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SOME COMBINATORIAL ASPECTS OF FINITE
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Abstract. In this paper we provide explicit formulas for the num-
ber of elements/subgroups/cyclic subgroups of a given order and for
the total number of subgroups/cyclic subgroups in a finite Hamil-
tonian group. The coverings with three proper subgroups and the
principal series of such a group are also counted. Finally, we give a
complete description of the lattice of characteristic subgroups of a
finite Hamiltonian group.

1. Introduction

One of the most important family of finite groups is the finite Hamil-
tonian groups, that is finite non-Abelian groups all of whose subgroups
are normal. The structure of such a group H is well-known: it can
be written as the direct product of the quaternion group Q8 = 〈x, y |
x4 = y4 = 1, yxy−1 = x−1〉, an elementary Abelian 2-group and a finite
Abelian group A of odd order, i.e.,

(1.1) H ∼= Q8 × Zn2 ×A.
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842 Tărnăuceanu

Since Q8×Zn2 and A have relatively prime orders, this leads to a similar
decomposition of the subgroup lattice L(H) of H, namely

(1.2) L(H) ∼= L(Q8 × Zn2 )× L(A).

According to the above direct decompositions, many combinatorial pro-
blems related to Abelian groups can naturally be extended to Hamilto-
nian groups. Their study is the main goal of our paper.

The paper is organized as follows. In Section 2 we study the subgroup
lattice L(H) of a finite Hamiltonian group H. By using (1.2), we de-
termine the number of subgroups/cyclic subgroups of a given order and
the total number of subgroups/cyclic subgroups of H. We also count
the coverings with three proper subgroups and the principal series of H.
Section 3 deals with the characteristic subgroups of finite Hamiltonian
groups. We give a complete description of the automorphism group
Aut(H) and of the characteristic subgroup lattice Char(H) of H. In
particular, their cardinality will be explicitly found. In the final section
some conclusions and further research directions are indicated.

Most of our notation is standard and will not be repeated here. Basic
definitions and results on group theory can be found in [8] and [14].
The similar combinatorial aspects for finite Abelian groups have been
investigated in [4, 5, 6], as well as in our previous papers [2], [15] and
[17, 18]. For subgroup lattice notions we refer the reader to [13] and
[16].

2. The lattice of subgroups of a finite Hamiltonian group

First of all, we determine explicitly the number of elements of a given
order in a finite Hamiltonian group. It can be computed similarly as it
was done in corollary 4.5 of [17].

Theorem 2.1. Let H = Q8 × Zn2 × A be a finite Hamiltonian group.
Then, for every divisor d of | A |, H possesses:

a) ed(A) elements of order d,
b) (2n+1 − 1)ed(A) elements of order 2d,
c) 3 · 2n+1ed(A) elements of order 4d,

where ed(A) denotes the number of elements of order d in A.

Proof. Fix a divisor d of | A | . Since d is odd, the elements of order d of
H = Q8 ×Zn2 ×A are of the form (1, 0̂, a) (where 1 denotes the identity
of Q8) with o(a) = d in A. This proves a). An element (x, y, a) ∈ H
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Some combinatorial aspects of finite Hamiltonian groups 843

is of order 2d if and only if o(x, y) = 2 in Q8 × Zn2 and o(a) = d in A.
We can directly see that the number of elements of order 2 in Q8 × Zn2
is 2n+1 − 1, proving b). We remark that o(x, y, a) = 4d if and only if
o(x) = 4 in Q8, y ∈ Zn2 is arbitrary and o(a) = d in A. Clearly, c) follows
immediately because Q8 possesses six elements of order 4. �

Remark that the above theorem allows us to compute the number
of cyclic subgroups of a given order d in H. This is closely connected
with the number csd(A) of cyclic subgroups of order d in A, computed
in Corollary 4.5 of [17].

Corollary 2.2. Under the notation of Theorem 2.1, for every divisor d
of | A |, H possesses:

a) csd(A) cyclic subgroups of order d,
b) (2n+1 − 1) csd(A) cyclic subgroups of order 2d,
c) 3 · 2ncsd(A) cyclic subgroups of order 4d.

