-1}(p) = Z(g)$ where $g: X^* \to \mathbf{I}$ is continuous. Then, using Lemma 3.3, we have

$$\begin{split} Y^* &= X^* \backslash \tau_Y^{-1}(p) &= X^* \backslash Z(g) \\ &= g^{-1} \big((0,1] \big) = \bigcup_{n=1}^\infty g^{-1} \Big(\Big[\frac{1}{n},1 \Big] \Big) \end{split}$$

and each set $g^{-1}([1/n, 1])$, for $n \in \mathbb{N}$, being closed in X^* , is compact (note that since X is locally compact, X^* is compact) and thus closed in βY . Therefore, Y^* is an F_{σ} in βY , that is, Y is Čech-complete.

Then, the following lemma justifies our requirement on \mathcal{P} in Theorem 3.16. We simply need $\lambda_{\mathcal{P}}X$ to have a more familiar structure.

Lemma 3.9. Let \mathcal{P} be a topological property which is preserved under finite closed sums of subspaces. The following are equivalent:

- (1) The topological property \mathcal{P} coincides with σ -compactness in the realm of locally compact paracompact spaces.
- (2) For every locally compact paracompact space X we have

$$\lambda_{\mathcal{P}}X = \sigma X.$$

Proof. (1) implies (2). Suppose that (1) holds. Let X be a locally compact paracompact space. Assume the notation of 2.9. Let $J \subseteq I$ be countable. Then, X_J is σ -compact and thus (since it is also locally compact and paracompact) it has \mathcal{P} . Note that X_J is clopen in X thus it has a clopen closure in βX , therefore

$$\operatorname{cl}_{\beta X} X_J = \operatorname{int}_{\beta X} \operatorname{cl}_{\beta X} X_J \subseteq \lambda_{\mathcal{P}} X$$

that is, $\sigma X \subseteq \lambda_{\mathcal{P}} X$. To see the reverse inclusion, let $C \in Coz(X)$ be such that $\operatorname{cl}_X C$ has \mathcal{P} . Then, (since $\operatorname{cl}_X C$ being closed in X is also locally compact and paracompact) $\operatorname{cl}_X C$ is σ -compact. Therefore,

$$\operatorname{int}_{\beta X}\operatorname{cl}_{\beta X}C\subseteq\operatorname{cl}_{\beta X}C\subseteq\sigma X$$

which shows that $\lambda_{\mathcal{P}}X \subseteq \sigma X$. Thus, $\lambda_{\mathcal{P}}X = \sigma X$.

(2) implies (1). Suppose that (2) holds. Let X be a locally compact paracompact space. By the assumption we have $\lambda_{\mathcal{P}}X = \sigma X$. We verify that X has \mathcal{P} if and only if X is σ -compact. Assume the notation of Notation 2.9. Suppose that X has \mathcal{P} . Then, $\lambda_{\mathcal{P}}X = \beta X$ and thus $\sigma X = \beta X$. Now, by compactness, we have

$$\beta X = \operatorname{cl}_{\beta X} X_{J_1} \cup \cdots \cup \operatorname{cl}_{\beta X} X_{J_n},$$

for some $n \in \mathbb{N}$ and some countable $J_1, \ldots, J_n \subseteq I$. Therefore,

$$X = X_{J_1} \cup \cdots \cup X_{J_n}$$

is σ -compact. For the converse, suppose that X is σ -compact. Then, $\sigma X = \beta X$ and (since $\lambda_{\mathcal{P}} X = \sigma X$) we have $\beta X = \lambda_{\mathcal{P}} X$. Thus, by compactness, we have

$$\beta X = \operatorname{int}_{\beta X} \operatorname{cl}_{\beta X} C_1 \cup \dots \cup \operatorname{int}_{\beta X} \operatorname{cl}_{\beta X} C_n,$$

for some $n \in \mathbb{N}$ and some $C_1, \ldots, C_n \in Coz(X)$ such that $\operatorname{cl}_X C_i$ has \mathcal{P} , for i = 1, ..., n. Now, using our assumption, the space

$$X = \operatorname{cl}_X C_1 \cup \dots \cup \operatorname{cl}_X C_n$$

being a finite union of its closed \mathcal{P} -subspaces, has \mathcal{P} .

Lemma 3.10. Let X be a locally compact paracompact space and let \mathcal{P} be a closed hereditary topological property of compact spaces which is preserved under finite sums of subspaces and coincides with σ -compactness in the realm of locally compact paracompact spaces. For $Y \in \mathcal{E}(X)$ the following are equivalent:

- (1) $Y \in \mathscr{E}_{\mathcal{P}}^{C}(X)$. (2) $\Theta_{X}(Y) \in \mathscr{Z}(X^{*})$ and $\beta X \setminus \lambda_{\mathcal{P}} X \subseteq \Theta_{X}(Y)$.

Thus, in particular

$$\Theta_X \left(\mathscr{E}_{\mathcal{P}}^{C}(X) \right) = \left\{ Z \in \mathscr{Z}(X^*) : \beta X \backslash \lambda_{\mathcal{P}} X \subseteq Z \right\} \backslash \{\emptyset\}.$$

Proof. Let $Y = X \cup \{p\}$. (1) implies (2). Suppose that (1) holds. By Lemma 3.8 we have $\tau_Y^{-1}(p) \in \mathscr{Z}(X^*)$. Note that by Lemma 3.9 we have $\lambda_{\mathcal{P}}X = \sigma X$. Let $t \in \beta X \setminus \sigma X$ and suppose to the contrary that $t \notin \tau_Y^{-1}(p)$. Let $f : \beta X \to \mathbf{I}$ be continuous and such that f(t) = 0 and $f(\tau_Y^{-1}(p)) = \{1\}$. Since $\tau_Y(f^{-1}([0, 1/2]))$ is compact, the set

$$T = X \cap f^{-1}\left(\left[0, \frac{1}{2}\right]\right) = Y \cap \tau_Y\left(f^{-1}\left(\left[0, \frac{1}{2}\right]\right)\right)$$

being closed in Y, has \mathcal{P} . But, T, being closed in X, is locally compact and paracompact, and thus, having \mathcal{P} , it is σ -compact. Therefore, by definition of σX we have $\operatorname{cl}_{\beta X} T \subseteq \sigma X$. But, since

$$t \in f^{-1}\left(\left[0, \frac{1}{2}\right)\right) \subseteq \operatorname{cl}_{\beta X} f^{-1}\left(\left[0, \frac{1}{2}\right)\right)$$

$$= \operatorname{cl}_{\beta X}\left(X \cap f^{-1}\left(\left[0, \frac{1}{2}\right)\right)\right)$$

$$\subseteq \operatorname{cl}_{\beta X}\left(X \cap f^{-1}\left(\left[0, \frac{1}{2}\right]\right)\right) = \operatorname{cl}_{\beta X} T$$

we have $t \in \sigma X$, which contradicts the choice of t. Thus, $t \in \tau_Y^{-1}(p)$ and therefore $\beta X \setminus \sigma X \subseteq \tau_Y^{-1}(p)$.

(2) implies (1). Suppose that (2) holds. Note that since X is locally compact, the set X^* is closed in (the normal space) βX and thus, since $\tau_Y^{-1}(p) \in \mathscr{Z}(X^*)$ (using the Tietze-Urysohn Theorem) we have $\tau_Y^{-1}(p) = Z \cap X^*$, for some $Z \in \mathscr{Z}(\beta X)$. Note that by Lemma 3.9 we have $\lambda_{\mathcal{P}}X = \sigma X$. Now, since $\beta X \setminus \sigma X \subseteq \tau_Y^{-1}(p) \subseteq Z$ we have $\beta X \setminus Z \subseteq \sigma X$. Therefore, assuming the notation of 2.9 (since $\beta X \setminus Z$, being a cozero-set in βX , is σ -compact) we have

$$\beta X \backslash Z \subseteq \bigcup_{n=1}^{\infty} \operatorname{cl}_{\beta X} X_{J_n} \subseteq \operatorname{cl}_{\beta X} X_J$$

where $J_1, J_2, \ldots \subseteq I$ are countable and $J = J_1 \cup J_2 \cup \cdots$. But,

$$Y = \tau_Y(Z) \cup (X \backslash Z) \subseteq \tau_Y(Z) \cup X_J$$

and thus we have

$$(3.1) Y = \tau_Y(Z) \cup X_J.$$

Now, since X_J has \mathcal{P} , as it is σ -compact (and being closed in X, it is locally compact and paracompact) and $\tau_Y(Z)$ has \mathcal{P} , as it is compact, from (3.1) it follows that the space Y, being a finite union of its \mathcal{P} subspaces, has \mathcal{P} . The fact that Y is Čech-complete follows from Lemma 3.8.

