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A NEW PROOF FOR THE BANACH-ZARECKI

THEOREM: A LIGHT ON INTEGRABILITY AND

CONTINUITY
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Abstract. To demonstrate more visibly the close relation between
the continuity and integrability, a new proof for the Banach-Zarecki
theorem is presented on the basis of the Radon-Nikodym theorem
which emphasizes on measure-type properties of the Lebesgue inte-
gral. The Banach-Zarecki theorem says that a real-valued function
F is absolutely continuous on a finite closed interval if and only if it
is continuous and of bounded variation when it satisfies Lusin’s con-
dition. In the present proof indeed a more general result is obtained
for the Jordan decomposition of F .

1. Introduction

The original motivation for the present work concerns with the open
debate of the regularity of hydrodynamical parameters of fluid flows.
It is still not known that starting from a smooth initial condition in a
three dimensional fluid, when and how any kind of blow up or singular-
ity will happen. Much works consider this problem in various special
cases and have been obtained many results. It was known that the type
of singularity is so strong such that many kinds of integral norms of hy-
drodynamical quantities are also singular. However, almost all of these
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integral norms are obtained by the Lebesgue integration but we know
that there are other types of integration that are generalizations of the
usual Riemann integral and do not coincide the Lebesgue integral.

So, a natural question comes that how could we get information when
our functions are not Lebesgue integrable? How should one replace (ab-
solute) continuities and regularities in these new cases? As the first step
it looks necessary to test and generalize a direct relation between the
integration, continuity, and Banach–Zarecki Theorem provides perhaps
the most visible case to observe such a relation. It was therefore needed
to discover a more direct and closer relation between the absolute con-
tinuity and the Lebesgue integral to be an arrow for other works.

Banach–Zarecki Theorem is a classical theorem in real analysis with
many applications mostly in geometric and functional analysis as well
as in some physical and engineering subjects. The origin of this theorem
was stated and proved by Banach and independently by Zarecki for a
real–valued function on an interval [10]. For functions of a real variable
with values in reflexive Banach spaces, the result is contained in [6],
Theorem 2.10.13, where the codomain space has the Radon-Nikodym
property. There also exists another version of the theorem initiated by
an old result of Lusin [8], later extended for a function of a real variable
with values in a metric space [3, 4].

It is not surprising that there is a variety of extensions for this the-
orem to more variables in many ways and also by natural changes in
properties well-known in one dimensional case such as almost every-
where continuity and differentiability, integration by parts and so on
[5, 12, 9]. In fact the theorem can be generalized to the concept of
approximate continuity that plays an important role to understand the
relationship between Riemann integrability (for almost everywhere con-
tinuous functions) and continuity on the one hand, and the relationship
between approximate continuity and Lebesgue integrability (for almost
everywhere approximately continuous functions), on the other hand [4].

There exist alternative proofs for this theorem; although these are of
different appearance but they are constructed from a common root (see
e.g. [1, 2, 11, 13]). In the present work the classical form of the theorem
is considered, since it looks possible to a natural extension of the result
to more general cases mentioned above. The most convenient statement
of the Banach–Zarecki theorem is [1]:

Theorem 1.1. Let F is a real–valued function defined on a real bounded
closed interval [a, b]. A necessary and sufficient condition for F to be
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A new proof for the Banach-Zarecki theorem 807

absolutely continuous is that
(i) F is continuous and of bounded variation on [a, b],
(ii) F satisfies Lusin’s condition, i.e. it maps sets of Lebesgue measure
zero into sets of Lebesgue measure zero.

The necessary condition is straightforward and will not be discussed
here. Its proof is given in almost any text book of real analysis [1, 7].
However the sufficient condition is rather technical and requires some
non–trivial efforts and may rarely be found in common references. Thus,
we try to provide an alternative proof for the sufficient condition, that
is, if a real–valued function is continuous and of bounded variation and
also satisfies Lusin’s condition, then it is absolutely continuous. In [1],
there is another proof for the sufficient condition. The main tools of
this approach are the almost everywhere differentiability and the Vitali
covering theorem.