Obviously, the total number of cyclic subgroups of H can be obtained
from Corollary 2.2.

Theorem 2.3. The total number of cyclic subgroups of the finite Hamil-
tonian group H = Q8 × Zn2 ×A is given by the equality

cs(H) = 5 · 2n cs(A),

where cs(A) denotes the total number of cyclic subgroups of A.

Next, we will focus on arbitrary subgroups of a finite Hamiltonian
group H. The main ingredient that will be used is the direct decompo-
sition (1.2), which gives a powerful connection between L(H) and L(A).
The subgroups of a finite Abelian group have been exhaustively studied
by Birkhoff [4]. Since then, many methods to compute their number
have been developed (for example, see [5] or [6]). One of them is based
on an arithmetical description of the subgroup lattice of a finite Abelian
group and produces explicit results in several particular cases (see [17]).
We recall here only the precise formulas for the number of subgroups of
order 2k, k = 1, 2, ..., n, in the elementary Abelian 2-group Zn2

an,2(k) =
∑

1≤i1<i2<...<ik≤n
2 i1+i2+...+ik− k(k+1)

2 ,

respectively for the total number of subgroups of Zn2

an,2 =
n∑
k=0

an,2(k) = 1 +
n∑
k=1

∑
1≤i1<i2<...<ik≤n

2 i1+i2+...+ik− k(k+1)
2 .
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844 Tărnăuceanu

Also, we notice that the subgroups of the direct product Q8 × Zn2 can
be easily counted by using (4.19) of [14], I.

Lemma 2.4. For every k = 0, 1, ..., n + 3, the number of subgroups of
order 2k of Q8 × Zn2 is

bn,2(k) = 2kan,2(k) + 22k−2an,2(k− 1) + 3 · 2k−2an,2(k− 2) + an,2(k− 3),

where, by convention, we have an,2(r) = 0 if r < 0 or r > n. In
particular, the total number of subgroups of Q8 × Zn2 is

bn,2 = 2n+2 + 1 + 8
n−2∑
i=0

(2n−i − 22i+1 + 2i)ai,2 + 2n+2an−1,2 + an,2.

Proof. From (4.19) of [14], I, we know that a subgroup K of Q8 × Zn2 is
uniquely determined by two subgroups K1 ⊆ K ′1 of Q8, two subgroups
K2 ⊆ K ′2 of Zn2 and a group isomorphism ϕ : K ′1/K1 −→ K ′2/K2 (more
exactly, K = {(x1, x2) ∈ K ′1×K ′2 | ϕ(x1K1) = x2 +K2}). Moreover, we
have

| K | =| K1 || K ′2 | =| K ′1 || K2 | .
By asking that | K | = 2k, k ∈ {0, 1, ..., n + 3}, we distinguish the
following four cases.

Case 1. | K1 | = 1.
In this case | K ′2 | = 2k and so K ′2 can be chosen in an,2(k) ways. If
| K ′1 | = 1, then both K ′1 and ϕ are trivial, and K2 = K ′2 can be
chosen in an,2(k) ways. These determine an,2(k) distinct subgroups K.
If | K ′1 | = 2, then K ′1 can be chosen in a unique way, ϕ is the identity
map and K2 can be chosen in 2k − 1 ways because its order is 2k−1.
These determine (2k − 1)an,2(k) distinct subgroups K. If | K ′1 | = 4 or
| K ′1 | = 8, then there is no way to choose K2 and K ′2. Hence in this
case one obtains

an,2(k) + (2k − 1)an,2(k) = 2kan,2(k)

distinct subgroups of Q8 × Zn2 .