The following generalizes Lemma 3.18 of [9].

Lemma 3.11. Let X be a locally compact paracompact space and let \mathcal{P} be a closed hereditary topological property of compact spaces which is preserved under finite sums of subspaces and coincides with σ -compactness in the realm of locally compact paracompact spaces. For $Y \in \mathcal{E}(X)$ the following are equivalent:

- (1) $Y \in \mathscr{E}^*_{local-\mathcal{P}}(X)$. (2) $\Theta_X(Y) \in \mathscr{Z}(\beta X)$ and $\Theta_X(Y) \subseteq \lambda_{\mathcal{P}} X$.

Thus, in particular
$$\Theta_X \left(\mathscr{E}^*_{local-\mathcal{P}}(X) \right) = \left\{ Z \in \mathscr{Z}(\beta X) : Z \subseteq \lambda_{\mathcal{P}} X \backslash X \right\} \backslash \{\emptyset\}.$$

Proof. Let $Y = X \cup \{p\}$. (1) implies (2). Suppose that (1) holds. Since $Y \in \mathscr{E}^*(X)$, by Lemma 3.7 we have $\tau_Y^{-1}(p) \in \mathscr{Z}(\beta X)$. Let $\tau_Y^{-1}(p) = Z(f)$, for some continuous $f : \beta X \to \mathbf{I}$. Since Y is locally- \mathcal{P} , there exists an open neighborhood V of p in Y such that $cl_Y V$ has \mathcal{P} . Let V' be an open subset of βY such that $Y \cap V' = V$. Then, $p \in V'$, and thus since

$$\bigcap_{n=1}^{\infty}f^{-1}\Big(\Big[0,\frac{1}{n}\Big]\Big)=Z(f)=\tau_Y^{-1}(p)\subseteq\tau_Y^{-1}(V')$$

by compactness, we have $f^{-1}([0,1/k]) \subseteq \tau_V^{-1}(V')$, for some $k \in \mathbb{N}$. Now, for each $n \geq k$, since

for each
$$n \ge k$$
, since
$$Y \cap \tau_Y \left(f^{-1} \left(\left[0, \frac{1}{n} \right] \right) \setminus f^{-1} \left(\left[0, \frac{1}{n+1} \right) \right) \right) \subseteq Y \cap \tau_Y \left(f^{-1} \left(\left[0, \frac{1}{k} \right] \right) \right)$$

$$\subseteq Y \cap \tau_Y \left(\tau_Y^{-1} (V') \right)$$

$$\subseteq Y \cap V' = V \subseteq \text{cl}_Y V$$

the set

$$K_n = X \cap \left(f^{-1}\left(\left[0, \frac{1}{n}\right]\right) \setminus f^{-1}\left(\left[0, \frac{1}{n+1}\right)\right) \right)$$
$$= Y \cap \tau_Y\left(f^{-1}\left(\left[0, \frac{1}{n}\right]\right) \setminus f^{-1}\left(\left[0, \frac{1}{n+1}\right)\right)\right)$$

being closed in $\operatorname{cl}_Y V$, has \mathcal{P} , and therefore (since being closed in X it is locally compact and paracompact) it is σ -compact. (It might be helpful to recall that by Lemma 3.3 the space βY is obtained from βX by contracting $\tau_Y^{-1}(p)$ to p with τ_Y as its quotient mapping.) Thus, the set

$$X \cap f^{-1}\left(\left[0, \frac{1}{k}\right]\right) = \bigcup_{n=k}^{\infty} K_n$$

is σ -compact, and therefore, by the definition of σX , we have

$$\operatorname{cl}_{\beta X}\left(X \cap f^{-1}\left(\left[0, \frac{1}{k}\right]\right)\right) \subseteq \sigma X.$$

But,

$$Z(f) \subseteq f^{-1}\left(\left[0, \frac{1}{k}\right)\right) \subseteq \operatorname{cl}_{\beta X} f^{-1}\left(\left[0, \frac{1}{k}\right)\right)$$

$$= \operatorname{cl}_{\beta X}\left(X \cap f^{-1}\left(\left[0, \frac{1}{k}\right)\right)\right)$$

$$\subseteq \operatorname{cl}_{\beta X}\left(X \cap f^{-1}\left(\left[0, \frac{1}{k}\right]\right)\right)$$

from which it follows that $\tau_Y^{-1}(p) \subseteq \sigma X$. Finally, note that by Lemma 3.9 we have $\lambda_{\mathcal{P}} X = \sigma X$.

(2) implies (1). Suppose that (2) holds. By Lemma 3.7 we have $Y \in \mathscr{E}^*(X)$. Therefore, it suffices to verify that Y is locally- \mathcal{P} . Also, since by the assumption X is locally compact, it is locally- \mathcal{P} , as \mathcal{P} is assumed to be a topological property of compact spaces. Thus, we only need to verify that p has an open neighborhood in Y whose closure in Y has \mathcal{P} . Let $g: \beta X \to \mathbf{I}$ be continuous and such that $Z(g) = \tau_Y^{-1}(p)$. Then, since

$$\bigcap_{n=1}^{\infty} g^{-1}\left(\left[0, \frac{1}{n}\right]\right) = Z(g) \subseteq \lambda_{\mathcal{P}} X$$

by compactness (and since $\lambda_{\mathcal{P}}X$ is open in βX) we have $g^{-1}([0, 1/k]) \subseteq \lambda_{\mathcal{P}}X$, for some $k \in \mathbb{N}$. Note that by Lemma 3.9 we have $\lambda_{\mathcal{P}}X = \sigma X$. Assume the notation of Notation 2.9. By compactness, we have

$$g^{-1}\left(\left[0,\frac{1}{k}\right]\right) \subseteq \operatorname{cl}_{\beta X} X_{J_1} \cup \dots \cup \operatorname{cl}_{\beta X} X_{J_n} = \operatorname{cl}_{\beta X} X_J$$

where $n \in \mathbb{N}$, the sets $J_1, \ldots, J_n \subseteq I$ are countable and $J = J_1 \cup \cdots \cup J_n$. The set $X \cap g^{-1}([0, 1/k]) \subseteq X_J$, being closed in the latter (σ -compact

space) is σ -compact, and therefore (since being closed in X, it is locally compact and paracompact) it has \mathcal{P} . Let

$$V = Y \cap \tau_Y \left(g^{-1} \left(\left[0, \frac{1}{k} \right) \right) \right).$$

Then, V is an open neighborhood of p in Y. We show that $\operatorname{cl}_Y V$ has \mathcal{P} . But, this follows, since

$$\operatorname{cl}_{Y} V \subseteq Y \cap \tau_{Y} \left(g^{-1} \left(\left[0, \frac{1}{k} \right] \right) \right) = \left(X \cap \tau_{Y} \left(g^{-1} \left(\left[0, \frac{1}{k} \right] \right) \right) \right) \cup \{ p \}$$
$$= \left(X \cap g^{-1} \left(\left[0, \frac{1}{k} \right] \right) \right) \cup \{ p \}$$

and the latter, being a finite union of its \mathcal{P} -subspaces (note that the singleton $\{p\}$, being compact, has \mathcal{P}) has \mathcal{P} , and thus, its closed subset $\operatorname{cl}_Y V$, also has \mathcal{P} .