However the present proof is based on the close relation between the
Lebesgue integral and the properties of a measure space which manifests
itself essentially through the Radon-Nikodym theorem. Thus, the main
used tools here are the Radon-Nikodym theorem and the properties of
variations of functions. This new proof may however cost to be consid-
ered because of several reasons such as the following. Here a slightly
more general result is proven, namely Lemma 2.2 while we need only
Corollary 2.3 for our proof. The concept of almost everywhere differen-
tiability and thus the Vitali covering lemma is not used. The methods
and techniques used here seem to be applicable and naturally general-
izable to a class of similar problems. There is a hope to generalize this
method to obtain an analogue version for the absolute continuity in re-
lation with other types of integration rather than the Lebesgue integral.

Finally it is seen that here some statements are proven employing only
conditions (i) and (ii) mentioned in the Banach–Zarecki theorem and
without using the absolute continuity condition, while these statements
are usually proved through a direct application of the absolute continuity
condition in the common literatures.

In order to prove Theorem 1.1, our strategy is to establish the fol-
lowing theorem which illustrates more clearly, the relation between the
absolute continuity and the Lebesgue integral.

Theorem 1.2. Suppose that F : [a, b] −→ R is a continuous and of
bounded variation and satisfies Lusin’s condition. Then there exists an
integrable function and in fact a Borel–measurable function f : [a, b] −→
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R such that

F (x) = F (a) +

∫
[a,x]

f dλ : ∀x ∈ [a, b],

where dλ in the integral comes from the Lebesgue measure λ.

Theorem 1.2 will immediately yield Theorem 1.1 by the application
of the well known statement [1, 7]:

Let f : [a, b] −→ R be a Lebesgue integrable function and
let F (x) = F (a)+

∫
[a,x] f dλ, then F is absolute continu-

ous on [a, b].

In the next section, we prove Theorem 1.2 in three steps, the first of
which is well known in text books [7] while step 2 and especially step 3
are of our main interests.

Throughout the paper we assume that the notation λ implies the
Lebesgue measure, unless otherwise stated.

2. The main result: A new proof of Theorem 1.2

The proof is divided into three interconnected steps.

Step 1. First, we prove the theorem assuming that F is strictly in-
creasing. In this case, the proof coincides the standard proof given
in common text books (see e.g. Theorem 4.3.8 of [7]) which uses the
Radon–Nikodym theorem. To have a complete discussion, let us briefly
review the proof here.

Since F is strictly increasing, F is a homeomorphism from I = [a, b]
to J = F (I) = [F (a), F (b)] and so F preserves Borel sets between I
and J . Let B be the collection of Borel measurable subsets of I, then
we can define the new measure ν : B −→ [0,∞) as ν(E) = λ(F (E)).
It is clear that ν is a finite measure and is absolutely continuous rel-
ative to λ (since F satisfies Lusin’s condition). Therefore, according
to the Radon–Nikodym theorem, there exists a (Borel) measurable and
Lebesgue integrable function f : I −→ R such that

ν(E) =

∫
E
f dλ, E ∈ B.(2.1)
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A new proof for the Banach-Zarecki theorem 809

Especially if E = [a, x] for x ∈ I, then F (E) = [F (a), F (x)] and
Eq. (2.1) immediately implies that

F (x) = F (a) +

∫
[a,x]

f dλ, x ∈ I.

This completes the proof of step 1.

Step 2. Let F is non–decreasing (i.e., increasing but not strictly in-
creasing). So the function G(x) = F (x) + x is continuous, of bounded
variation and strictly increasing. The proof will be complete if we prove
that Lusin’s property is fulfilled by G, i.e. for N ⊂ [a, b] if λ(N) = 0
then λ(G(N)) = 0. Since F is non–decreasing, one easily observes that
the constant values of F make sense in disjoint intervals Sk and the con-
tinuity of F implies that Sks are closed intervals, say [ak, bk]. Hence, in

general, on S =
∪+∞

k=1 Sk, F takes the values F (S) =
{
µk

}+∞

k=1
where µk

is the value of F on Sk.
The intervals Sk may be so small and their union S is not necessarily

closed. Now, since Sk s are disjoint, we can write

N1 = N ∩ S, N2 = N −N1.

Therefore, we have

λ(G(N)) ≤ λ(G(N1)) + λ(G(N2)),

while

λ(G(N1)) = λ
( +∞∪

k=1

G(N ∩ Sk)
)
≤

+∞∑
k=1

λ(G(N ∩ Sk)).