Case 2. | K1 | = 2.
In this case K1 can uniquely be chosen and K ′2 can be chosen in an,2(k−
1) ways because its order is 2k−1. If | K ′1 | = 2, then K ′1 = K1, ϕ is
trivial and K2 = K ′2 can be chosen in an,2(k−1) ways. These determine
an,2(k−1) distinct subgroups K. If | K ′1 | = 4, then K ′1 can be one of the
(three) cyclic subgroups of order 4 in Q8, ϕ is the identity map and K2

can be chosen in 2k−1−1 ways because its order is 2k−2. These determine
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Some combinatorial aspects of finite Hamiltonian groups 845

3(2k−1−1)an,2(k−1) distinct subgroups K. If | K ′1 | = 8, then K ′1 = Q8,
ϕ can be chosen in 6 ways (Z2×Z2 has six automorphisms) andK2 can be

chosen in ak−1,2(k−3) =
1

3
(22k−3−3 ·2k−2 +1) ways (it is a subgroup of

order 2k−3 ofK ′2
∼= Zk−1

2 ). These determine (22k−2−3·2k−1+2)an,2(k−1)
distinct subgroups K. Hence in this case one obtains

an,2(k− 1) + 3(2k−1− 1)an,2(k− 1) + (22k−2− 3 · 2k−1 + 2)an,2(k− 1) =

= 22k−2an,2(k − 1)

distinct subgroups of Q8 × Zn2 .

Case 3. | K1 | = 4.
In this case K1 can be chosen in 3 ways and K ′2 can be chosen in an,2(k−
2) ways because its order is 2k−2. If | K ′1 | = 4, then it can uniquely
be chosen, ϕ is trivial and K2 = K ′2 can be chosen in an,2(k − 2) ways.
These determine 3an,2(k − 2) distinct subgroups K. If | K ′1 | = 8, then
K ′1 = Q8, ϕ can uniquely be chosen (Z2 has a unique automorphism)
and K2 can be chosen in 2k−2 − 1 because its order is 2k−3. These
determine 3(2k−2 − 1)an,2(k − 2) distinct subgroups K. Hence in this
case one obtains

3an,2(k − 2) + 3(2k−2 − 1)an,2(k − 2) = 3 · 2k−2an,2(k − 2)

distinct subgroups of Q8 × Zn2 .

Case 4. | K1 | = 8.
In this case K1 = K ′1 can uniquely be chosen, K2 = K ′2 can be chosen
in an,2(k − 3) ways because their order is 2k−3 and ϕ is trivial. Hence
they determine

an,2(k − 3)

distinct subgroups of Q8 × Zn2 .

Now, by summing all above quantities, we infer that

bn,2(k) = 2kan,2(k) + 22k−2an,2(k− 1) + 3 · 2k−2an,2(k− 2) + an,2(k− 3).

In the following this equality will be used to compute the total number
bn,2 of subgroups of Q8 × Zn2 . We have

bn,2 =

n+3∑
k=0

bn,2(k) = an,2 + 4xn + yn,
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846 Tărnăuceanu

where

xn =
n∑
k=0

2kan,2(k) and yn =
n∑
k=0

22kan,2(k).

The connections between the numbers an,2(k) and an,2 are well-known:

- an,2(k) = an−1,2(k) + 2n−kan−1,2(k − 1), for all k = 1, n− 1,
- an,2 = 2an−1,2 + (2n−1 − 1)an−2,2.

These lead to some recurrence relations satisfied by the chains (xn)n∈N
and (yn)n∈N :

xn = xn−1 + 2nan−1,2 and yn = yn−1 + 2n+1xn−1,

respectively. It follows that

xn = 1 +

n−1∑
i=0

2i+1ai,2 and yn = 2n+2 − 3 +

n−2∑
i=0

(2n+3−i − 22i+4)ai,2,

which implies

bn,2 = 2n+2 + 1 + 8
n−2∑
i=0

(2n−i − 22i+1 + 2i)ai,2 + 2n+2an−1,2 + an,2,

completing the proof. �

Clearly, Lemma 2.4 leads to the following theorem.

Theorem 2.5. The total number of subgroups of the finite Hamiltonian
group H = Q8 × Zn2 ×A is given by the equality

s(H) = bn,2 s(A),

where s(A) denotes the total number of subgroups of A.