Lemmas 3.12-3.14 are from [8].

Lemma 3.12. Let X be a locally compact paracompact space. If $Z \in \mathscr{Z}(\beta X)$ in non-empty, then $Z \cap \sigma X \neq \emptyset$

Proof. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in σX . Assume the notation of 2.9. Then, $\{x_n : n \in \mathbf{N}\} \subseteq \operatorname{cl}_{\beta X} X_J$, for some countable $J \subseteq I$. Therefore, $\{x_n : n \in \mathbf{N}\}$ has a limit point in $\operatorname{cl}_{\beta X} X_J \subseteq \sigma X$. Thus, σX is countably compact, and therefore is pseudocompact, and $v(\sigma X) = \beta(\sigma X) = \beta X$ (note that the latter equality holds, as $X \subseteq \sigma X \subseteq \beta X$). The result now follows, as for any Tychonoff space T, any non-empty zero-set of vT meets T (see Lemma 5.11 (f) of [16]).

Lemma 3.13. Let X be a locally compact paracompact space. If $Z \in \mathscr{Z}(X^*)$ is non-empty, then $Z \cap \sigma X \neq \emptyset$.

Proof. Let $S \in \mathcal{Z}(\beta X)$ be such that $S \cap X^* = Z$ (which exists, as X^* is closed in (the normal space) βX , as X is locally compact, and thus, by the Tietze-Urysohn Theorem, every continuous function from X^* to \mathbf{I} is continuously extendible over βX). By Lemma 3.12 we have $S \cap \sigma X \neq \emptyset$. Suppose that $S \cap (\sigma X \setminus X) = \emptyset$. Then, $S \cap \sigma X = X \cap S$. Assume the notation of 2.9. Let $J = \{i \in I : X_i \cap S \neq \emptyset\}$. Then, J is finite. Note that since X_J is clopen in X, it has a clopen closure in βX . Now,

$$T = S \cap (\beta X \backslash \operatorname{cl}_{\beta X} X_J) \in \mathscr{Z}(\beta X)$$

misses σX , and therefore, by Lemma 3.12 we have $T = \emptyset$. But, this is a contradiction, as $Z = S \cap (\beta X \setminus \sigma X) \subseteq T$. This shows that

$$Z \cap (\sigma X \setminus X) = S \cap (\sigma X \setminus X) \neq \emptyset.$$

Lemma 3.14. Let X be a locally compact paracompact space. For $S, T \in$ $\mathscr{Z}(X^*)$, if $S \cap \sigma X \subseteq T \cap \sigma X$, then $S \subseteq T$.

Proof. Suppose to the contrary that $S \setminus T \neq \emptyset$, let $s \in S \setminus T$. Let $f: \beta X \to \mathbf{I}$ be continuous and such that f(s) = 0 and $f(T) \subseteq \{1\}$. Then, $Z(f) \cap S$ is non-empty, and thus by Lemma 3.13 it follows that $Z(f) \cap S \cap \sigma X \neq \emptyset$. But, this is not possible, as

$$Z(f) \cap S \cap \sigma X \subseteq Z(f) \cap T = \emptyset.$$
mma is from [9].

The following lemma is from [9].

Lemma 3.15. Let X and Y be locally compact spaces. The following are equivalent:

- (1) X* and Y* are homeomorphic.
 (2) (ℰ^C(X), ≤) and (ℰ^C(Y), ≤) are order-isomorphic.

Proof. This follows from the fact that in a compact space the orderstructure of the set of its all zero-sets (partially ordered with \subseteq) determines its topology.

The proof of the following theorem is essentially a combination of the proofs we have given for Theorems 3.19 and 3.21 in [9] with the appropriate usage of the preceding lemmas. The reasonably detailed proof is included here for the reader's convenience.

Theorem 3.16. Let X and Y be locally compact paracompact (noncompact) spaces and let \mathcal{P} be a closed hereditary topological property of compact spaces which is preserved under finite sums of subspaces and coincides with σ -compactness in the realm of locally compact paracompact spaces. Then, the following are equivalent:

- (1) $\lambda_{\mathcal{P}}X\backslash X$ and $\lambda_{\mathcal{P}}Y\backslash Y$ are homeomorphic.
- (2) $(\mathscr{E}_{\mathcal{P}}^{C}(X), \leq)$ and $(\mathscr{E}_{\mathcal{P}}^{C}(Y), \leq)$ are order-isomorphic. (3) $(\mathscr{E}_{local-\mathcal{P}}^{*}(X), \leq)$ and $(\mathscr{E}_{local-\mathcal{P}}^{*}(Y), \leq)$ are order-isomorphic.

Proof. Let

$$X = \bigoplus_{i \in I} X_i$$
 and $Y = \bigoplus_{j \in J} Y_j$,

for some index sets I and J with each X_i and Y_j , for $i \in I$ and $j \in J$ being σ -compact and non-compact. We will use notation of 2.9 and Remark 2.10 without mentioning. Note that by Lemma 3.9 we have $\lambda_{\mathcal{P}}X = \sigma X$ and $\lambda_{\mathcal{P}}Y = \sigma Y$. Let

$$\omega \sigma X = \sigma X \cup \{\Omega\} \text{ and } \omega \sigma Y = \sigma Y \cup \{\Omega'\}$$

denote the one-point compactifications of σX and σY , respectively.

(1) implies (2). Suppose that (1) holds. Suppose that either X or Y, say X, is σ -compact. Then, $\sigma Y \setminus Y$ is compact, as it is homeomorphic to $\sigma X \setminus X = X^*$, and the latter is compact, as X is locally compact. Thus,

$$\sigma Y \backslash Y = Y_{H_1}^* \cup \dots \cup Y_{H_n}^* = Y_H^*$$

where $n \in \mathbb{N}$, the sets $H_1, \ldots, H_n \subseteq J$ are countable and

$$H = H_1 \cup \cdots \cup H_n$$
.

Now, if there exists some $u \in J \setminus H$, then since $Y_u \cap Y_H = \emptyset$ we have

$$\operatorname{cl}_{\beta Y} Y_u \cap \operatorname{cl}_{\beta Y} Y_H = \emptyset.$$

Therefore, $\operatorname{cl}_{\beta Y} Y_u \subseteq Y$, contradicting the fact that Y_u is non-compact. Thus, J = H and Y is σ -compact. Therefore, $\sigma Y \setminus Y = Y^*$. Note that by Lemmas 3.8 and 3.10 we have $\mathscr{E}^{C}_{\mathcal{P}}(X) = \mathscr{E}^{C}(X)$ and $\mathscr{E}^{C}_{\mathcal{P}}(Y) = \mathscr{E}^{C}(Y)$. The result now follows from Lemma 3.15.

Suppose that X and Y are non- σ -compact. Let $f : \sigma X \setminus X \to \sigma Y \setminus Y$ denote a homeomorphism. We define an order-isomorphism

$$\phi: (\Theta_X(\mathscr{E}_{\mathcal{P}}^{C}(X)), \subseteq) \to (\Theta_Y(\mathscr{E}_{\mathcal{P}}^{C}(Y)), \subseteq).$$

Since Θ_X and Θ_Y are anti-order-isomorphisms, this will prove (2). Let $D \in \Theta_X(\mathscr{E}_{\mathcal{P}}^{C}(X))$. By Lemma 3.10 we have $D \in \mathscr{Z}(X^*)$ and $\beta X \setminus \sigma X \subseteq D$. Since $X^* \setminus D \subseteq \sigma X$, being a cozero-set in X^* is σ -compact, there exists a countable $G \subseteq I$ such that $X^* \setminus D \subseteq X_G^*$. Now, since $D \cap X_G^* \in \mathscr{Z}(X_G^*)$, we have

$$f(D \cap X_G^*) \in \mathscr{Z}(f(X_G^*)).$$

Since X_G^* is open in $\sigma X \setminus X$, its homeomorphic image $f(X_G^*)$ is open in $\sigma Y \setminus Y$, and thus, is open in Y^* . But, $f(X_G^*)$ is compact, as it is a continuous image of a compact space, and therefore, $f(X_G^*)$ is clopen in Y^* . Thus,

$$f(D \cap X_G^*) \cup (Y^* \setminus f(X_G^*)) \in \mathscr{Z}(Y^*).$$

Let

$$\phi(D) = f(D \cap (\sigma X \backslash X)) \cup (\beta Y \backslash \sigma Y).$$