On the other hand, G(N ∩ Sk) = {µk + x | x ∈ N ∩ Sk} and thus
λ(G(N ∩ Sk)) = λ(N ∩ Sk), so

λ(G(N1)) ≤
+∞∑
k=1

λ(G(N ∩ Sk))

= λ(

+∞∪
k=1

(N ∩ Sk)) = λ(N1) ≤ λ(N) = 0.

Therefore λ(G(N1)) = 0. To prove λ(G(N2)) = 0, we notice that F
satisfies Lusin’s condition i.e. λ(N2) = 0 results in λ(F (N2)) = 0, so for
each ϵ > 0, we can find an open set U such that F (N2) ⊂ U with λ(U) <
ϵ. In addition, since λ(N2) = 0, one can find an open set U ′ including
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N2 such that λ(U ′) < ϵ. The open set V := U ′ ∩ F−1(U) contains N2

such that λ(V ) < ϵ and λ(F (V )) < ϵ. Suppose V =
∪+∞

k=1 Ik where Iks
are disjoint open intervals. For each Ik, consider two closed intervals (if
exist) Si and Sj intersecting Ik from the left and right containing the
left and right boundary points of Ik resp. Define I ′k = Ik−(Si∪Sj) (it is
possible that I ′k is empty). Thus I ′k ⊂ Ik and I ′k s are mutually disjoint.

Let V ′ :=
∪+∞

k=1 I
′
k and since Sk s are all out of N2, N2 ⊂ V ′ and thus

F (N2) ⊂ F (V ′). It is important to attend that for each l and k, Sl is
either completely contained in I ′k or is disjoint from it. According to the
conditions on F , i.e. non–increasing and continuity, one can deduce that
F (I ′k) is an interval (not necessarily closed or open) which we denote it
by Jk. Now we acclaim that Jk s are mutually disjoint. If else, for
example if y ∈ Jk ∩ Jl for some k and l, then there exist at least two
points xk ∈ I ′k and xl ∈ I ′l such that F (xk) = F (xl). Hence there exists
an Si so that [xk, xl] ⊂ Si but then Si is not completely in I ′k or I ′l which
is a contradiction. The relations

F (N2) ⊂ F (V ′) =
+∞∪
k=1

F (I ′k) ⊂ U,

imply that

λ
( +∞∪

k=1

Jk
)
≤ λ(U) < ϵ,

and since Jk s are disjoint sets,

+∞∑
k=1

λ(Jk) < ϵ.

The remaining work is to determine G(I ′k) and approximate their
measure. For each k, we have

G(I ′k) =
{
F (x) + x | x ∈ I ′k

}
⊆

{
y + x | y ∈ Jk, x ∈ I ′k

}
⊆

(
inf(I ′k) + inf(Jk) , sup(I ′k) + sup(Jk)

)
,

which results in

λ(G(I ′k)) ≤ λ(I ′k) + λ(Jk).
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A new proof for the Banach-Zarecki theorem 811

So we obtain

λ(G(N2)) ≤ λ
( +∞∪

k=1

G(I ′k)
)
≤

+∞∑
k=1

λ(G(I ′k)).

The latter equations clarify that

λ(G(N2)) ≤
+∞∑
k=1

λ(I ′k) +

+∞∑
k=1

λ(Jk) < ϵ+ λ(U) < 2ϵ.

Thus λ(G(N2)) = 0. This shows that Lusin’s condition is fulfilled for
G(x) = F (x) + x. Now pertaining to Step 1, there is an integrable and
Borel-measurable function f1 : [a, b] −→ R s.t.

G(x)−G(a) =

∫
[a,x]

f1 dλ,

hence

F (x)− F (a) =

∫
[a,x]

f dλ,

thus if we let f = f1 − 1, this completes the proof of Step 2.

Step 3. Finally, we assume that F is continuous and of bounded vari-
ation which satisfies Lusin’s condition and show that the theorem holds.
To accomplish the claim, we make use of the following two lemmas.

Lemma 2.1. Let F : [a, b] −→ R be a continuous function of bounded
variation. If F = p − n is the Jordan decomposition for F , then p and
n are continuous.

Lemma 2.2. With the hypothesis of Lemma 2.1, let N ⊂ [a, b] be such
that F (N) has a zero Lebesgue measure. Then p(N) and n(N) are also
of Lebesgue measure zero.

Lemma 2.2 immediately yields the following result.

