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Abstract. This paper considers the search problem, introduced
by Srivastava [10]. This is a model discrimination problem. In the
context of search linear models, discrimination ability of search de-
signs has been studied by several researchers. Some criteria have
been developed to measure this capability, however, they are re-
stricted in a sense of being able to work for searching only one
possible nonzero effect. In this paper, two criteria are proposed,
based on Kullback-Leibler distance. These criteria are able to eval-
uate the search ability of designs, without any restriction on the
number of nonzero effects.

1. Introduction

Consider the following linear model for a 2m factorial experiment,

(1.1) y = X1β1 + X2β2 + e, V ar(e) = σ2I,

where y(N ×1) is a vector of observations, Xi(N ×νi) are known design
matrices and βi(νi× 1) are vectors of fixed unknown factorial effects for
i = 1, 2, e(N × 1) is an error vector, σ2 is the error variance and IN is
the identity matrix of order N . We know about β2 partially. That is, at
most k elements of β2 are nonzero but those elements are unknown. We
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are interested in identifying and estimating the k nonzero parameters of
β2 along with the estimation of β1. This is so called a search problem
and the related design which is able to solve this problem is a search
design (SD). Now, let S denotes a set of

(
ν2

k

)
partially non-nested reduced

models, Mi, of (1.1). That is,

(1.2) S = {Mi : y = X1β1 + X2iβ2i + e},
where β2i is the i-th possible k× 1 vector of parameters of β2i ∈ β2 and
X2i are its corresponding columns in X2 for i = 1, 2, ...,

(
ν2

k

)
. Models in

S are common in β1 and all differ in β2i and only one of them, say M0,
is true. One may discriminate between any two models in order to come
up with the true model. In the context of search linear model, Srivastava
[10] proposed the following condition to solve the discrimination problem

(1.3) rank(X1; X2i;X2j) = ν1 + 2k,

for any pairs of X2i and X2j in X2. This condition is necessary and suffi-
cient for the noiseless case, σ2 = 0. However, for the noisy case, σ2 > 0,
(3) is not sufficient but is still necessary. One way to overcome this
problem, proposed by Srivastava [10], is to calculate the sum of squared
error (SSE) for each of

(
ν2

k

)
models and choose one with minimum SSE

as the true model. Shirakura et al. [9] considered the stochastic proper-
ties of SSE for a given search design and defined the search probability
(SP) P [SSE(M0) < SSE(Mi)|M0, Mi, σ

2], for any two models, in order
to measure the discrimination capability of the SD. They gave an exact
expression of SP for k = 1 when errors are normally distributed. Based
on the SP, to compare the SDs, some criteria are given in [9], [5] and [11].
All of these criteria are applicable for k = 1. Creation and development
of criterion to do the task for k ≥ 1 is our challenge in this research.
In general, some advances have been made by researchers to provide
criteria for model discrimination through the design optimization. For
normally distributed error, Atkinson and Fedorov [1], [2] introduced a
criterion to obtain the optimum design through discrimination between
two homoscedastic models, which is the so called T-optimality. Uciniski
and Bogacka [12] developed it to the heteroscedastic case. Lopez-Fidalgo
et al. [8] extended the optimal design criterion, based on KL distance,
for non-normal models to discriminate between the true model and its
alternative by considering the system of hypotheses

H0 : M = Mi,

H1 : M = M0.(1.4)
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In this paper, we proposed two new criteria, based on the Kullback-
Liebler (KL) distance, in the context of search linear model (1.1). The
KL distance was proposed by Kullback and Liebler [7] to measure the
distance between density functions, f1 and f2, under two candidate mod-
els.

Now, let f1(y, X20, β20, σ) and f2(y, X2i, β2i, σ) be density functions
of observations under true and alternative models, respectively. The KL
distance is given by

Ii(f1, f2) =
∫

f1(y, X20, β20, σ) log{f1(y, X20, β20, σ)
f2(y, X2i, β2i, σ)

}dy,(1.5)

where dy = dy1...dyN and y′ = (y1, ..., yN ). Suppose the components
of the error vector e are independently distributed as N(0, σ2). The
expression (1.5) is reduced to the following explicit form:

Ii(f1, f2) =
1

2σ2
(X20β20 −X2iβ2i)′(X20β20 −X2iβ2i).(1.6)

