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GENERALIZED NUMERICAL RANGES OF MATRIX

POLYNOMIALS

GH. AGHAMOLLAEI∗, N. AVIZEH AND Y. JAHANSHAHI

Communicated by Abbas Salemi Parizi

Abstract. In this paper, we introduce the notions of C−numerical
range and C−spectrum of matrix polynomials. Some algebraic and
geometrical properties are investigated. We also study the relation-
ship between the C−numerical range of a matrix polynomial and
the joint C−numerical range of its coefficients.

1. Introduction and preliminaries

Let Mn be the algebra of all n× n complex matrices. Suppose that

(1.1) P (λ) = Amλ
m +Am−1λ

m−1 + · · ·+A1λ+A0

is a matrix polynomial, where Ai ∈ Mn (i = 0, 1, . . . ,m), Am 6= 0 and
λ is a complex variable. The numbers m and n are referred to as
the degree and the order of P (λ), respectively. Matrix polynomials arise
in many applications and their spectral analysis is very important to
study linear systems of ordinary differential equations with constant co-
efficients [8]. The matrix polynomial P (λ), as in (1.1), is called a monic
matrix polynomial if Am = In, where In is the n × n identity matrix.
It is said to be a self-adjoint matrix polynomial if all the coefficients Ai
are Hermitian matrices. Also, P (λ) is a diagonal matrix polynomial if all
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the coefficients Ai are diagonal matrices. A scalar λ0 ∈ C is an eigen-
value of P (λ) if the system P (λ0)x = 0 has a nonzero solution x0 ∈Cn.
The solution x0 is known as an eigenvector of P (λ) corresponding to λ0,
and the set of all eigenvalues of P (λ) is said to be the spectrum of P (λ),
that is, σ[P (λ)] = {µ ∈ C : det(P (µ)) = 0}. The (classical) numerical
range of P (λ), as in (1.1), is defined as:

W [P (λ)] := {µ ∈C : x∗P (µ)x = 0 for some nonzero x ∈Cn},

which is closed and contains σ[P (λ)]; see [15] for more information. The
numerical range of matrix polynomials plays an important role in the
study of overdamped vibration systems with a finite number of degrees
of freedom, and it is also related to the stability theory; see e.g., [8]
and [15]. Notice that the notion of W [P (λ)] is a generalization of the
classical numerical range of a matrix A ∈Mn, namely:

W [λI −A] = W (A) := {x∗Ax : x ∈Cn, x∗x = 1},

which has been studied extensively for many decades. It is useful in
the study and to understand the matrices and operators, see [11, 12],
and has many applications in numerical analysis, differential equations,
system theory, etc; see e.g., [3, 7, 10, 22].
Another generalization of the classical numerical range of matrices, due
to Goldberg and Straus [9], is the notion of C−numerical range of ma-
trices. Let A,C ∈ Mn, and Un be the group of n × n unitary matri-
ces. The C−numerical range, the C−numerical radius and the inner
C−numerical radius of A are defined, respectively, as:

WC(A) = {tr(CU∗AU) : U ∈ Un}, rC(A) = max
z∈WC(A)

|z|,

and r̃C(A) = minz∈WC(A) |z|, where tr(X) denotes the trace of X ∈Mn.
The C−numerical range and the C−numerical radius of matrices are
related to optimization problems, and have important applications in
quantum control and quantum information; see e.g., [6, 21] and their
references. Let C and A have eigenvalues γ1, . . . , γn, and α1, . . . , αn,
respectively. The C−spectrum of A is defined as:

σC(A) = {
n∑
j=1

γjαij : (i1, . . . , in) is a permutation of {1, 2, . . . , n} }.

The concept of C−spectrum of A is very useful in the study of WC(A).
For a comprehensive survey of WC(A), rC(A) and σC(A), see [13].
In the last few years, the generalization of the numerical range of matrix
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Generalized numerical ranges of matrix polynomials 791

polynomials has attracted much attention, many interesting results have
been obtained; see e.g., [1, 5, 17, 19, 20]. In section 2 of this paper, we
introduce C−spectrum and C−numerical range of matrix polynomials
as a new generalization of the spectrum, and the numerical range of ma-
trix polynomials and C−numerical range of matrices, respectively. We
also study the boundedness, boundary points and some other geometric
properties of the notion. In section 3, we consider the joint C−numerical
range of a matrix polynomial as the joint C−numerical range of its co-
efficients, and we study some algebraic properties of this set.