Corollary 2.3. With the hypothesis of Lemma 2.1, let F satisfies Lusin’s
condition, then p and n also satisfy Lusin’s condition.

It is seen from Lemma 2.1 and Corollary 2.3 that both p and n are
continuous and of bounded variation and Lusin’s condition is valid for
them. Then since they are non–decreasing, there exist integrable and
Borel–measurable real–valued functions g and h on [a, b] so that p(x) =
p(a) +

∫
[a,x] g dλ and n(x) = n(a) +

∫
[a,x] h dλ, therefore the proof is

complete substituting f = g − h.
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3. Proof of Lemma 2.1

It is sufficient to prove that p is continuous. First, we note that
p is a right–continuous function. The continuity of p can be directly
achieved by (ϵ − δ) method. However an alternative proof is presented
here because of its easier application in the proof of Lemma 2.2.

By definition,

p(x) =

x∨
a

(F ) = sup
P

|F (P )| = sup
P

n(P )∑
k=1

|F (xk)− F (xk−1)|(3.1)

is the variation of F from a to x where the supremum is taken over all
partitions

P : a = x0 < x1 < · · · < xn = x

of [a, x] and n = n(P ) = #P − 1. Therefore for arbitrary ϵ > 0 there is
a partition P such that

0 ≤
x∨
a

(F )− |F (P )| < ϵ.(3.2)

Definition 3.1. For the given partition P : a = x0 < x1 < · · · < xn =
b, let x ∈ [xi−1, xi]. Two adjacent partitions P1(x) and P2(x) are defined
as

P1(x) : a = x0 < · · · < xi−1 ≤ x,

P2(x) : x ≤ xi < · · · < xn = b,

and the partition P ′(x) considered as a refinement of P is

P ′(x) : a = x0 < · · · < xi−1 ≤ x ≤ xi < · · · < xn = b.

For ϵ > 0 and its corresponding partition P considered in Eq. (3.2),
one can define continuous functions wi : [xi−1, xi] −→ R as

wi(x) = |F (P1(x))|.(3.3)

Application of Lemma 2.2 implies the existence of a continuous func-
tion uϵ : [a, b] −→ R so that on each [xi−1, xi], uϵ is equal to wi. There-
fore( x∨

a

(F )− |F (P1(x))|
)
+

( b∨
x

(F )− |F (P2(x))|
)
=

b∨
a

(F )− |F (P ′(x))|

< ϵ.
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A new proof for the Banach-Zarecki theorem 813

The two terms on the left hand side of the above relation are nonneg-
ative and especially considering the first term, one finds that

0 ≤ p(x)− uϵ(x) < ϵ,(3.4)

in which Eqs. (3.2) and (3.3) were applied.

Now consider
{
u

2−k

}∞

k=1
as a sequence of continuous functions. Equa-

tion (3.4) with ϵ = 2−k shows that this sequence converges uniformly to
p, thus p is continuous.

4. Proof of Lemma 2.2

LetN ⊂ [a, b] be such that λ(F (N)) = 0. For arbitrary ϵ > 0, consider
its corresponding partition P as introduced in Eq. (3.2). It is sufficient
to prove that λ(p(Ni)) = λ(n(Ni)) = 0 where Ni = N ∩ [xi−1, xi] (1 ≤
i ≤ n). Since F (Ni) has zero Lebesgue measure, there exists a sequence
of disjoint open intervals {Jk}∞k=1 such that F (Ni) ⊂

∪∞
k=1 Jk and

∞∑
k=1

λ(Jk) < ϵ.(4.1)

At most one of Jks contains the point F (xi−1) and at most one of them
contains F (xi). If so, we exclude these two points from Jks and split the
interval(s) containing the points into two adjacent open intervals. This
process clearly leaves relation (4.1) unchanged. For each Jk we have
F−1(Jk) =

∪∞
l=1 Ikl where intervals Ikl = (akl, bkl) are disjoint. By our

hypothesis, one can easily observe that

λ(p(Ni)) ≤
∞∑

k,l=1

λ(p(Ikl)).(4.2)

Choose any finite number of intervals Ikls and call them (a1, b1), · · · ,
(am, bm) in such an order that we have the partition

Q : b0 = xi−1 ≤ a1 < b1 < a2 < · · · < am < bm ≤ am+1 = xi.(4.3)

Thus
xi∨

xi−1

(F )− |F (Q)| < ϵ,
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814 Mahdipour–Shirayeh and Eshraghi

which means that

m∑
j=1

( bj∨
aj

(F )− |F (bj)− F (aj)|
)
+

m∑
j=0

(aj+1∨
bj

(F )− |F (aj+1)− F (bj)|
)
< ϵ.