Note that since

$$f(D \cap (\sigma X \backslash X)) = f((D \cap X_G^*) \cup ((\sigma X \backslash X) \backslash X_G^*))$$

= $f(D \cap X_G^*) \cup ((\sigma Y \backslash Y) \backslash f(X_G^*))$

we have

$$\phi(D) = f(D \cap (\sigma X \setminus X)) \cup (\beta Y \setminus \sigma Y)$$

$$= f(D \cap X_G^*) \cup ((\sigma Y \setminus Y) \setminus f(X_G^*)) \cup (\beta Y \setminus \sigma Y)$$

$$= f(D \cap X_G^*) \cup (Y^* \setminus f(X_G^*))$$

which shows that ϕ is well-defined. The function ϕ is clearly an order-homomorphism. Since $f^{-1}: \sigma Y \backslash Y \to \sigma X \backslash X$ also is a homeomorphism, as above, it induces an order-homomorphism

$$\psi: \left(\Theta_Y\left(\mathscr{E}^C_{\mathcal{P}}(Y)\right), \subseteq\right) \to \left(\Theta_X\left(\mathscr{E}^C_{\mathcal{P}}(X)\right), \subseteq\right)$$

which is defined by

$$\psi(D) = f^{-1}(D \cap (\sigma Y \setminus Y)) \cup (\beta X \setminus \sigma X),$$

for $D \in \Theta_Y(\mathscr{E}_{\mathcal{P}}^{C}(Y))$. It is now easy to see that $\psi = \phi^{-1}$, which shows that ϕ is an order-isomorphism.

(2) implies (1). Suppose that (2) holds. Suppose that either X or Y, say X, is σ -compact (and non-compact). Then, $\sigma X = \beta X$, and thus, by Lemmas 3.8 and 3.10, we have $\mathscr{E}_{\mathcal{D}}^{C}(X) = \mathscr{E}^{C}(X)$. Suppose that Y is non- σ -compact. Note that X, being paracompact and non-compact, is non-pseudocompact (see Theorems 3.10.21, 5.1.5 and 5.1.20 of [3]) and therefore, X^* contains at least two elements, as almost compact spaces are pseudocompact (see Problem 5U (1) of [16]; recall that a Tychonoff space T is called almost compact if $\beta T \setminus T$ has at most one element). Thus, there exist two disjoint non-empty zero-sets of X^* corresponding to two elements in $\mathscr{E}^{C}(X)$ with no common upper bound in $\mathscr{E}^{C}(X)$. But, this is not true, as $\mathscr{E}^{C}(X)$ is order-isomorphic to $\mathscr{E}^{C}_{\mathcal{P}}(Y)$, and any two elements in the latter have a common upper bound in $\mathscr{E}^{C}_{\mathcal{P}}(Y)$. (Note that since Y is non- σ -compact, the set $\beta Y \setminus \sigma Y$ is non-empty, and by Lemma 3.10, the image of any element in $\mathscr{E}_{\mathcal{P}}^{C}(Y)$ under Θ_{Y} contains $\beta Y \setminus \sigma Y$.) Therefore, Y also is σ -compact and by Lemmas 3.8 and 3.10, we have $\mathscr{E}_{\mathcal{P}}^{C}(Y) = \mathscr{E}^{C}(Y)$. Now, since $\sigma Y = \beta Y$, the result follows from Lemma 3.15.

Next, suppose that X and Y are both non- σ -compact. We show that the two compact spaces $\omega \sigma X \setminus X$ and $\omega \sigma Y \setminus Y$ are homeomorphic, by showing that their corresponding sets of zero-sets (partially ordered with \subseteq) are order-isomorphic. Since Θ_X and Θ_Y are anti-order-isomorphisms, condition (2) implies the existence of an order-isomorphism

$$\phi: (\Theta_X(\mathscr{E}_{\mathcal{P}}^{C}(X)), \subseteq) \to (\Theta_Y(\mathscr{E}_{\mathcal{P}}^{C}(Y)), \subseteq).$$

We define an order-isomorphism

$$\psi: \big(\mathscr{Z}(\omega\sigma X\backslash X),\subseteq\big)\to \big(\mathscr{Z}(\omega\sigma Y\backslash Y),\subseteq\big)$$

as follows. Let $Z \in \mathcal{Z}(\omega \sigma X \setminus X)$. Suppose that $\Omega \in Z$. Then, since $(\omega \sigma X \setminus X) \setminus Z$ is a cozero-set in (the compact space) $\omega \sigma X \setminus X$, it is σ compact. Thus, $(\omega \sigma X \setminus X) \setminus Z \subseteq X_G^*$, for some countable $G \subseteq I$. Since X_G^* is clopen in X^* , we have

$$\big(Z\backslash\{\Omega\}\big)\cup(\beta X\backslash\sigma X)=(Z\cap X_G^*)\cup(X^*\backslash X_G^*)\in\mathscr{Z}(X^*).$$
 case, we let

In this case, we let

$$\psi(Z) = (\phi((Z \setminus \{\Omega\}) \cup (\beta X \setminus \sigma X)) \setminus (\beta Y \setminus \sigma Y)) \cup \{\Omega'\}.$$

Now, suppose that $\Omega \notin Z$. Then, $Z \subseteq \sigma X \setminus X$, and therefore $Z \subseteq X_G^*$, for some countable $G \subseteq I$, and thus, using this, one can write

(3.2)
$$Z=X^*\backslash\bigcup_{n=1}^\infty Z_n \text{ where } \beta X\backslash\sigma X\subseteq Z_n\in\mathscr{Z}(X^*) \text{ for } n\in\mathbf{N}.$$
 In this case, we let
$$\psi(Z)=Y^*\backslash\bigcup_{n=1}^\infty \phi(Z_n).$$

$$\psi(Z) = Y^* \setminus \bigcup_{n=1}^{\infty} \phi(Z_n)$$

We check that ψ is well-defined. Assume the representation given in (3.2). Since $Y^* \setminus \phi(Z_n) \subseteq \sigma Y$, for $n \in \mathbb{N}$, there exists a countable $H \subseteq J$ such that $Y^* \setminus \phi(Z_n) \subseteq Y_H^*$, for all $n \in \mathbb{N}$.

Claim. For $Z \in \mathscr{Z}(\omega \sigma X \backslash X)$ with $\Omega \notin Z$ assume the representation given in (3.2). Let $H \subseteq J$ be countable and such that $Y^* \setminus \phi(Z_n) \subseteq Y_H^*$, for all $n \in \mathbb{N}$. Let A be such that $\phi(A) = Y^* \backslash Y_H^*$. Then,

$$Y^* \setminus \bigcup_{n=1}^{\infty} \phi(Z_n) = \phi(A \cup Z) \setminus \phi(A).$$

Proof of the claim. Suppose that $y \in Y^*$ and $y \notin \phi(Z_n)$, for each $n \in \mathbb{N}$. If $y \notin \phi(A \cup Z) \setminus \phi(A)$, then since $y \notin \phi(Z_1) \supseteq \phi(A)$ we have $y \notin \phi(A \cup Z)$. Therefore, there exists some $B \in \mathscr{Z}(Y^*)$ containing y such that $B \cap \phi(A \cup Z) = \emptyset$ and $B \cap \phi(Z_n) = \emptyset$, for $n \in \mathbb{N}$. Let C be such that $\phi(C) = B \cup \phi(A \cup Z)$, and let S_n , for $n \in \mathbb{N}$, be such that

$$\phi(S_n) = \phi(C) \cap \phi(Z_n)
= (B \cup \phi(A \cup Z)) \cap \phi(Z_n)
= (B \cap \phi(Z_n)) \cup (\phi(A \cup Z) \cap \phi(Z_n)) = \phi(A \cup Z) \cap \phi(Z_n).$$