At the end of this section, we list some properties of the C−numerical
range and the C−spectrum of matrices which is useful in our discussin.
For more details, see [4] and [13].

Proposition 1.1. Let A,C ∈ Mn. Then the following assertions are
true:
(i) WC(A) is a compact and connected set in C which contains σC(A);
(ii) If α, β ∈C, then WC(αA+βI) = αWC(A)+βtr(C) and σC(αA+
βI) = ασC(A) + βtr(C);
(iii) WV ∗CV (U∗AU) = WC(A) = WA(C), where U, V ∈ Un;

(iv) WC(A) = WC(A);

(v) If C = qE11 +
√

1− |q|2E12, where q ∈C with |q| ≤ 1 and Eij ∈Mn

has 1 in (i, j)−position and 0 elsewhere, then WC(A) = Wq(A) :=
{x∗Ay : x, y ∈Cn, x∗x = y∗y = 1, x∗y = q} and σC(A) = qσ(A);

(vi) WC(A) is star-shaped with respect to star-center tr(A) tr(C)
n , here a

nonempty subset S of a real linear space is said to be star-shaped with
respect to star-center s ∈ S if [s, x] ⊆ S, whenever x ∈ S, where [s, x]
denotes the line segment {(1− t)s+ tx : 0 ≤ t ≤ 1}.

The set Wq(A) in Proposition 1.1(v), is called the q−numerical range
of A ∈ Mn. It is a generalization of the classical numerical range of A;
for more information, see [14].

2. Definitions and general properties

We begin by introducing the notions of C−spectrum and C−numerical
range of a matrix polynomial.
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792 Aghamollaei, Avizeh and Jahanshahi

Definition 2.1. Let P (λ) be a matrix polynomial as in (1.1), and C ∈
Mn have eigenvalues γ1, . . . , γn. The C−spectrum of P (λ) is defined as

σC [P (λ)] = {µ ∈C :
n∑
j=1

γjα
(µ)
ij

= 0 for some permutation

(i1, . . . , in) of {1, 2, . . . , n} },

where, for µ ∈ C, α
(µ)
1 , . . . , α

(µ)
n are eigenvalues of the matrix P (µ) ∈

Mn.

Definition 2.2. Let P (λ) be a matrix polynomial as in (1.1). For a
given matrix C ∈ Mn, the C−numerical range of P (λ) is defined and
denoted by

WC [P (λ)] = {µ ∈C : tr(CU∗P (µ)U) = 0 for some U ∈ Un}.

Clearly for any fixed µ ∈ C, P (µ) ∈ Mn. Hence, the C−spectrum
and the C−numerical range of P (λ) satisfy, respectively, the following
relations:

(2.1) σC [P (λ)] = {µ ∈C : 0 ∈ σC(P (µ))},

(2.2) WC [P (λ)] = {µ ∈C : 0 ∈WC(P (µ))}.

If tr(C) = 0, then, by Proposition 1.1(vi), WC(P (µ)) is star-shaped

with respect to star-center 0 = tr(P (µ)) tr(C)
n for all µ ∈C. So, by (2.2),

WC [P (λ)] = C. Hence, to avoid trivial consideration, we shall assume
that tr(C) 6= 0 in this paper.

In view of relations (2.1) and (2.2), and Proposition 1.1(ii), for the
special case P (λ) = λI − tr(C)A, where A ∈ Mn, we have σC [P (λ)] =
σC(A) and WC [P (λ)] = WC(A), and so, the notions of C−spectrum
and C−numerical range of matrix polynomials are generalizations of
C−spectrum and C−numerical range of matrices, respectively.
Let q ∈C with |q| ≤ 1. Assume that P (λ) is a matrix polynomial as in
(1.1). The q−numerical range of P (λ) is defined, see [19], as

Wq[P (λ)] = {µ ∈C : x∗P (µ)y = 0 for some nonzero vectors

x, y ∈Cn with x∗y = q},

which is a generalization of W [P (λ)], namely, W1[P (λ)] = W [P (λ)].