Another interesting problem involving the subgroup structure of a
(finite) group is to study whether it can be written as the union of r ≥ 3
proper subgroups. Such a decomposition is called a subgroup covering
and there are many papers on the coverings of finite groups with different
numbers/types of subgroups. We recall here a famous Scorza’s result
(see [19]) which states that a finite group has a covering with three
proper subgroups if and only if it possesses a quotient isomorphic to
Z2×Z2. Also, we recall the problem of counting the coverings of a finite
group with three proper subgroups, formulated in [18]. We are now able
to solve it for finite Hamiltonian groups.
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Some combinatorial aspects of finite Hamiltonian groups 847

Theorem 2.6. The number of coverings with three proper subgroups of
the finite Hamiltonian group H = Q8 × Zn2 ×A is given by the equality

c3(H) =
22n+3 − 3 · 2n+1 + 1

3
.

Proof. As we have seen in [18], the number c3(H) of coverings with three
proper subgroups of H coincides with the number of quotients of H that
are isomorphic to Z2 × Z2. Moreover, by (1.1) we infer that c3(H) is
also equal to the number of quotients of Q8×Zn2 that are isomorphic to
Z2 × Z2.

Let K be a subgroup of order 2n+1 of Q8 × Zn2 and assume that the
quotient Q8×Zn2/K contains an element xK of order 4. Then o(x) = 4
in Q8×Zn2 and 〈x〉 ∩ K = 1. On the other hand, Q8×Zn2/K is Abelian
because its order is 4. This implies that 〈x2〉 = (Q8 × Zn2 )′ ⊆ K, a
contradiction. It follows that the quotient Q8 × Zn2/K is isomorphic
with Z2 × Z2, for any subgroup K of order 2n+1 in Q8 × Zn2 . Hence

c3(H) = bn,2(n+ 1) = 22nan,2(n) + 3 · 2n−1an,2(n− 1) + an,2(n− 2) =

= 22n+3·2n−1(2n−1)+
22n−1−3 · 2n−1+1

3
=

22n+3−3 · 2n+1+1

3
,

as desired. �

Remark 2.7. 1. Under the above notation, we have c3(H) = 1 if
and only if n = 1, that gives another proof of Corollary F of [18].

2. The partitions of a group constitute a particular type of subgroup
coverings (remind that a subgroup covering (Hi)i=1,m of a group
H is called a partition of H if Hi ∩Hj = 1, for all i 6= j – see
Section 3.5 of [13]; moreover, if Hi 6= H for all i = 1,m, then
the partition (Hi)i=1,m is called non-trivial). By inspecting the
subgroups of a finite Hamiltonian group described above, we infer
that it has no nontrivial partitions (notice that an alternative way
to get this conclusion is given by Theorem 3.5.10 of [13]).

Since we know the subgroup structure of finite Hamiltonian groups,
the number of principal series of these groups can also be counted. This
follows the most general topic of counting maximal chains of subgroups
in finite nilpotent groups, studied in [2] and [15].

Let H = Q8 × Zn2 × A be a finite Hamiltonian group, pα1
1 pα2

2 ...pαr
r

be the decomposition of | A | as a product of (odd) prime factors and
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848 Tărnăuceanu

put α =

r∑
i=1

αi. According to Theorem 2.1 of [15], one obtains that the

numbers ps(H) and ps(A) of all principal series of H and A, respectively,
are connected by the equality

ps(H) =

(
n+ 3 + α
n+ 3, α

)
ps(Q8 × Zn2 )ps(A).

Because the principal series of a finite Abelian group have been counted
in our previous papers [2] and [15], we infer that the problem of deter-
mining ps(H) is reduced to the computation of ps(Q8 × Zn2 ).

Lemma 2.8. The number of principal series of subgroups of Q8×Zn2 is

ps(Q8 × Zn2 ) = (22n+4 − 3 · 2n+2 − 3n · 2n+1 − 1)

n∏
i=1

(2i − 1).

Proof. In order to count the number ps(Q8 × Zn2 ) of all principal series
of Q8×Zn2 , we remark that every such series contains a unique maximal
subgroup of Q8 × Zn2 . Consequently

ps(Q8 × Zn2 ) =
∑

M≤Q8×Zn
2 , |M |=2n+2

ps(M).

On the other hand, by the proof of Lemma 2.4 we infer that Q8 × Zn2
possesses bn,2(n + 2) = 2n+2 − 1 maximal subgroups, namely 4(2n − 1)

isomorphic to Q8 × Zn−1
2 and 3 isomorphic to Z4 × Zn2 . One obtains

ps(Q8 × Zn2 ) = 4(2n − 1)ps(Q8 × Zn−1
2 ) + 3ps(Z4 × Zn2 ).