Since $A \subseteq Z_n$, as $\phi(A) \subseteq \phi(Z_n)$ and $Z \cap Z_n = \emptyset$, we have $A \cap Z = \emptyset$, which implies that

$$(A \cup Z) \cap Z_n = (A \cap Z_n) \cup (Z \cap Z_n) = A,$$

for $n \in \mathbb{N}$. Clearly, $S_n \subseteq (A \cup Z) \cap Z_n$, as by above $\phi(S_n) \subseteq \phi(A \cup Z)$ and $\phi(S_n) \subseteq \phi(Z_n)$, for $n \in \mathbb{N}$. Thus, $\phi(S_n) \subseteq \phi(A)$, for $n \in \mathbb{N}$. But, since $\phi(A) \subseteq \phi(Z_n)$, we have $\phi(A) \subseteq \phi(S_n)$, and therefore

$$\phi(C \cap Z_n) \subseteq \phi(C) \cap \phi(Z_n) = \phi(S_n) = \phi(A),$$

for $n \in \mathbb{N}$. This implies that $C \cap Z_n \subseteq A$, for $n \in \mathbb{N}$. Thus,

$$C \setminus Z = C \cap \bigcup_{n=1}^{\infty} Z_n = \bigcup_{n=1}^{\infty} (C \cap Z_n) \subseteq A.$$

Therefore, $C \subseteq A \cup Z$ and we have $B \subseteq \phi(C) \subseteq \phi(A \cup Z)$, which is a contradiction, as $B \cap \phi(A \cup Z) = \emptyset$. This shows that

$$Y^* \setminus \bigcup_{n=1}^{\infty} \phi(Z_n) \subseteq \phi(A \cup Z) \setminus \phi(A).$$

Now, suppose that $y \in \phi(A \cup Z) \setminus \phi(A)$. Suppose to the contrary that $y \in \phi(Z_n)$, for some $n \in \mathbb{N}$. Then,

$$y \in \phi(Z_n) \cap \phi(A \cup Z) = \phi(D),$$

for some D. Clearly, $D \subseteq Z_n$ and $D \subseteq A \cup Z$, as $\phi(D) \subseteq \phi(Z_n)$ and $\phi(D) \subseteq \phi(A \cup Z)$. This implies that

$$D \subseteq Z_n \cap (A \cup Z) = (Z_n \cap A) \cup (Z_n \cap Z) = Z_n \cap A \subseteq A$$

and thus $y \in \phi(A)$, as $\phi(D) \subseteq \phi(A)$, which is a contradiction. This proves the claim.

Now, suppose that

$$Z = X^* \setminus \bigcup_{n=1}^{\infty} S_n \text{ and } Z = X^* \setminus \bigcup_{n=1}^{\infty} Z_n$$

are two representations for $Z \in \mathscr{Z}(\omega \sigma X \setminus X)$ with $\Omega \notin Z$ such that each $S_n, Z_n \in \mathscr{Z}(X^*)$ contains $\beta X \setminus \sigma X$, for $n \in \mathbb{N}$. Choose a countable $H \subseteq J$ such that

$$Y^* \backslash \phi(S_n) \subseteq Y_H^*$$
 and $Y^* \backslash \phi(Z_n) \subseteq Y_H^*$,

for $n \in \mathbb{N}$. Then, by the claim, we have

$$Y^* \setminus \bigcup_{n=1}^{\infty} \phi(S_n) = \phi(A \cup Z) \setminus \phi(A) = Y^* \setminus \bigcup_{n=1}^{\infty} \phi(Z_n)$$

where A is such that $\phi(A) = Y^* \setminus Y_H^*$. This shows that ψ is well-defined. Next, we show that ψ is an order-isomorphism. Suppose that $S, Z \in$ $\mathscr{Z}(\omega\sigma X\backslash X)$ and $S\subseteq Z$. We consider the following cases.

Case 1: Suppose that $\Omega \in S$. Then, $\Omega \in Z$, and clearly,

$$\psi(S) = (\phi((S \setminus \{\Omega\}) \cup (\beta X \setminus \sigma X)) \setminus (\beta Y \setminus \sigma Y)) \cup \{\Omega'\}$$

$$\subseteq (\phi((Z \setminus \{\Omega\}) \cup (\beta X \setminus \sigma X)) \setminus (\beta Y \setminus \sigma Y)) \cup \{\Omega'\} = \psi(Z).$$

Case 2: Suppose that $\Omega \notin S$ but $\Omega \in Z$. Let

$$E = \phi((Z \setminus \{\Omega\}) \cup (\beta X \setminus \sigma X))$$
$$S = X^* \setminus \bigcup_{n=1}^{\infty} S_n$$

and let

$$S = X^* \setminus \bigcup_{n=1}^{\infty} S_n$$

where each $S_n \in \mathcal{Z}(X^*)$ contains $\beta X \setminus \sigma X$, for $n \in \mathbb{N}$. Clearly, $Y^* \setminus E \subseteq \sigma Y$. Let $H \subseteq J$ be countable and such that $Y^* \setminus \phi(S_n) \subseteq$ Y_H^* , for all $n \in \mathbb{N}$ and $Y^* \setminus E \subseteq Y_H^*$. By the claim, we have $\psi(S) = \phi(A \cup S) \setminus \phi(A)$, where $\phi(A) = Y^* \setminus Y_H^*$. Since $Y^* \setminus Y_H^* \subseteq Y_H^*$ E, we have

$$A\subseteq \left(Z\backslash\{\Omega\}\right)\cup(\beta X\backslash\sigma X).$$

$$\psi(S) = \phi(A \cup S) \setminus \phi(A) \subseteq \phi(A \cup S) \subseteq \phi((Z \setminus \{\Omega\}) \cup (\beta X \setminus \sigma X))$$
 which implies that

$$\psi(S) \subseteq \left(\phi\left(\left(Z\backslash\{\Omega\}\right)\cup(\beta X\backslash\sigma X)\right)\backslash(\beta Y\backslash\sigma Y)\right)\cup\{\Omega'\} = \psi(Z).$$

Case 3: Suppose that $\Omega \notin Z$. Then, $\Omega \notin S$. Let

$$S = X^* \setminus \bigcup_{n=1}^{\infty} S_n \text{ and } Z = X^* \setminus \bigcup_{n=1}^{\infty} Z_n$$

where each $S_n, Z_n \in \mathscr{Z}(X^*)$ contains $\beta X \setminus \sigma X$, for $n \in \mathbb{N}$. Clearly,

$$S = S \cap Z = \left(X^* \setminus \bigcup_{n=1}^{\infty} S_n\right) \cap \left(X^* \setminus \bigcup_{n=1}^{\infty} Z_n\right) = X^* \setminus \bigcup_{n=1}^{\infty} (S_n \cup Z_n)$$

and thus, since $\phi(Z_n) \subseteq \phi(S_n \cup Z_n)$, for $n \in \mathbb{N}$, it follows that

$$\psi(S) = Y^* \backslash \bigcup_{n=1}^\infty \phi(S_n \cup Z_n) \subseteq Y^* \backslash \bigcup_{n=1}^\infty \phi(Z_n) = \psi(Z).$$
 Let since

Note that since

$$\phi^{-1}: (\Theta_Y(\mathscr{E}_{\mathcal{P}}^{C}(Y)), \subseteq) \to (\Theta_X(\mathscr{E}_{\mathcal{P}}^{C}(X)), \subseteq)$$

also is an order-isomorphism, as above, it induces an order-isomorphism

$$\gamma: (\mathscr{Z}(\omega\sigma Y \backslash Y), \subseteq) \to (\mathscr{Z}(\omega\sigma X \backslash X), \subseteq)$$

which is easy to see that $\gamma = \psi^{-1}$. Therefore, ψ is an order-isomorphism. It then follows that there exists a homeomorphism $f: \omega \sigma X \setminus X \to X$ $\omega \sigma Y \setminus Y$ such that $f(Z) = \psi(Z)$, for any $Z \in \mathcal{Z}(\omega \sigma X \setminus X)$. Now, since for each countable $G \subseteq I$ we have

$$f(X_G^*) = \psi(X_G^*) \subseteq \sigma Y \backslash Y$$

 $f(X_G^*)=\psi(X_G^*)\subseteq\sigma Y\backslash Y$ it follows that $f(\sigma X\backslash X)=\sigma Y\backslash Y$. Thus, $\sigma X\backslash X$ and $\sigma Y\backslash Y$ are homeomorphic.