It means, under the normality assumption the KL distance is simplified
to a quantity which measures the distance between means of two models.
The minimum discrimination distance function, minimizes (1.6) with
respect to all vector β2i. The minimum value of (1.6) occurs at β2i =
(X ′

2iX2i)−1X ′
2iX20β20 and is given by

Ii(ρ,X20) = min
β2i

Ii(f1, f2) =
1
2
ρ′X ′

20(I −Hi)X20ρ,(1.7)

where ρ = 1
σβ20 and Hi = X2i(X ′

2iX2i)−1X ′
2i. This is the T-optimality

criterion obtained by Atkinson and Fedorov [1], [2] and is the so-called
non-centrality parameter of the likelihood ratio test for lack of fit of
postulating Mi when the true model is M0. [8]

In next two sections, we will use (1.7) to propose new dual-job KL-
criterion for discriminating models and evaluate the search capability
of SDs for k = 1 and 2. The expected KL-criterion (EKL) is given in
Section 4. It will allow us to evaluate the search performance of design
through the discrimination job for all k ≥ 1.

2. Kullback-Leibler search criterion

Minimum discrimination distance given in (1.7) provides a measure
to discriminate between two candidate models, M0 and Mi. Now, in
view of searching the true model consider the

(
ν2

k

)
rival models of the
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set S given in (1.2). Any model in S can be the true model, M0, given
by,

(2.1) M0 : y = X1β1 + X20β20 + e.

Let S0 denotes the set of all
(
ν2

k

)
-1 possible alternative Mi(6= M0), of

which at least one effect in β2i is not of β20. To discriminate the true
model based on (1.7), we consider a two-stage procedure and propose
the Kullback-Leibler search criterion (KL-criterion), for a given search
design T , by

KLT (ρ) = min
S

min
S0

Ii(ρ,X20).(2.2)

Note that KLT (ρ) is a real valued function of vector ρ, which depends
on design through X20 and X2i. From T-optimality property given in
(1.7), it is most desirable that KLT (ρ) be a large value. This means that
a search design T with larger value of KLT (ρ) has a larger capability in
discriminating the true model among all competing models. Therefore,
having (2.2) we are able to compare and rank the SDs with respect to
their discrimination capacity. In the following, we will employ KLT (ρ)
in more details for evaluating search ability and ranking search designs.
Before going into more details, we give the following definition.

Definition 2.1. Let T1 and T2 be two search designs with N treatments.
Then T1 is said to be better than T2 for discriminating the true model if
KLT1(ρ) > KLT2(ρ).

Indeed, by this definition, we choose a design that has the better
discrimination capability in the worst case. The following lemma will
be useful in the next section.

Lemma 2.2. The minimum discrimination distance given in (1.7) is
bounded above by 1

2ρ′X ′
20X20ρ.

The proof is easily obtained from the positive semi-definite property
of the matrix X ′

20HiX20.

3. Implementation

In this section, we employ KL-criterion in (2.2) for comparing some
search designs.
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3.1. Case k = 1. Consider a SD with N treatments and let k = 1. It
can be easily seen that Ii(ρ,X20) = Ii(−ρ,X20), i.e. Ii is symmetric in
ρ. This will allow us to focus on ρ ≥ 0 for comparing search designs.
It is also clear from Lemma 2.2 that Ii(ρ,X20) ≤ Nρ2. Note that, in
comparing SDs for this case the ρ will be canceled out and hence the
actual value it takes immaterial. We put ρ = 1 in using Definition 2.1
for design comparison. Now, we can establish the following proposition.

Proposition 3.1. Consider a search design T with N runs. The fol-
lowing properties of KLT (ρ) are true:
a) KLT (ρ) = KLT (−ρ).
b) for ρ = 1, 0 ≤ 1

N KLT (1) ≤ 1.

The proof is obtained from the above discussion.
Based on Proposition 3.1, we use (2.2) to measure the search ability

of designs D1, D2 and D3, given in Table 1 and then rank them. Design

Table 1. D1, D2, D3 and D4 with 12 runs

D1 D2 D3 D4

+ + + + + + - - - - + + + + + + + + +
- - - + - - + - - - + - - - - - - - -

+ - - - + - - + - - - + - - - - - - +
+ + - - - - - - + - - - + - - - - + -
+ + + - - - - - - + - - - + - - + - -
- + + + - + - + + + - - - - + + - - -

+ - + + + - + + + - - + - + + - - + +
- + - + + + + + - - + - + + + - + - +
- - + - + + + - - + - + + + - + - - +