Each term in the left side is nonnegative, especially noting to the first
term and recalling the definition of p by (3.1) and its non-decreasing
property, one concludes that

m∑
j=1

λ(p(aj , bj)) < ϵ+

m∑
j=1

|F (bj)− F (aj)|.

The above inequality holds for any finite number of Ikl thus
∞∑

k,l=1

λ(p(Ikl)) < ϵ+

∞∑
k,l=1

|F (bkl)− F (akl)|.(4.4)

Our next task is to find an upper bound proportional to ϵ for the
second term of the last equation. To do this we consider two separate
cases. The first case is when F (xi−1) = F (xi). Choose again the finite
number of Ikl, namely (aj , bj), for 1 ≤ j ≤ m and construct the partition
Q as introduced in Eq. (4.3). The partition is a refinement of xi−1 < xi
and so |F (Q)| − |F (xi)− F (xi−1)| < ϵ and thus

m∑
j=1

|F (bj)− F (aj)| ≤ |F (Q)| < ϵ.

The last inequality holds for any finite number of Ikl so it is also valid
for all of them. Therefore when F (xi−1) = F (xi) by the use of (4.4) we
have

λ(p(Ni)) ≤
∞∑

k,l=1

λ(p(Ikl)) < 2 ϵ.(4.5)

The second case is related to the condition F (xi−1) < F (xi) (the
opposite case is similar). Recall that Jk where disjoint open intervals
containing F (Ni) (probably except for the two points F (xi−1) and F (xi))
with total measure less than ϵ. Thus we are able to divide them into
three types: J+

k whose points are greater than F (xi), J
−
k whose points

are less than F (xi−1) and J◦
k whose points are between F (xi−1) and

F (xi). At first attend to J+
k . In this case, take any finite number of I+kl

(whose images are inside J+
k s) say (a+j , b

+
j ) s for 1 ≤ j ≤ m such that

xi−1 ≤ a+1 < b+1 < a+2 < · · · < a+m < b+m ≤ xi. Images of these intervals
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A new proof for the Banach-Zarecki theorem 815

lie inside a finite (say s) number of J+
k s, namely J+

kr
= (c+r , d

+
r ) for

1 ≤ r ≤ s where obviously s ≤ m.
Suppose that in addition, (c+r , d

+
r ),s are arranged increasingly such

that F (xi) ≤ c+1 < d+1 < c+2 < · · · < c+s < d+s . The compact set
[xi−1, xi] ∩ F−1(c+1 ) has a minimum and maximum respectively α+ and
β+. Since the images of all (a+j , b

+
j ) are greater than c+1 ≥ F (xi), the

intermediate value theorem implies that they all lie between α+ and β+.
Thus there exist partition R1 : xi−1 < α+ < β+ < xi and its refinement
R2 : xi−1 < α+ < a+1 < b+1 < · · · a+m < b+m < β+ < xi. The relation
|F (R2)| − |F (R1)| < ϵ regarding the fact that F (α+) = F (β+) = c+1
implies that

m∑
j=1

|F (b+j )− F (a+j )| < ϵ,

but since this is true for any finite number of considered intervals, so for
I+kl = (a+kl, b

+
kl) s we have∑

k,l

|F (b+kl)− F (a+kl)| < ϵ.(4.6)

Similarly, for I−kl = (a−kl, b
−
kl) we have∑

k,l

|F (b−kl)− F (a−kl)| < ϵ.