By using the recurrence relation established in Lemma D of [2], we easily
get

ps(Z4 × Zn2 ) = (n · 2n+1 + 1)
n∏
i=1

(2i − 1),

which implies that the chain zn = ps(Q8 × Zn2 ) satisfies the following
recurrence relation

zn = 4(2n − 1)zn−1 + 3(n · 2n+1 + 1)

n∏
i=1

(2i − 1), for all n ≥ 1.

Since z0 = 3, it results

zn = (22n+4 − 3 · 2n+2 − 3n · 2n+1 − 1)

n∏
i=1

(2i − 1),

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


Some combinatorial aspects of finite Hamiltonian groups 849

which completes the proof. �

Now, an explicit formula for ps(H) is obtained.

Theorem 2.9. The total number of principal series of subgroups of the
finite Hamiltonian group H = Q8 × Zn2 ×A is given by the equality

ps(H)=

(
n+ 3 + α
n+ 3, α

)
(22n+4−3 · 2n+2−3n · 2n+1−1)

n∏
i=1

(2i−1)ps(A).

3. The lattice of characteristic subgroups of a finite
Hamiltonian group

Let G be a group, L(G) be the subgroup lattice of G and N(G) be
the normal subgroup lattice of G. Then the characteristic subgroups of
G form a remarkable sublattice of L(G), usually denoted by Char(G),
which can be seen as the set of fixed points of L(G) under the natural
action of Aut(G). We also know that Char(G) is contained in N(G) and
therefore it is a modular lattice. In contrast with L(G) and N(G) that
are known for many classes of groups (for example, see [13]), Char(G)
has been exhaustively described only for few classes of groups G. One
of them is constituted by the finite Abelian groups, and important con-
tributions have had Miller [11, 12], Baer [1], Birkhoff [4], or the more
recent paper by Kerby and Rode [10] (see also [9]). In this section we
will extend this study to finite Hamiltonian groups, in view of the form
of subgroups of a direct product.

Let H ∼= Q8 ×Zn2 ×A be a finite Hamiltonian group. One needs first
to know the structure of automorphisms of H. According to Lemma 2.1
of [7], we infer that a direct decomposition of type (1.1) also holds for
Aut(H), namely

(3.1) Aut(H) ∼= Aut(Q8 × Zn2 )×Aut(A).

Since the automorphisms of finite Abelian groups are precisely deter-
mined and counted in [7], we must focus only on describing the auto-
morphisms of Q8×Zn2 . By Theorem 3.2 of [3] and by using the elemen-
tary isomorphism Z(Q8) = 〈x2〉 ∼= Z2, one obtains that Aut(Q8 × Zn2 )
is isomorphic to the multiplicative group of all matrices(

α β
γ δ

)
with

α ∈ Aut(Q8) β ∈ Hom(Zn2 ,Z2)
γ ∈ Hom(Q8,Zn2 ) δ ∈ Aut(Zn2 )

.
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850 Tărnăuceanu

More exactly, if f ∈ Aut(Q8×Zn2 ) is determined by the matrix

(
α β
γ δ

)
,

then f(x1, x2) = (α(x1)β(x2), γ(x1) + δ(x2)), for all (x1, x2) ∈ Q8 × Zn2 .
In particular, we have

|Aut(Q8 × Zn2 )| =|Aut(Q8)||Hom(Zn2 ,Z2)||Hom(Q8,Zn2 )||Aut(Zn2 )| .
Now, we can easily see that

- |Aut(Q8)| = 24,
- |Hom(Zn2 ,Z2)| = 2n,
- |Hom(Q8,Zn2 )| = 22n,

- |Aut(Zn2 )| = 2
n(n−1)

2

n∏
i=1

(2i − 1).

Hence we have proved the following result.