(1) implies (3). Suppose that (1) holds. Suppose that either X or Y, say X, is σ -compact. Then, $\sigma X = \beta X$ and thus, arguing as in part $(1)\Rightarrow(2)$, it follows that Y also is σ -compact. Therefore, $\sigma Y=\beta Y$. Note that by Lemmas 3.7 and 3.11 we have $\mathscr{E}^*_{local-\mathcal{P}}(X)=\mathscr{E}^*(X)$ and since $X^* \in \mathscr{Z}(\beta X)$ (as X is σ -compact and locally compact, see 1B of [19]) by Lemmas 3.7 and 3.8 we have $\mathscr{E}^*(X) = \mathscr{E}^C(X)$. Thus, $\mathscr{E}^*_{local-\mathcal{P}}(X) = \mathscr{E}^C(X)$ and similarly $\mathscr{E}^*_{local-\mathcal{P}}(Y) = \mathscr{E}^C(Y)$. The result now follows from Lemma 3.15.

Suppose that X and Y are non- σ -compact. Let $f: \sigma X \setminus X \to \sigma Y \setminus Y$ be a homeomorphism. We define an order-isomorphism

$$\phi: \left(\Theta_X \left(\mathscr{E}_{local-\mathcal{P}}^*(X) \right), \subseteq \right) \to \left(\Theta_Y \left(\mathscr{E}_{local-\mathcal{P}}^*(Y) \right), \subseteq \right),$$

as follows. Let $Z \in \Theta_X(\mathscr{E}^*_{local-\mathcal{P}}(X))$. By Lemma 3.11 we have $Z \in \mathscr{Z}(\beta X)$ and $Z \subseteq \sigma X \backslash X$. Thus, $Z \subseteq X_G^*$, for some countable $G \subseteq I$. Now, $f(Z) \in \mathscr{Z}(\sigma Y \backslash Y)$ and since f(Z) is compact, as it is a continuous image of a compact space, it follows that $f(Z) \subseteq Y_H^*$, for some countable $H \subseteq J$. Therefore, $f(Z) \in \mathscr{Z}(Y_H^*)$ and then $f(Z) \in \mathscr{Z}(\operatorname{cl}_{\beta Y} Y_H)$. Since $\operatorname{cl}_{\beta Y} Y_H$ is clopen in βY we have $f(Z) \in \mathscr{Z}(\beta Y)$. Define

$$\phi(Z) = f(Z).$$

It is obvious that ϕ is an order-homomorphism. If we let

$$\psi: (\Theta_Y(\mathscr{E}_{local-\mathcal{P}}^*(Y)), \subseteq) \to (\Theta_X(\mathscr{E}_{local-\mathcal{P}}^*(X)), \subseteq)$$

be defined by

$$\psi(Z) = f^{-1}(Z),$$

then $\psi = \phi^{-1}$ which shows that ϕ is an order-isomorphism.

(3) implies (1). Suppose that (3) holds. Suppose that either X or Y, say X, is σ -compact (and non-compact). Then, $\sigma X = \beta X$, and thus, by Lemmas 3.7 and 3.11, we have $\mathscr{E}^*_{local-\mathcal{P}}(X) = \mathscr{E}^*(X)$. Therefore, since $X^* \in \mathscr{Z}(\beta X)$ the set $\mathscr{E}^*_{local-\mathcal{P}}(X)$ has a smallest element (namely, its one-point compactification ωX). Thus, $\mathscr{E}^*_{local-\mathcal{P}}(Y)$ also has a smallest element; denote this element by T. Then, for each countable $H \subseteq J$ we have

$$Y_H^* \in \Theta_Y \left(\mathscr{E}_{local-\mathcal{P}}^*(Y) \right)$$

and therefore $\sigma Y \setminus Y \subseteq \Theta_Y(T)$. By Lemma 3.14 (with $\Theta_Y(T)$ and Y^* as the zero-sets in its statement) we have $Y^* \subseteq \Theta_Y(T)$. This implies that $Y^* \in \mathscr{Z}(\beta Y)$ which shows that Y is σ -compact. Thus, $\sigma Y = \beta Y$, and by Lemmas 3.7 and 3.11, we have $\mathscr{E}^*_{local-\mathcal{P}}(Y) = \mathscr{E}^*(Y)$. Therefore, in this case (and since by Lemmas 3.7 and 3.8 we have $\mathscr{E}^*(X) = \mathscr{E}^C(X)$ and $\mathscr{E}^*(Y) = \mathscr{E}^C(Y)$) the result follows from Lemma 3.15.

Next, suppose that X and Y are both non- σ -compact. Since Θ_X and Θ_Y are both anti-order-isomorphisms, there exists an order-isomorphism

$$\phi: (\Theta_X(\mathscr{E}^*_{local-\mathcal{P}}(X)), \subseteq) \to (\Theta_Y(\mathscr{E}^*_{local-\mathcal{P}}(Y)), \subseteq).$$

We extend ϕ by letting $\phi(\emptyset) = \emptyset$. We define a function

$$\psi: (\mathscr{Z}(\omega\sigma X \backslash X), \subseteq) \to (\mathscr{Z}(\omega\sigma Y \backslash Y), \subseteq)$$

and verify that it is an order-isomorphism. Let $Z \in \mathscr{Z}(\omega \sigma X \setminus X)$ with $\Omega \notin Z$. Since $Z \subseteq X_G^*$, for some countable $G \subseteq I$, we have $Z \in \mathscr{Z}(\beta X)$, and therefore,

$$Z \in \Theta_X \left(\mathscr{E}_{local-\mathcal{P}}^*(X) \right) \cup \{\emptyset\}.$$

In this case, let

$$\psi(Z) = \phi(Z).$$

Now, suppose that $Z \in \mathscr{Z}(\omega \sigma X \setminus X)$ and $\Omega \in Z$. Then, $(\omega \sigma X \setminus X) \setminus Z$ is a cozero-set in $\omega \sigma X \setminus X$, and we have

(3.3)
$$Z = (\omega \sigma X \backslash X) \backslash \bigcup_{n=1}^{\infty} Z_n \text{ where } Z_n \in \mathscr{Z}(\omega \sigma X \backslash X) \text{ for } n \in \mathbf{N}.$$

Thus, as above, it follows that

$$Z_n \in \Theta_X (\mathscr{E}_{local-\mathcal{P}}^*(X)) \cup \{\emptyset\},$$

for $n \in \mathbb{N}$. We verify that

(3.4)
$$\bigcup_{n=1}^{\infty} \phi(Z_n) \in Coz(\omega \sigma Y \backslash Y).$$

To show this, note that since $\phi(Z_n) \subseteq \sigma Y \setminus Y$ there exists a countable $H \subseteq J$ such that $\phi(Z_n) \subseteq Y_H^*$, for $n \in \mathbb{N}$.