Now, set C = qE11 +
√

1− |q|2E12 ∈ Mn, where q ∈ C and |q| ≤ 1.
Then, by (2.2) and Proposition 1.1(v), we have WC [P (λ)] = Wq[P (λ)],
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Generalized numerical ranges of matrix polynomials 793

and so, the C−numerical range of matrix polynomials is a new gener-
alization of the q−numerical range (consequently, the numerical range)
of matrix polynomials. Also, by (2.1) and Proposition 1.1(v), in the
case q = 0, σC [P (λ)] = C, and for q 6= 0, σC [P (λ)] = σ[P (λ)].
In the following theorem, which is a generalization of Theorem 2.1 in
[15] and Proposition 1.1 in [19], we state some basic properties of the
C−numerical range of matrix polynomials.

Theorem 2.3. Let C ∈ Mn, and P (λ) be a matrix polynomial as in
(1.1). Then the following assertions are true:
(i) WC [P (λ)] is a closed set in C which contains σC [P (λ)];
(ii) WC [P (λ+ α)] = WC [P (λ)]− α, where α ∈C;
(iii) WC [αP (λ)] = WC [P (λ)] = WαC [P (λ)], where α ∈C is nonzero;
(iv) WC [V ∗P (λ)V ] = WV ∗CV [P (λ)] = WC [P (λ)], where V ∈ Un; and
(v) If Q(λ) = λmP (λ−1) := A0λ

m +A1λ
m−1 + · · ·+Am−1λ+Am, then

WC [Q(λ)] \ {0} = { 1

µ
: µ ∈WC [P (λ)], µ 6= 0};

(vi) If all the powers of λ in P (λ) are even (or all of them are odd),
then WC [P (λ)] is symmetric with respect to the origin;
(vii) If all entries of the matrices C,A0, A1, . . . , Am lie on a line in the
complex plain passing through origin, then WC [P (λ)] is symmetric with
respect to the real axis.

Proof. (i); Let {µk}∞k=1 ⊆ WC [P (λ)], and µk −→ µ as k −→ ∞.
By Definition 2.2, there exists a sequence {Uk}∞k=1 ⊆ Un such that
tr(CU∗kP (µk)Uk) = 0 for all k ∈ N. We know that Un is a com-
pact set in Mn. So, to avoid reindexing, we assume, without loss of
generality, that Uk −→ U as k −→ ∞ for some U ∈ Un. Since the
functions tr(.) and P (.) are continuous, tr(CU∗P (µ)U) = 0. There-
fore, µ ∈ WC [P (λ)], and hence the result holds. Using relations (2.1),
(2.2), and Proposition 1.1(i), we have σC [P (λ)] ⊆WC [P (λ)].
By (2.2) and Proposition 1.1, the results in parts (ii), (iii), (iv) and (v)
can be easily verified.
(vi); Clearly that P (λ) = P (−λ) in the case that all the powers of λ in
P (λ) are even, and P (λ) = −P (−λ) in the other case. So, the result
follows from (2.2) and Proposition 1.1(ii).
(vii); By hypothesis, there exists a θ ∈ R such that eiθC and all the
coefficients of the matrix polynomial eiθP (λ) are real matrices. By part
(iii), we have WC [P (λ)] = WC [eiθP (λ)]. Then, we assume, without
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loss of generality, that all matrices C,A0, A1, . . . , Am are real. Now, the
result can be easily follows from (2.2) and Proposition 1.1(iv). �

Clearly WC [P (λ)] need not be bounded; see e.g., [15, Example 1]
for C = E11 ∈ Mn. Here, for the boundedness of the C−numerical
range of matrix polynomials, we state the following theorem. It is a
generalization of the sufficient part of Theorem 1.2 in [19].

Theorem 2.4. Let C ∈ Mn, and P (λ) be a matrix polynomial as in
(1.1). If 0 /∈WC(Am), then WC [P (λ)] is bounded.

Proof. Since 0 /∈ WC(Am), r̃C(Am) = minz∈WC(Am) |z| > 0. Assume
that
N = max{rC(A0), rC(A1), . . . , rC(Am−1)}. By setting M = N

r̃C(Am) + 1,

we will show that:

WC [P (λ)] ⊆ {µ ∈C : |µ| ≤M}.

Let µ ∈ WC [P (λ)], since M ≥ 1, it is enough to assume that |µ| > 1.
By Definition 2.2, there exists a U ∈ Un such that

tr(CU∗AmU) µm + tr(CU∗Am−1U) µm−1 + · · ·+ tr(CU∗A0U) = 0.

