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ANALYTIC SOLUTIONS FOR THE STEPHEN’S

INVERSE PROBLEM WITH LOCAL BOUNDARY

CONDITIONS INCLUDING ELLIPTIC AND

HYPERBOLIC EQUATIONS
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Abstract. In this paper, two inverse problems of Stephen kind
with local (Dirichlet) boundary conditions are investigated. In the
first problem only a part of the boundary is unknown and in the
second problem, the whole of the boundary is unknown. For both
of the problems, first, analytic expressions for unknown boundary
are presented, then by using these analytic expressions for unknown
boundaries and boundary conditions of the main problem, analytic
solution of the main inverse problem is derived.

1. Introduction

Lavrentiev and Stephen types inverse problems for elliptic equations
are appeared in a number of fields, such as boundary value problems
in engineering and physics [9] and [4]. Also, the inverse Cauchy prob-
lem for elliptic equation arises in many applications such as vibration of
structure, nondestructive testing technique, electro-cardiology, electro-
magnetic scattering and so on.
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Liu [8] considered a Cauchy problem in a rectangular domain and re-
duced it into a first-kind Fredholm integral equation and then trans-
formed it into a second -kind Fredholm integral equation by Lavrentiev
type regularization.
A. Eden and V.K. Kalantarov [3] have considered the global in time
behavior of solutions of an inverse problem in a bounded domain of Rn

with smooth boundary ∂Ω such that in addition to the solution of the
equation, the right-hand side of the equation is also unknown.
In [11], authors have studied the Cauchy-Riemann equation on the region
Ω = {(x1, x2) ∈ R2; x1 ∈ R, x2 ∈ (0, 1)} with two nonlocal boundary
conditions on ∂Ω such that in addition to the solution of the equation,
the right-hand side of the second boundary condition is also unknown:

∂u(x)

∂x2
+ i

∂u(x)

∂x1
= 0 x = (x1, x2), x1 ∈ R, x2 ∈ (0, 1),

αj(x1)u(x1, 0) + βj(x1)u(x1, 1) = φj(x1) j = 1, 2, x1 ∈ R,

where i =
√
−1, u and φ2 are unknown functions and φ1, αj and

βj ; j = 1, 2 are given continuous functions. We have obtained a second
kind Fredholm integral equation for u(x1, x2) and φ2(x1).
In the present paper we attempt to solve a boundary value problem of the
Stephen’s kind for the elliptic Cauchy-Riemann equation on a bounded
domain Ω ⊂ R2, with local boundary conditions on the smooth bound-
ary ∂Ω.

In the first section, we assume that only a part of boundary ∂Ω is
unknown but in the second section, the whole of boundary ∂Ω will be
unknown. To this approach, consider the boundary value problem in
the following form

∂u(x)

∂x2
+ i

∂u(x)

∂x1
= 0, x ∈ Ω,(1.1)

u(x1, 0) = φ(x1)(1.2)

u(x1, γ(x1)) = ψ(x1)(1.3)

where Ω = {(x1, x2) ∈ R2; x1 ∈ (0, 1), x2 ∈ (0, γ(x1))} is a bounded
convex region in R2, φ and ψ are known real continuous functions on [0, 1]
that can be extended to complex plane. Beside the solution u(x1, x2),
the upper boundary γ is unknown.
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Analytic solutions for the Stephen’s inverse problem 857

2. Analytic solution for calculating the unknown boundary

The following lemma provides a way to calculate the unknown bound-
ary γ.

Lemma 2.1. For the boundary values of the unknown function u(x1, x2)
in the problem (1.1)-(1.3) we have

u(ξ1, 0) = −2

∫ 1

0
u(x1, 0)U(x1 − ξ1, 0)dx1

+2

∫ 1

0
u(x1, γ(x1))U(x1 − ξ1, γ(x1))(−1 + i γ′(x1))dx1(2.1)

u(ξ1, γ(ξ1))=−2

∫ 1

0
u(x1, 0)U(x1 − ξ1,−γ(ξ1)) dx1

+2

∫ 1

0
u(x1, γ(x1))U(x1 − ξ1, γ(x1)− γ(ξ1))(−1 + i γ′(x1)) dx1(2.2)

where U(x− ξ) is the fundamental (generalized) solution of the Cauchy-
Riemann equation (1.1) which is given by (see [12])

(2.3) U(x− ξ) =
1

2π(x2 − ξ2 + i(x1 − ξ1))
.