Claim. For $Z \in \mathscr{Z}(\omega \sigma X \setminus X)$ with $\Omega \in Z$ assume the representation given in (3.3). Let $H \subseteq J$ be countable and such that $\phi(Z_n) \subseteq Y_H^*$, for all $n \in \mathbb{N}$. Let A be such that $\phi(A) = Y_H^*$. Then,

all
$$n \in \mathbf{N}$$
. Let A be such that $\phi(A) = Y_H^*$. Then,
$$\phi(A \cap Z) = \phi(A) \setminus \bigcup_{n=1}^{\infty} \phi(Z_n).$$

Proof of the claim. For each $n \in \mathbb{N}$, since $A \cap Z \cap Z_n = \emptyset$, we have $\phi(A \cap Z) \cap \phi(Z_n) = \emptyset$, as otherwise, $\phi(A \cap Z)$ and $\phi(Z_n)$ will have a common lower bound in $\Theta_Y(\mathscr{E}^*_{local-\mathcal{P}}(Y))$, that is, $\phi(A \cap Z) \cap \phi(Z_n)$, whereas $A \cap Z$ and Z_n do not have. Also, $\phi(A \cap Z) \subseteq \phi(A)$. Therefore,

$$\phi(A \cap Z) \subseteq \phi(A) \setminus \bigcup_{n=1}^{\infty} \phi(Z_n).$$

To show the reverse inclusion, let $y \in \phi(A)$ be such that $y \notin \phi(Z_n)$, for $n \in \mathbb{N}$. There exists $B \in \mathscr{Z}(\beta Y)$ such that $y \in B$ and $B \cap \phi(Z_n) = \emptyset$, for all $n \in \mathbb{N}$. If $y \notin \phi(A \cap Z)$, then there exists some $C \in \mathscr{Z}(\beta Y)$ such that $y \in C$ and $C \cap \phi(A \cap Z) = \emptyset$. Let $D = \phi(A) \cap B \cap C$ and let E be such that $\phi(E) = D$. For each $n \in \mathbb{N}$, since $\phi(E) \cap \phi(Z_n) = \emptyset$, we have $E \cap Z_n = \emptyset$, and thus $E \subseteq Z$. On the other hand, since $\phi(E) \subseteq \phi(A)$ we have $E \subseteq A$, and therefore $E \subseteq A \cap Z$. Thus, $\phi(E) \subseteq \phi(A \cap Z)$, which implies that $\phi(E) = \emptyset$, as $\phi(E) \subseteq C$. This contradiction shows that $y \in \phi(A \cap Z)$, which proves the claim.

Let A be such that $\phi(A) = Y_H^*$. Now, $\phi(A \cap Z) \in \mathscr{Z}(\omega \sigma Y \setminus Y)$, as $\phi(A \cap Z) \subseteq \phi(A)$. By the claim we have

$$(\omega\sigma Y\backslash Y)\backslash \bigcup_{n=1}^{\infty} \phi(Z_n) = \left(\phi(A)\backslash \bigcup_{n=1}^{\infty} \phi(Z_n)\right) \cup \left((\omega\sigma Y\backslash Y)\backslash \phi(A)\right)$$
$$= \phi(A\cap Z) \cup \left((\omega\sigma Y\backslash Y)\backslash \phi(A)\right) \in \mathscr{Z}(\omega\sigma Y\backslash Y)$$

and (3.4) is verified. In this case, we let

$$\psi(Z) = (\omega \sigma Y \backslash Y) \backslash \bigcup_{n=1}^{\infty} \phi(Z_n).$$

Next, we show that ψ is well-defined. Assume that

$$Z = (\omega \sigma X \backslash X) \backslash \bigcup_{n=1}^{\infty} S_n$$

with $S_n \in \mathscr{Z}(\omega \sigma X \setminus X)$, for $n \in \mathbb{N}$, is another representation of Z. We need to show that

(3.5)
$$\bigcup_{n=1}^{\infty} \phi(Z_n) = \bigcup_{n=1}^{\infty} \phi(S_n).$$

Without any loss of generality, suppose to the contrary that there exists some $m \in \mathbf{N}$ and $y \in \phi(Z_m)$ such that $y \notin \phi(S_n)$, for all $n \in \mathbf{N}$. Then, there exists some $A \in \mathscr{Z}(\beta Y)$ such that $y \in A$ and $A \cap \phi(S_n) = \emptyset$, for $n \in \mathbf{N}$. Consider

$$A \cap \phi(Z_m) \in \Theta_Y \big(\mathscr{E}^*_{local-\mathcal{P}}(Y) \big).$$

Let B be such that $\phi(B) = A \cap \phi(Z_m)$. Since $\phi(B) \subseteq A$ we have $\phi(B) \cap \phi(S_n) = \emptyset$ from which it follows that $B \cap S_n = \emptyset$, for $n \in \mathbb{N}$. But, $B \subseteq Z_m$, as $\phi(B) \subseteq \phi(Z_m)$, and we have

$$B \subseteq \bigcup_{n=1}^{\infty} Z_n = \bigcup_{n=1}^{\infty} S_n$$

which implies that $B = \emptyset$. But, this is a contradiction, as $\phi(B) \neq \emptyset$. Therefore, (3.5) holds, and thus ψ is well-defined. To prove that ψ is an order-isomorphism, let $S, Z \in \mathscr{Z}(\omega \sigma X \setminus X)$ and $S \subseteq Z$. The case when $S = \emptyset$ holds trivially. Assume that $S \neq \emptyset$. We consider the following cases.

Case 1: Suppose that $\Omega \notin Z$. Then, $\Omega \notin S$ and we have

$$\psi(S) = \phi(S) \subseteq \phi(Z) = \psi(Z).$$

Case 2: Suppose that $\Omega \notin S$ but $\Omega \in Z$. Let

$$Z = (\omega \sigma X \backslash X) \backslash \bigcup_{n=1}^{\infty} Z_n$$

with $Z_n \in \mathscr{Z}(\omega \sigma X \setminus X)$, for $n \in \mathbb{N}$. Then, since $S \subseteq Z$ we have $S \cap Z_n = \emptyset$, and therefore $\phi(S) \cap \phi(Z_n) = \emptyset$, for $n \in \mathbb{N}$. Thus,

$$Z_n = \emptyset$$
, and therefore $\phi(S) \cap \phi(Z_n) = \emptyset$, for $n \in \mathbb{N}$

$$\psi(S) = \phi(S) \subseteq (\omega \sigma Y \setminus Y) \setminus \bigcup_{n=1}^{\infty} \phi(Z_n) = \psi(Z).$$
Solve Suppose that $\Omega \in S$. Then, $\Omega \in Z$. Let

Case 3: Suppose that $\Omega \in S$. Then, $\Omega \in Z$. Let

$$S = (\omega \sigma X \backslash X) \backslash \bigcup_{n=1}^{\infty} S_n \text{ and } Z = (\omega \sigma X \backslash X) \backslash \bigcup_{n=1}^{\infty} Z_n$$

where $S_n, Z_n \in \mathcal{Z}(\omega \sigma X \setminus X)$, for $n \in \mathbb{N}$. Therefore,

$$S = S \cap Z = \left((\omega \sigma X \backslash X) \backslash \bigcup_{n=1}^{\infty} S_n \right) \cap \left((\omega \sigma X \backslash X) \backslash \bigcup_{n=1}^{\infty} Z_n \right)$$
$$= (\omega \sigma X \backslash X) \backslash \bigcup_{n=1}^{\infty} (S_n \cup Z_n).$$

Thus, since $\phi(Z_n) \subseteq \phi(S_n \cup Z_n)$, for $n \in \mathbb{N}$, we have

$$\psi(S) = (\omega \sigma Y \backslash Y) \backslash \bigcup_{n=1}^{\infty} \phi(S_n \cup Z_n) \subseteq (\omega \sigma Y \backslash Y) \backslash \bigcup_{n=1}^{\infty} \phi(Z_n) = \psi(Z).$$

This shows that ψ is an order-homomorphism. To show that ψ is an order-isomorphism, we note that

$$\phi^{-1}: (\Theta_Y(\mathscr{E}_{local-\mathcal{P}}^*(Y)), \subseteq) \to (\Theta_X(\mathscr{E}_{local-\mathcal{P}}^*(X)), \subseteq)$$

is an order-isomorphism. Let

$$\gamma: \left(\mathscr{Z}(\omega\sigma Y \backslash Y), \subseteq \right) \to \left(\mathscr{Z}(\omega\sigma X \backslash X), \subseteq \right)$$

be the induced order-homomorphism which is defined as above. Then, it is straightforward to see that $\gamma = \psi^{-1}$, that is, ψ is an order-isomorphism. This implies the existence of a homeomorphism $f: \omega \sigma X \setminus X \to \omega \sigma Y \setminus Y$

such that $f(Z) = \psi(Z)$, for every $Z \in \mathscr{Z}(\omega \sigma X \setminus X)$. Therefore, for any countable $G \subseteq I$, since $X_G^* \in \mathscr{Z}(\omega \sigma X \setminus X)$, we have

$$f(X_G^*) = \psi(X_G^*) = \phi(X_G^*) \subseteq \sigma Y \backslash Y.$$

Thus, $f(\sigma X \setminus X) \subseteq \sigma Y \setminus Y$, which shows that $f(\Omega) = \Omega'$. Therefore, $\sigma X \setminus X$ and $\sigma Y \setminus Y$ are homeomorphic.