We know that tr(CU∗AmU) 6= 0. So, the above equation implies that

−µm =
∑m−1

j=0
tr(CU∗AjU)
tr(CU∗AmU) µ

j , and hence, we have:

|µ|m ≤
m−1∑
j=0

|tr(CU∗AjU)|
|tr(CU∗AmU)|

|µ|j

≤ N

r̃C(Am)

m−1∑
j=0

|µ|j

=
N

r̃C(Am)
(
|µ|m − 1

|µ| − 1
).

Therefore, |µ| − 1 ≤ N
r̃C(Am) ( |µ|

m−1
|µ|m ) ≤ N

r̃C(Am) , and hence |µ| ≤M . �

For the case C = qE11+
√

1− |q|2E12 ∈Mn, where q ∈C and |q| ≤ 1,
the converse of Theorem 2.4 holds; see [19]. But, in general, the converse
is not true; which is illustrated in the following example.
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Generalized numerical ranges of matrix polynomials 795

Example 2.5. Let C = I, and P (λ) = Amλ
m+Am−1λ

m−1+· · ·+A1λ+
A0 be a matrix polynomial as in (1.1). Assume that tr(Am) = 0, and
there exists a 0 ≤ j ≤ m− 1 such that tr(Aj) 6= 0. By Definition 2.2,
WC [P (λ)] has at most m−1 elements, and hence is bounded. However,
WC(Am) = {tr(Am)} = {0}.

Now, we are going to study the boundary points. For this, we need
the following lemma.

Lemma 2.6. [13, Section 3] Let C ∈ Mn. Then WC(A) is convex for
all A ∈Mn if one of the following conditions holds:
(a) There exists β ∈C such that C − βI has rank one;
(b) There exist α, β ∈ C with α 6= 0 such that αC + βI is Hermitian,
that is, C is essentially Hermitian;
(c) There exists β ∈ C such that C − βI is similar to [Cij ] unitarily
in block form, where the diagonal blocks Cii are square matrices and
Cij = 0 if i 6= j + 1.

Theorem 2.7. Let P (λ) be a matrix polynomial as in (1.1). Suppose
that C ∈ Mn satisfies one of the conditions in Lemma 2.6. If µ ∈ C
is a boundary point of WC [P (λ)], then the origin is a boundary point of
WC(P (µ)).

Proof. Since WC [P (λ)] is a closed set in C (Theorem 2.3(i)) and µ ∈C is
a boundary point of WC [P (λ)], µ ∈ WC [P (λ)] and µ /∈ Int(WC [P (λ)]),
where Int(S) denotes the set of interior points of S ⊆ C. Hence, by
(2.2), 0 ∈ WC(P (µ)), and in view of Proposition 1.1(i), it is enough to
show that 0 /∈ Int(WC(P (µ))).
If 0 ∈ Int(WC(P (µ))), then there exists a ε > 0 such that

B(0, ε) := {z ∈C : |z| < ε} ⊆WC(P (µ)).

Now, let z1, z2, z3 be three distinct points of B(0, ε) such that 0 ∈
Int(Conv({z1, z2, z3})) ⊆ WC(P (µ)), where Conv(S) denotes the con-
vex hull of S ⊆C. Thus, there exist U1, U2, U3 ∈ Un such that

tr(CU∗i P (µ)Ui) = zi ; i = 1, 2, 3.

Since µ /∈ Int(WC [P (λ)]), there exists a sequence {µt}∞t=1 of points in C\
WC [P (λ)] converging to µ. We know that tr(.) and P (.) are continuous
functions. So,

lim
t→∞

tr(CU∗i P (µt)Ui) = zi ; i = 1, 2, 3.
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Now, by taking an small enough neighborhood Bi of zi for i = 1, 2, 3,
there exists a N > 0 such that

tr(CU∗i P (µN )Ui) ∈ Bi; i = 1, 2, 3, and

0 ∈ Conv({tr(CU∗i P (µN )Ui) : i = 1, 2, 3}).
By Lemma 2.6, WC(P (µN )) is convex. Hence, the last relation implies
that 0 ∈WC(P (µN )). Consequently, µN ∈WC [P (λ)] which is a contra-
diction. �

Remark 2.8. Let q ∈C with |q| ≤ 1 be given. It is clear that the matrix

C = qE11+
√

1− |q|2E12 ∈Mn satisfies the condition (a) of Lemma 2.6.
So, Theorem 2.7 is a generalization of Theorem 2.2 in [19].