Finally consider J◦
k whose points are between F (xi−1) and F (xi)

where for each k, F−1(J◦
k ) =

∪∞
l=1 I

◦
kl. Similar to the previous case

choose a finite number of I◦kl s such as (a◦j , b
◦
j ) s for 1 ≤ j ≤ m such that

xi−1 ≤ a◦1 < b◦1 < a◦2 < · · · < a◦m < b◦m ≤ xi and assume their images
lie in J◦

kr
= (c◦r, d

◦
r) for 1 ≤ r ≤ s where clearly s ≤ m. Again suppose

(c◦r, d
◦
r) s are arranged increasingly such that

F (xi−1) ≤ c◦1 < d◦1 < c◦2 < · · · < c◦s < d◦s ≤ F (xi).(4.7)

Now define α◦
r = min

(
[xi−1, xi] ∩ F−1(c◦r)

)
for 1 ≤ r ≤ s. The

relation (4.7) and the intermediate value theorem imply that

xi−1 ≤ α◦
1 < α◦

2 < · · · < α◦
s < α◦

s+1 = xi.(4.8)

Note that in the above relation α◦
s+1 is defined to be xi. In addition,

define β◦
r = max

(
[xi−1, α

◦
r+1] ∩ F−1(d◦r)

)
for 1 ≤ r ≤ s and also define

β◦
0 = xi−1. This definition immediately yields that for each r = 1, · · · s−
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816 Mahdipour–Shirayeh and Eshraghi

1 we have α◦
r < β◦

r < α◦
r+1 while for r = 0 we have xi−1 = β◦

0 ≤ α◦
1 and

for r = s we have α◦
s < β◦

s ≤ α◦
s+1 = xi. Thus, relation (4.8) is finally

improved to admit to define the partition

S1 : xi−1 = β◦
0 ≤ α◦

1 < β◦
1 < α◦

2 < · · · < α◦
s < β◦

s ≤ α◦
s+1 = xi.(4.9)

In this position we claim that for each j, r (1 ≤ j ≤ m, 0 ≤ r ≤ s) we
have (a◦j , b

◦
j )∩ (β◦

r , α
◦
r+1) = ∅. If not, assume y belongs to this set, then

only two cases may occur:
First case; we have F (y) < d◦r < c◦r+1 for 1 ≤ r ≤ s − 1, F (y) < c◦1

for r = 0 and F (y) < d◦s for r = s. The case r = 0 has no sense
because y ∈ (a◦j , b

◦
j ) and the images of all (a◦j , b

◦
j ) are greater than c◦1.

When r = s since F (y) < d◦s ≤ F (α◦
s+1) = F (xi), the intermediate

value theorem implies that there exists a point z ∈ (y, xi] such that
F (z) = d◦s. But according to the definition of β◦

s we must have z ≤ β◦
s

which contradicts with the position of y. Finally when 1 ≤ r ≤ s − 1,
since F (y) < d◦r < F (α◦

r+1) = c◦r+1, the intermediate value theorem
implies that there exists a point z′ ∈ (y, α◦

r+1) such that F (z′) = d◦r
but according to the definition of β◦

r we must have z′ ≤ β◦
r which is a

contradiction.
On the other hand in the second case we may have d◦r < c◦r+1 < F (y)

for 1 ≤ r ≤ s − 1, c◦1 < F (y) for r = 0 and d◦s < F (y) for r = s. The
case r = s has no sense because the images of all (a◦j , b

◦
j ) s are less than

d◦s. When r = 0 since F (β◦
0) = F (xi−1) ≤ c◦1 < F (y), the intermediate

value theorem implies that there exists a point t ∈ [xi−1, y) such that
F (t) = c◦1. But according to the definition of α◦

1 we must have α◦
1 ≤ t

which is in contradiction with the position of y.
Finally when 1 ≤ r ≤ s − 1, since F (β◦

r ) = d◦r < c◦r+1 < F (y), the
intermediate value theorem implies that there exists a point t′ ∈ (β◦

r , y)
such that F (t′) = c◦r+1 but according to the definition of α◦

r+1 we must
have α◦

r+1 ≤ t′ which is a contradiction. Thus, our claim is proved, that
is, non of the points a◦j or b

◦
j lie inside the intervals (β

◦
r , α

◦
r+1) or in other

words, all points a◦j and b◦j lie only inside the intervals [α◦
r , β

◦
r ].

The above fact admits the definition of partition S2 as

S2 : xi−1 = β◦
0 ≤ α◦

1 ≤ a◦1 < b◦1 < · · · < a◦j1 < b◦j1 ≤ β◦
1

< α◦
2 ≤ a◦j1+1 < b◦j1+1 < · · · < a◦j2 < b◦j2 ≤ β◦

2

< α◦
3 < · · · < α◦

s ≤ · · · < a◦m < b◦m ≤ β◦
s ≤ α◦

s+1 = xi,(4.10)

which is clearly a refinement of partition S1 defined in (4.9). Thus,
according to our hypothesis we see that |F (S2)| − |F (S1)| < ϵ which by
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a simple but careful observation results in the following relation
m∑
j=1

|F (b◦j )− F (a◦j )| < ϵ+

s∑
r=1

|F (β◦
r )− F (α◦

r)|.