+ - - + - + - - + - + + + - - - + + -
- + - - + - - + - + + + - - + + - + -
- - + - - - + - + + + - - + - + + - -

D1 is a projection of Plackett-Burman design with 12 runs (PB12) onto
5 factors. D2 is given in [4] and D3 in [11]. In model (1.1), we take β1

as the vector of the general mean and main effects, and β2 is restricted
to 2- and 3- factor interactions. We also assume that 4 and higher order
interactions are negligible. Designs D1, D2 and D3 satisfy condition
(1.3) for k = 1. The values of KLDi(1) and 1

N KLDi(1) are given in
Table 2 which shows that

KLD1 > KLD2 > KLD3 .

It means, D1 is superior to D2 and D2 is superior to D3 in identifying the
true model. The second row in Table 2 shows the discrimination capacity
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of these designs compared to its upper bound 1, given in Proposition
3.1(b).

Table 2. Comparisons between designs D1, D2 and D3

D1 D2 D3

KLDi(1) 10.667 9.0000 6.6667
1
N KLDi(1) 0.8889 0.7500 0.5556

3.2. Case k = 2. As already mentioned, none of the criteria given for
measuring and comparing the search ability of designs, in the context
of search linear models, are applicable for the case k > 1. An exception
is given by Chatterjee et al. [3], in which, they consider k = 2 for
comparing two-level supersaturated designs, using the SP given in [9].
The KL-criterion is applicable for k ≥ 2. Here, we apply KLT (ρ) for
designs D4 and D5, in order to measure their capability in searching
and finding the superior design. Design D4, presented in Table 1 is
given in [5]. D5 is any one of the designs that is chosen from the class of
isomorphic projection designs of PB12 onto any four factors. These two
designs satisfy the search condition (1.3) for k = 2, where βi, i = 1, 2
are the same as those considered in Section 3.1. The values of KLDi(ρ),
for various values of ρ = (ρ1, ρ2) are shown in Table 3. Results show
that D4 is superior in comparison to D5. For −2 ≤ ρi ≤ 2, i = 1, 2,

Table 3. Comparisons between designs D4 and D5

ρ2 -2 -1.5 -1 -0.5 0.5 1 1.5 2

ρ1 D4

-2 40.2286 22.6286 10.0571 2.5143 2.5143 10.0571 22.6286 40.2286
-1.5 22.6286 22.6286 10.0571 2.5143 2.5143 10.0571 22.6286 22.6286
-1 10.0571 10.0571 10.0571 2.5143 2.5143 10.0571 10.0571 10.0571
-0.5 2.5143 2.5143 2.5143 2.5143 2.5143 2.5143 2.5143 2.5143

D5

-2 37.3333 21 9.3333 2.3333 2.3333 9.3333 21 37.3333
-1.5 21 21 9.3333 2.3333 2.3333 9.3333 21 21
-1 9.3333 9.3333 9.3333 2.3333 2.3333 9.3333 9.3333 9.3333
-0.5 2.3333 2.3333 2.3333 2.3333 2.3333 2.3333 2.3333 2.3333

the plots of KLT (ρ) are presented in Figure 1, (a) and (b) for D4 and
D5, respectively. The superimposed contour of these plots, at a given
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Figure 1. Plot of KL for D4 and D5

KLT (ρ) level, reveals the superiority of the design. That is, a design
with interior contour is concordant with a higher KLT (ρ) at a given ρ.
The contour plot for levels 4 and 8 are shown in Figure 2.
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Figure 2. Contour plot of KL for D4 and D5

4. Expected KL-criterion

In design comparison, the effect size, ρ is canceled out from KL-
criterion for k = 1. However, there is a serious problem due to the
dependence of KL-criterion on ρ for k > 1. Therefore, the comparison
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of search designs need to be done for many given different values of ρ.
This is a tedious and almost impossible task. In order to overcome this
problem, we develop a new criterion by averaging (1.7) over ρ, through
a weight real valued function f(ρ). That is, consider ρ as a k×1 random
vector with the multivariate probability density function (pdf) f(ρ) as
a weight function. We propose the following quantity

EKLi(X20) =
∫

Ii(ρ,X20)f(ρ)dρ.(4.1)

Note that EKLi(X20) depends on the design, through X20 and Hi given
in (1.7), but is independent of ρ. To simplify (4.1), let rewrite the
quadratic form Ii(ρ,X20) in (1.7) as follow:

Ii(ρ,X20) =
k∑

i=1

ρ2
i hii +

∑∑

i6=j

ρiρjhij ,(4.2)

where hij is the (i, j)-th, element of the matrix Hi(X20) = X ′
20(I −

Hi)X20; i, j = 1, 2, ..., k. For i.i.d. ρi’s, the EKLi(X2i) is reduced to an
explicit form of

EKLi(X20) = Trace(Hi(X20))var(ρ.) +
∑

i

∑

j

hijE
2(ρ.),(4.3)

where E(ρ.) and var(ρ.) are common mean and variance of ρi’s, respec-
tively. For a given design T , the new modified criterion, say expected
Kullback-Leibler (EKL), is defined as

EKLT = min
S

min
S0

EKLi(X20).(4.4)

Larger value of EKLT supports higher ability of design T in identifying
the true model among a set of candidate models. One may use EKLT

to compare and rank the search designs. Let us to have the following
definition:

Definition 4.1. Let T1 and T2 be two search designs with N treatments.
Then T1 is said to be better than T2 for discriminating the true model if
EKLT1(ρ) > EKLT2(ρ).

Note that the non-negative quantity Ii(ρ,X20) is a convex function in
ρ, due to positive semi-definiteness of matrix Hi(X20). The comparison
of designs for large absolute values of ρi’s makes no sense, since KL-
criterion shows high discrimination ability independent of designs. Thus,
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one may prefer a design that allocate a high discrimination measure to
small significant true effects. Naturally, we may choose a weight function
f(ρ) such that allocates larger weights to the lower values of true effects.
The following weight function may work adequately,

fi(ρi) =
{

1
2g(−ρi) if ρi < 0
1
2g(ρi) if ρi > 0

(4.5)

where g(ρi) is pdf of a Gamma random variable with mean υλ. For
weight function (4.5), the quantity (4.3) reduces to EKLi(X20) = (υλ2+
υ2λ2)Trace(Hi(X20)). Then, to rank the competing designs, one may
cancel out the fixed coefficient (υλ2 +υ2λ2) and make comparison using
the term Trace(Hi(X20)). That is, the EKLT in (4.4) reduces to

EKLT = min
S

min
S0

Trace(Hi(X20)).(4.6)

Clearly, in (4.6), EKLT ≤ kN . Now, we use (4.6) to compare search
designs D4 and D5 for k = 2 once more. The values of (4.6) for designs
D4 and D5 are 10.0571 and 9.3333, respectively. Then, by Definition
4.1, D4 is better than D5 for discriminating the true model.

5. Discussion

Designing an efficient experiment is very important for making infer-
ence on the model parameters. Most of the time, designing is done on
a known model. However, sometimes the underlying model is unknown.
In this situation, the challenge is to find a design to discriminate be-
tween rival models efficiently. Search design, introduced by Srivastava
[10], is able to solve this problem for partially non-nested unknown mod-
els. For a noisy case, σ2 > 0, this gets harder. Based on comparison
of SSE of models for discrimination, Shirakiura et al. [9] developed the
search probability (SP) to evaluate the searching ability of proposed
search designs. This criterion and the others proposed by researchers
are based on SP, and are able to measure searching capability of designs
only for the case k = 1. In this paper, we managed to overcome this
restriction problem. Following [8] in presenting the KL-optimality crite-
rion to obtain the optimal design, we developed two new criteria, based
on the Kullabck-Leibler distance in the context of search linear model
in (1.1). We denoted these by KL and EKL criteria. These criteria
coincide with T-optimality criterion, which is used to obtain optimum
designs for discriminating between models under normality assumption
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of errors, introduced in [1] and [2]. T-optimality criterion function is the
so-called non-centrality parameter of the likelihood test for the system
of hypothesis given in (1.4). It is known, that the power function of
test is a non-decreasing function of non-centrality parameter. That is,
a design with higher KL-criterion and EKL results in the higher of the
power for testing two alternative models. This means that a superior
design resulted from KL-criterion and EKL is concordant with a higher
performance design, through power value criterion given in [6]. Note
that, in Section 4, we considered the influence of nuisance parameter,
σ2, on the performance evaluation and comparison of designs, through
the pdf f(ρ). That is, comparing the candidate designs at lower values
of ρis, i.e., higher values of noise, makes more sense. To confirm the re-
liability of our new criteria, we employed them to calculate and evaluate
the search capability of some search designs.
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