Since 0 /∈WC(I), by Theorem 2.4, the C−numerical range of a monic
matrix polynomial is bounded, and so, at the end of this section, we
investigate a circular annulus for the location and an inclusion-exclusion
methodology for the estimation of the C−numerical range of monic ma-
trix polynomials. The following theorem is a generalization of Theorem
2.4 in [19].

Theorem 2.9. Let C ∈ Mn, and P (λ), as in (1.1), be a monic matrix
polynomial. Then

WC [P (λ)] ⊆ {z ∈C : r1 ≤ |z| ≤ 1 + r2},

where r1 = r̃C(A0)
r̃C(A0)+maxk=1,2,...,m rC(Ak) and r2 = maxk=0,1,...,m−1

rC(Ak)
|tr(C)| .

Proof. Let µ ∈ WC [P (λ)]. Then, by Definition 2.2, there exists a U ∈
Un such that
(2.3)
tr(C)µm+tr(CU∗Am−1U)µm−1+· · ·+tr(CU∗A1U)µ+tr(CU∗A0U) = 0.

We will show that r1 ≤ |µ| ≤ 1 + r2.
For the left inequality, since r1 ≤ 1, it is enough to consider the case
|µ| < 1. Note that rC(Am) = |tr(C)|. So, in view of (2.3), we have:

r̃C(A0) ≤ |tr(CU∗A0U)|

≤ (
|µ|

1− |µ|
) ( max

k=1,2,...,m
rC(Ak)).

Hence, r̃C(A0) ≤ |µ| r̃C(A0)+|µ|maxk=1,2,...,m rC(Ak), and so, the result
holds.
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Generalized numerical ranges of matrix polynomials 797

For the right inequality, it is enough to consider the case |µ| > 1. By
(2.3), we have

|µ|m ≤
m−1∑
k=0

|tr(CU∗AkU)|
|tr(C)|

|µ|k

≤ r2(
|µ|m − 1

|µ| − 1
).

Hence, the result holds. �

For a given matrix C ∈ Mn, the C−spectral norm of A ∈ Mn is
defined as

‖A‖C = max{ |tr(CUAV )| : U, V ∈ Un}.
It is known, see e.g. [13] and its references, that the set { |tr(CUAV )| :
U, V ∈ Un} is a circular disk at the origin with radius

∑n
i=1 si(C)si(A),

where s1(C) ≥ s2(C) ≥ · · · ≥ sn(C) and s1(A) ≥ s2(A) ≥ · · · ≥
sn(A) are the singular values of C and A, respectively. So, ‖A‖C =∑n

i=1 si(C)si(A). It is clear that ‖.‖C is a unitarily invariant norm on
Mn, and rC(A) ≤ ‖A‖C . For the case C = E11 ∈ Mn, ‖.‖C coincides
with the spectral matrix norm, ‖.‖2 (i.e. the matrix norm subordinate
to the Euclidean vector norm).
Now, we are ready to state the following theorem which is a generaliza-
tion of Theorem 2.1 in [16]. Note that, the open circular disk with center
at µ ∈C and radius ρ > 0 is denoted by S(µ, ρ) = {z ∈C : |z−µ| < ρ}.

Theorem 2.10. Let C ∈Mn, and P (λ), as in (1.1), be a monic matrix
polynomial. If µ /∈WC [P (λ)], then S(µ, ρµ)

⋂
WC [P (λ)] = ∅, where

ρµ =
r̃C(P (µ))

r̃C(P (µ)) + maxj=1,2,...,m ‖ 1
j!P

(j)(µ)‖C
.

Proof. Note that the relation µ /∈ WC [P (λ)] implies that ρµ > 0. By
setting Q(λ) = P (λ + µ) = Bmλ

m + Bm−1λ
m−1 + · · · + B1λ + B0, we

have Bj = 1
j!P

(j)(µ) ; j = 0, 1, . . . ,m. Now, let z ∈WC [Q(λ)] be given.

Since Q(λ) is a monic matrix polynomial, Theorem 2.9 implies that

|z| ≥ r̃C(B0)

r̃C(B0) + maxj=1,2,...,m rC(Bj)

=
r̃C(P (µ))

r̃C(P (µ)) + maxj=1,2,...,m rC( 1
j!P

(j)(µ))
.
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798 Aghamollaei, Avizeh and Jahanshahi

Since rC( 1
j!P

(j)(µ)) ≤ ‖ 1
j!P

(j)(µ)‖C for j = 1, 2, . . . ,m, the above in-

equality implies that |z| ≥ ρµ. Therefore, WC [Q(λ)]
⋂
S(0, ρµ) = ∅.