Recalling the definitions of α◦
r and β◦

r and since J◦
kr

= (c◦r , d
◦
r), the

above relation converts to
m∑
j=1

|F (b◦j )− F (a◦j )| < ϵ+
s∑

r=1

λ(J◦
kr),

and due to relation (4.1) one obtains

m∑
j=1

|F (b◦j )− F (a◦j )| < 2 ϵ.

Since the above relation is true for the end points of any finite number
(here m) of I◦kl it is also valid for all of them, that is∑

k,l

|F (b◦kl)− F (a◦kl)| < 2 ϵ.(4.11)

Now by gathering the relations (4.6), (4.7) and (4.11) it is found that

∞∑
k,l=1

|F (bkl)− F (akl)| < 4 ϵ.(4.12)

Inequalities (4.2), (4.4) and (4.12) yield

λ(p(Ni)) ≤
∞∑

k,l=1

λ(p(Ikl)) < 5 ϵ.(4.13)

This establishes the zero measure of p(Ni) when F (xi−1) ̸= F (xi).
It only remains to show for the non-decreasing function n = p − F ,

that λ(n(Ni)) = 0. In an exactly similar way of obtaining relation (4.2)
one easily finds that

λ(n(Ni)) ≤
∞∑

k,l=1

λ(n(Ikl)),

where still Ikl = (akl, bkl) and thus n(Ikl) ⊂ [n(akl), n(bkl)]. Then we
note that for any two points x, y ∈ [xi−1, xi] since n = p− F we have

|n(y)− n(x)| ≤ |p(y)− p(x)|+ |F (y)− F (x)|.
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Substituting akl, bkl s to resp. x, y the latter relation yields

λ(n(Ni)) ≤
∞∑

k,l=1

λ(n(Ikl)) ≤
∞∑

k,l=1

λ(p(Ikl)) +
∞∑

k,l=1

|F (bkl)− F (akl)|.

The upper bounds for the first and second terms on the right hand side
of the above relation due to (4.12) and (4.13) proves the zero measure
of n(Ni).

5. Conclusion

As one little step towards understanding the regularity of hydrody-
namical quantities, it was attempted to see a more direct and clear de-
pendency of continuity and integrability through the Lebesgue integral
while there is a hope to generalize the method to find the situation for
other types of integration. Indeed, there probably exists an alternative
kind of absolute continuity in connection with other types of integration
rather than the Lebesgue one.

Even further, since the used method here essentially employed the
general measure-type informations, it looks to have sense to include
the issue of measurability of fluid functions under the mechanism of
singularity. In other words, the problem of blow up usually deals with
singularities and therefore infinite integrals while it is not yet known if
this dynamics can change even the measurability of solutions or not.

It was seen here that the absolute continuity can be extracted directly
as a consequence of measure-type properties of functions. There was
nowhere used the idea of differentiability which is the result of the Vitali
covering lemma. Instead, the Radon–Nikodym theorem was the main
tool which relies solely on the excellent consistency between the Lebesgue
integral and a measure space.

In addition, Lemma 2.2 was proven showing a slightly more general
result than needed for the proof of the Banach-Zarecki theorem. Al-
though the classical version of this theorem was proven here but it is
not surprising if one can generalize this proof to more general spaces
and even higher dimensions.
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Sense of Carathéodory, Preprint, Institute of Math., Prague, 2008.
[13] J. Yeh, Lectures on Real Analysis, World Scientific Publishing Co., Inc., River

Edge, 2000.

A. Mahdipour-Shirayeh

Department of Applied Mathematics, University of Waterloo,

Waterloo ON N2L 3G1, Canada

Email: amahdipo@uwaterloo.ca

H. Eshraghi

Department of Physics, Iran University of Science and Technology,

Tehran 16846-13114, Iran

Email: eshraghi@iust.ac.ir
Arc

hive
 of

 S
ID

www.SID.ir

www.sid.ir