Example 3.17. The Lindelöf property and the linearly Lindelöf property (besides σ -compactness itself) are examples of topological properties \mathcal{P} satisfying the assumption of Theorem 3.16. To see this, let X be a locally compact paracompact space. Assume a representation for X as in Notation 2.9. Recall that a Hausdorff space X is said to be linearly Lin $del\ddot{o}f$ [6] provided that every linearly ordered (by set inclusion \subseteq) open cover of X has a countable subcover, equivalently, if every uncountable subset of X has a complete accumulation point in X. (Recall that a point $x \in X$ is called a complete accumulation point of a set $A \subseteq X$ if for every neighborhood U of x in X we have $|U \cap A| = |A|$.) Note that if X is non- σ -compact, then (using the notation of Notation 2.9) the set I is uncountable. Let $A = \{x_i : i \in I\}$ where $x_i \in X_i$, for $i \in I$. Then, A is an uncountable subset of X without (even) accumulation points. Thus, X cannot be linearly Lindelöf as well. For the converse, note that if X is not linearly Lindelöf, then, obviously, X is not Lindelöf, and therefore, is non- σ -compact, as it is well-known that σ -compactness and the Lindelöf property coincide in the realm of locally compact paracompact spaces (this fact is evident from the representation given for X in Notation 2.9).

Theorem 3.16 above might leave the impression that $(\mathscr{E}^{C}_{\mathcal{P}}(X), \leq)$ and $(\mathscr{E}^*_{local-\mathcal{P}}(X), \leq)$ are order-isomorphic. The following is to settle this, showing that in most cases this is indeed not going to be the case.

Theorem 3.18. Let X be a locally compact paracompact (non-compact) space and let \mathcal{P} be a closed hereditary topological property of compact spaces which is preserved under finite sums of subspaces and coincides with σ -compactness in the realm of locally compact paracompact spaces. Then, the following are equivalent:

- (1) X is σ -compact.
- (1) If we computed: (2) $(\mathscr{E}_{\mathcal{P}}^{\mathcal{P}}(X), \leq)$ and $(\mathscr{E}_{local-\mathcal{P}}^{*}(X), \leq)$ are order-isomorphic.

Proof. Since X is locally compact, the set X^* is closed in (the normal space) βX and thus, using the Tietze-Urysohn Theorem, every zero-set of X^* is extendible to a zero-set of βX . Now, if X is σ -compact (since X is also locally compact) we have $X^* \in \mathscr{Z}(\beta X)$ and therefore every zero-set of X^* is a zero-set of βX . Note that $\lambda_{\mathcal{P}} X = \sigma X = \beta X$. Thus, using Lemmas 3.10 and 3.11 we have

$$\Theta_X \left(\mathscr{E}_{\mathcal{P}}^C(X) \right) = \mathscr{Z}(X^*) \setminus \{\emptyset\} = \Theta_X \left(\mathscr{E}_{local-\mathcal{P}}^*(X) \right)$$

from which it follows that

$$\mathscr{E}_{\mathcal{P}}^{C}(X) = \mathscr{E}_{local-\mathcal{P}}^{*}(X).$$

If X is non- σ -compact, then any two elements of $\mathscr{E}^{C}_{\mathcal{P}}(X)$ have a common upper bound while this is not the case for $\mathscr{E}^*_{local-\mathcal{P}}(X)$. To see this, note that by Lemma 3.10 the set $\Theta_X(\mathscr{E}^{C}_{\mathcal{P}}(X))$ is closed under finite intersections (note that the finite intersections are non-empty, as they contain $\beta X \setminus \sigma X$ and the latter is non-empty, as X is non- σ -compact) while there exist (at least) two elements in $\Theta_X(\mathscr{E}^*_{local-\mathcal{P}}(X))$ with empty intersection; simply consider X^*_i and X^*_j , for some distinct $i, j \in I$ (we are assuming the representation for X given in Notation 2.9).

Project 3.19. Let X be a (locally compact paracompact) space and let \mathcal{P} be a (closed hereditary) topological property (of compact spaces which is preserved under finite sums of subspaces and coincides with σ -compactness in the realm of locally compact paracompact spaces). Explore the relationship between the order structures of $(\mathscr{E}_{\mathcal{P}}^{C}(X), \leq)$ and $(\mathscr{E}_{local-\mathcal{P}}^{*}(X), \leq)$.

Acknowledgment

This research was in part supported by a grant from IPM (No. 86540012).

References

- [1] G. Beer, On convergence to infinity, Monatsh. Math. 129 (2000) 267-280.
- [2] D. K. Burke, Covering properties, in: K. Kunen and J.E. Vaughan (Eds.), *Handbook of Set-theoretic Topology*, Elsevier, Amsterdam, 1984, pp. 347-422.
- [3] R. Engelking, General Topology, Second edition, Heldermann Verlag, Berlin, 1989
- [4] Z. Frolík, A generalization of real compact spaces, Czechoslovak Math. J. 13 (1963) 127-138.

[5] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, New York-Heidelberg, 1976.

- [6] C. Good, The Lindelöf property, in: K. P. Hart, J. Nagata and J. E. Vaughan (Eds.), Encyclopedia of General Topology, Elsevier Science Publishers, B.V., Amsterdam, 2004, pp. 182-184.
- [7] M. Henriksen, L. Janos and R. G. Woods, Properties of one-point completions of a noncompact metrizable space, *Comment. Math. Univ. Carolin.* 46 (2005) 105-123.
- [8] M. R. Koushesh, On one-point metrizable extensions of locally compact metrizable spaces, *Topology Appl.* 154 (2007) 698-721.
- [9] M. R. Koushesh, On order structure of the set of one-point Tychonoff extensions of a locally compact space, *Topology Appl.* **154** (2007) 2607-2634.
- [10] M. R. Koushesh, Compactification-like extensions, Dissertationes Math. (Rozprawy Mat.) 476 (2011) 88 pp.
- [11] M. R. Koushesh, The partially ordered set of one-point extensions, *Topology Appl.* 158 (2011) 509-532.
- [12] J. Mack, M. Rayburn and G. Woods, Local topological properties and one-point extensions, Canad. J. Math. 24 (1972) 338-348.
- [13] J. Mack, M. Rayburn and G. Woods, Lattices of topological extensions, Trans. Amer. Math. Soc. 189 (1974) 163-174.
- [14] S. Mrówka, On local topological properties, Bull. Acad. Polon. Sci. Cl. III 5 (1957) 951-956.
- [15] S. Mrówka, Some comments on the author's example of a non-R-compact space, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970) 443-448.
- [16] J. R. Porter and G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, New York, 1988.
- [17] R. M. Stephenson, Jr., Initially κ -Compact and Related Spaces, in: $Handbook\ of\ set$ -theoretic topology, North-Holland, Amsterdam, 1984, pp. 603-632.
- [18] J. E. Vaughan, Countably compact and sequentially compact spaces, in: Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 569-602.
- [19] R. C. Walker, *The Stone-Čech Compactification*, Springer-Verlag, New York-Berlin, 1974.

M. R. Koushesh

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156–83111, Iran

and

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395–5746, Tehran, Iran.

Email: koushesh@cc.iut.ac.ir