By Theorem 2.3(ii), WC [Q(λ)] = WC [P (λ)] − µ, and hence the result
holds. �

Remark 2.11. Let C ∈Mn, and P (λ), as in (1.1), be a monic matrix
polynomial. Since rC(Aj) ≤ ‖Aj‖C ; j = 0, 1, . . . ,m − 1, Theorem 2.9
implies that

WC [P (λ)] ⊆ S(0, 1 + max
j=0,1,...,m−1

∑n
i=1 si(C)si(Aj)

|tr(C)|
) =: Ω.

By, using Theorem 2.10, we can give the following algorithm to approx-
imate the shape of WC [P (λ)].
Algorithm:
Step i: construct a gride GΩ of Ω;
Step ii: For every gride point µ ∈ GΩ, repeat the following:
(a) If µ /∈ WC [P (λ)], or equivalently, if 0 /∈ WC(P (µ)), then compute

r̃C(P (µ)) and the matrices Bj = 1
j!P

(j)(µ) ; j = 0, 1, . . . ,m

(b) construct the open circular disk S(µ, ρµ) with radius

ρµ =
r̃C(P (µ))

r̃C(P (µ)) + maxj=1,2,...,m Σn
i=1si(C)si(

1
j!P

(j)(µ))
;

Step iii: The set Ω \
⋃
µ∈GΩ,0/∈WC(P (µ)) S(µ, ρµ) is an approximation for

the shape of WC [P (λ)].

3. Joint C−numerical range of matrix polynomials

Let C ∈Mn, and P (λ) = Amλ
m +Am−1λ

m−1 + · · ·+A1λ+A0 be a
matrix polynomial as in (1.1). The joint C−numerical range of P (λ) is
defined as the joint C−numerical range of A0, A1, . . . , Am, namely [2],

JWC [P (λ)] := WC(A0, A1, . . . , Am)

= {( tr(CU∗A0U), . . . , tr(CU∗AmU) ) : U ∈ Un}.
Since JWC [P (λ)] can be viewed as the range of the continuous function

U 7−→ ( tr(CU∗A0U), tr(CU∗A1U), . . . , tr(CU∗AmU) )

from the compact connected set Un to Cm+1, one easily gets that
JWC [P (λ)] is a compact and connected set in Cm+1. Also, for the case
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Generalized numerical ranges of matrix polynomials 799

C = E11 ∈Mn, we have

JWC [P (λ)] = { (x∗A0x, . . . , x
∗Amx) : x ∈Cn, x∗x = 1},

which is the joint numerical range of P (λ); see [18] for more information.
So, the joint C−numerical range of matrix polynomials is a generaliza-
tion of the joint numerical range.
In the following theorem, the relationship between the C−numerical
range of P (λ) and the joint C−numerical range of its coefficients is
stated. Also, using the C−numerical range of diagonal matrix polyno-
mials, we can approximate the shape of the C−numerical range of any
matrix polynomial. For the case C = E11 ∈Mn, see [18].

Theorem 3.1. Let C ∈ Mn, and P (λ) be a matrix polynomial as in
(1.1). Then the following assertions are true:
(i) WC [P (λ)] = {µ ∈C : amµ

m+ · · ·+a1µ+a0 = 0, (a0, a1, . . . , am) ∈
WC(A0, A1, . . . , Am)};
(ii) WC [P (λ)] =

⋃
WC [D(λ)], where the union is taken over all di-

agonal matrix polynomials D(λ) of degree m and order n such that
JWC [D(λ)] ⊆ JWC [P (λ)].

Proof. The result in part (i) follows easily from Definition 2.2 and the
definition of joint C−numerical range of A0, A1, . . . , Am.
To prove (ii), by (i), ⊇ is clear. Let now µ ∈ WC [P (λ)] be given. By
(i), there exists a (a0, a1, . . . , am) ∈ JWC [P (λ)] such that amµ

m+ · · ·+
a1µ+a0 = 0. Let D(λ) = am

tr(C)Iλ
m+ · · ·+ a1

tr(C)Iλ+ a0
tr(C)I, then we have

JWC [D(λ)] = { (a0, a1, . . . , am) } ⊆ JWC [P (λ)], and µ ∈ WC [D(λ)].
Hence, the proof of ⊆ is complete. �

Corollary 3.2. Let C ∈ Mn, and P (λ) be a matrix polynomial as in
(1.1). If (0, 0, . . . , 0) ∈ JWC [P (λ)], then WC [P (λ)] = C.