Theorem 3.1. The number of automorphisms of the finite Hamiltonian
group H ∼= Q8 × Zn2 ×A is given by the equality

|Aut(Q8 × Zn2 )| = 3 · 2
(n+2)(n+3)

2

n∏
i=1

(2i − 1) |Aut(A)|,

where |Aut(A)| can be computed by Theorem 4.1 of [7].

Since the Sylow subgroups of a finite nilpotent group are characteris-
tic, the lattice Char(H) of characteristic subgroups of H ∼= Q8×Zn2 ×A
is also decomposable:

(3.2) Char(H) ∼= Char(Q8 × Zn2 )× Char(A).

In our case we can give an explicit description of the lattice Char(A).
The condition |A| ≡ 1 (mod 2) implies that all characteristic subgroups
of A are regular (see [1] and [11, 12]). It follows that they form a sub-
lattice of a direct product of chains, that is a distributive lattice. More-
over, we note that the number | Char(A)| can precisely be determined
by Corollary 1.7 of [10].

So, in order to study the characteristic subgroups of H we must look
again only on the characteristic subgroups of its 2-component. The
following result shows that there are few possibilities for a subgroup K
of Q8 × Zn2 to be characteristic.

Lemma 3.2. Let G be a characteristic subgroup of Q8×Zn2 and assume
that it is determined by K1, K ′1, K2, K ′2 and ϕ, as in the proof of Lemma
2.4. Then K1,K

′
1 ∈ Char(Q8) and K2,K

′
2 ∈ Char(Zn2 ).
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Some combinatorial aspects of finite Hamiltonian groups 851

Proof. First of all, by using the form of automorphisms of Q8 × Zn2
described above, we infer that for every f1 ∈ Aut(Q8) there is f ∈
Aut(Q8 × Zn2 ) such that f | Q8 = f1 and f | Zn2 = 1Zn

2
(namely,

f(x1, x2) = (f1(x1), x2), for all (x1, x2) ∈ Q8 × Zn2 ). It is clear that
for x1 ∈ K1 = K ∩ Q8 we have f1(x1) = π1(f(x1, 0)) ∈ K1, because
K is characteristic in Q8 × Zn2 . This proves that K1 ∈ Char(Q8). If
x1 ∈ K ′1 = π1(K), then (x1, x2) ∈ K for some x2 ∈ Zn2 . One obtains
f1(x1) = π1(f(x1, x2)) ∈ K ′1 and so K ′2 is characteristic, too.

The second conclusion follows similarly. �

Remark 3.3. 1. Under the above notation, for a characteristic
subgroup K of Q8 × Zn2 we must have K1,K

′
1 ∈ {1, 〈x2〉, Q8}

and K2,K
′
2 ∈ {0,Zn2}, respectively.

2. Lemma 3.1 can naturally be generalized to a finite direct product
of arbitrary groups. We also remark that its converse fails (for
example, the subgroup K = Q8×0 ∈ L(Q8×Zn2 ) has K1 = K ′1 =
Q8 ∈ Char(Q8) and K2 = K ′2 = 0 ∈ Char(Zn2 ), but it is not
characteristic in Q8 × Zn2 ).

Next, we observe that if K ∈ Char(Q8×Zn2 ) and n ≥ 3, then K1 = K ′1,
K2 = K ′2 and ϕ is trivial. In this way

Char(Q8 × Zn2 ) ⊆ Char(Q8)× Char(Zn2 ).

Again, a simple exercise involving the form of automorphisms of Q8 ×
Zn2 shows that 〈x2〉 × 0 ∈ Char(Q8 × Zn2 ), while the subgroups Q8 ×
0 and 1 × Zn2 are not characteristic. Since the other subgroups the
direct product Char(Q8)×Char(Zn2 ) obviously belong to Char(Q8×Zn2 )
(mention that 〈x2〉 × Zn2 = Φ(Q8×Zn2 )), one obtains that for n ≥ 3 the
lattice Char(Q8 × Zn2 ) is reduced to the following chain:

1× 0 ⊂ 〈x2〉 × 0 ⊂ 〈x2〉 × Zn2 ⊂ Q8 × Zn2 .
If K is a subgroup of Q8×Zn2 and n = 1 or n = 2, then the quotients

K ′1/K1 and K ′2/K2 are not necessarily trivial. In these two cases we have
the additional subgroups 〈x2, 1〉 corresponding to the (unique) isomor-
phism K ′1/K1

∼= K ′2/K2
∼= Z2 and six subgroups ∼= Q8 corresponding

to the isomorphisms K ′1/K1
∼= K ′2/K2

∼= Z2
2, respectively. By a direct

inspection, we infer that none of these subgroups are characteristic.
We are now able to give a complete description of the lattice of cha-

racteristic subgroups of H.