Theorem 3.3. Let P (λ) be a matrix polynomial as in (1.1). Suppose
that C ∈Mn satisfies one of the conditions in Lemma 2.6. Then

WC [P (λ)] = {µ ∈C : amµ
m + · · ·+ a1µ+ a0 = 0,

(a0, a1, . . . , am) ∈ Conv(WC(A0, A1, . . . , Am))},
where Conv(.) denotes the convex hull.

Proof. By Theorem 3.1(i), ⊆ is clear.
For the opposite inclusion, let µ ∈C be such that amµ

m+· · ·+a1µ+a0 =
0 for some (a0, a1, . . . , am) ∈ Conv(WC(A0, A1, . . . , Am)). So, there
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are nonnegative real numbers t1, t2, . . . , tk summing to 1, and unitary
matrices U1, U2, . . . , Uk ∈ Un such that

(a0, a1, . . . , am) =
k∑
j=1

tj(tr(CU
∗
j A0Uj), . . . , tr(CU

∗
j AmUj)).

So, we have:

0 =

m∑
i=0

aiµ
i =

m∑
i=0

(

k∑
j=1

tj tr(CU
∗
j AiUj))µ

i

=

k∑
j=1

tj(

m∑
i=0

tr(CU∗j AiUj)µ
i)

=

k∑
j=1

tj tr(CU
∗
j P (µ)Uj)

∈ Conv(WC(P (µ))).

By Lemma 2.6, WC(P (µ)) is convex, and hence Conv(WC(P (µ))) =
WC(P (µ)). Thus, the above relations show that 0 ∈WC(P (µ)). There-
fore, µ ∈WC [P (λ)], and the proof is complete. �

Finally, we show that every interior point of JWC [P (λ)] produces an
interior point of WC [P (λ)].

Theorem 3.4. Let C ∈ Mn, and P (λ) be a matrix polynomial as in
(1.1). If amµ

m + · · ·+a1µ+a0 = 0, where µ ∈C and (a0, a1, . . . , am) ∈
Int(JWC [P (λ)]), then µ ∈ Int(WC [P (λ)]). Here, Int(S) denotes the set
of all interior points of S ⊆C.

Proof. By hypothesis and Theorem 3.1(i), µ ∈ WC [P (λ)]. Also, there
exist complex numbers b0, b1, . . . , bm−1 such that for every λ ∈C,

amλ
m + · · · a1λ+ a0 = (λ− µ)(bm−1λ

m−1 + · · ·+ b1λ+ b0)

= bm−1λ
m + (bm−2 − µbm−1)λm−1 + · · ·

+ (b0 − µb1)λ+ (−b0µ)

= cm(µ)λm + cm−1(µ)λm−1 + · · ·
+ c1(µ)λ+ c0(µ), (∗)

where by setting b−1 = bm = 0, cj(µ) := bj−1 − µbj = aj for j =
0, 1, . . . ,m.
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Now, we will show that µ ∈ Int(WC [P (λ)]).
If µ /∈ Int(WC [P (λ)]), then there exists a sequence

{µt}∞t=1 ⊆C \WC [P (λ)],

such that µt −→ µ as t −→∞. Hence

lim
t−→∞

(c0(µt), . . . , cm(µt)) = (a0, . . . , am). (∗∗)

In view of (∗), we have

cm(µt)λ
m+ · · ·+ c1(µt)λ+ c0(µt) = (λ−µt)(bm−1λ

m−1 + · · ·+ b1λ+ b0),

for all λ ∈C and t ∈ N. So,

cm(µt)µ
m
t +cm−1(µt)µ

m−1
t + · · ·+c1(µt)µt+c0(µt) = 0, for all t ∈ N.

Since µt /∈WC [P (λ)] for all t ∈ N, by Theorem 3.1(i),

(c0(µt), . . . , cm(µt)) /∈ JWC [P (λ)] for all t ∈ N.

Therefore, relation (∗∗) shows that (a0, a1, . . . , am) /∈ Int(JWC [P (λ)]),
which is a contradiction. �
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