Theorem 3.4. The lattice Char(H) of characteristic subgroups of the
finite Hamiltonian group H ∼= Q8×Zn2×A is distributive. More precisely,
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852 Tărnăuceanu

it possesses a direct decomposition of type

Char(H) ∼= Char(Q8 × Zn2 )× Char(A),

where Char(Q8 × Zn2 ) is a chain of length 3 and Char(A) is a sublattice
of a direct product of chains.

In particular, Theorem 3.4 allows us to determine explicitly the car-
dinality of Char(H).

Theorem 3.5. The total number of characteristic subgroups of the finite
Hamiltonian group H = Q8 × Zn2 ×A is given by the equality

| Char(H)| = 4 | Char(A)|,
where | Char(A)| is computed in Corollary 1.7 of [10].

Finally, by fixing the finite Hamiltonian group H ∼= Q8 × Zn2 ×A, we
remark that there are many finite groups G whose lattices of characte-
ristic subgroups are isomorphic to Char(H) (for example, G = Zn8 × A,
where n ∈ N∗, or G = D8 × A, where D8 is the dihedral group of order
8). Hence the finite Hamiltonian groups are not determined by their
lattices of characteristic subgroups.

4. Conclusions and further research

The study of some combinatorial aspects of subgroup lattices is a
significant research direction of group theory. It is clear that all pro-
blems studied in the current paper for finite Hamiltonian groups can
be extended to more large classes of (finite) groups. These will surely
constitute the subject of some further research.

Several open problems with respect to this topic are the following.

Problem 1. Improve Theorem 2.6, by finding the number of coverings
with r proper subgroups of H, where r ≥ 3 is arbitrary.

Problem 2. Improve Theorem 2.8, by finding the total number of series
of subgroups of an arbitrary length in H.

Problem 3. A classical result due to Miller, Baer and Birkhoff (see
Corollary 1.7 of [10]) gives an explicit formula for |Char(G) |, when G
is an Abelian p-group with p 6= 2. Thus, the number of characteristic
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subgroups of any Abelian group of odd order is known. Moreover, [10]
gives an algorithm to determine |Char(G) | when G is an Abelian 2-
group, but not a precise expression of this number. Find such a precise
expression and therefore determine an explicit formula for the number
of characteristic subgroups of an arbitrary finite Abelian group.

Problem 4. Let H and K be two finite groups with no common di-
rect factor and set G = H × K. By using the form of automorphisms
of G (described in Theorem 3.2 of [3]) and the form of subgroups of
G (described in (4.19) of [14], I), determine the lattice Char(G). As
we already observed, in general the lattice isomorphism Char(G) ∼=
Char(H) × Char(K) fails. When is it true (of course, except the ele-
mentary case when H and K are of relatively prime orders)?

Problem 5. In Section 3 of [10] finite Abelian p-groups with isomorphic
lattices of characteristic subgroups have been investigated. What can
be said about two arbitrary finite groups whose lattices of characteristic
subgroups are isomorphic?

Problem 6. As we have seen above, there exist finite groups whose
lattices of characteristic subgroups are distributive (for example, Abelian
groups of odd order, Hamiltonian groups, DLN-groups, ... and so on).
We remark that also exist finite groups whose lattices of characteristic
subgroups are not distributive (for example, a large class of Abelian 2-
groups - see [10], or the quasi-dihedral groups S2n with n ≥ 4). Which
are all finite groups G such that Char(G) is a distributive lattice? More
particularly, which are the finite groups G such that Char(G) is a chain
(of a prescribed length)?
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Email: tarnauc@uaic.roArc

hive
 of

 S
ID

www.SID.ir

www.sid.ir