Proof. Multiplying both sides of (1.1) by the fundamental solution (2.3)
and integrating on Ω, then applying the Ostrogradski-Gauss’s formula
[2] and using Dirac’s delta function properties (similar to [11], [1]-[7])
we obtain

0 =

∫
Ω

(
∂u(x)

∂x2
+ i

∂u(x)

∂x1
)U(x− ξ) dx

=

∫
Ω

∂u(x)

∂x2
U(x− ξ) dx+ i

∫
Ω

∂u(x)

∂x1
U(x− ξ) dx

=

∫
Γ
u(x)U(x− ξ) cos(n, x2) dx−

∫
Ω
u(x)

∂U(x− ξ)
∂x2

dx

+i

∫
Γ
u(x)U(x− ξ) cos(n, x1) dx− i

∫
Ω
u(x)

∂U(x− ξ)
∂x1

dx.

where Γ = Γ1 ∪ Γ2 is the boundary of region Ω where Γ1 = { (x1, 0) ∈
R2; x1 ∈ [0, 1] }, Γ2 = { (x1, γ(x1)) ∈ R2; x1 ∈ [0, 1] } and (n, xj), j =
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1, 2 denotes the angle between outward unit normal vector to the bound-
ary Γ and coordinates axes xj , j = 1, 2.
Now, using the property of Dirac’s delta function we obtain∫

Γ
u(x)U(x− ξ) [cos(n, x2) + i cos(n, x1)] dx =

∫
Ω
u(x)δ(x− ξ)dx

=

 u(ξ), ξ ∈ Ω,
1/2u(ξ), ξ ∈ Γ,
0, ξ /∈ Ω̄.

(2.4)

Let (ni, xj) and (τi, xj), j = 1, 2 be the angles between outward unit nor-
mal and unit tangent vectors on the boundaries Γi(i = 1, 2) respectively.
Then

cos(n1, x1) = 0 , cos(n1, x2) = −1

cos(n2, x1) = sin(τ2, x1) , cos(n2, x2) = − cos(τ2, x1)

cos(τ2, x1) =
dx1

dx
, tan(τ2, x1) = γ′(x1)(2.5)

From the second case on the right-hand side of (2.4) we obtain

u(ξ) = 2

∫
Γ
u(x)U(x− ξ) [cos(n, x2) + i cos(n, x1)] dx ; ξ ∈ Γ

Therefore for ξ ∈ Γ1 and ξ ∈ Γ2, and by using (2.5) we obtain

u(ξ1, 0) = 2

∫
Γ1

u(x1, 0)U(x1 − ξ1, 0)[cos(n1, x2) + i cos(n1, x1)] dx

+2

∫
Γ2

u(x1, γ(x1))U(x1 − ξ1, γ(x1))(cos(n2, x2)

+i cos(n2, x1)) dx

= −2

∫ 1

0
u(x1, 0)U(x1 − ξ1, 0)dx1

+2

∫ 1

0
u(x1, γ(x1))U(x1 − ξ1, γ(x1))(−1 + iγ′(x1))dx1

u(ξ1, γ(ξ1)) = 2

∫
Γ1

u(x1, 0)U(x1 − ξ1,−γ(ξ1))[cos(n1, x2)

+i cos(n1, x1)] dx

+2

∫
Γ2

u(x1, γ(x1))U(x1 − ξ1, γ(x1)− γ(ξ1))[cos(n2, x2)

+i cos(n2, x1)] dx
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Analytic solutions for the Stephen’s inverse problem 859

= 2

∫ 1

0
u(x1, 0)U(x1 − ξ1,−γ(ξ1))dx1

+2

∫ 1

0
u(x1, γ(x1))U(x1 − ξ1, γ(x1)− γ(ξ1))(−1 + iγ′(x1))dx1

that implies relations (2.1)-(2.2) of lemma. �

Now, we state and prove the main theorem.

Theorem 2.2. Let the inverse problem be given by equation (1.1) and
boundary conditions (1.2)-(1.3), where φ and the invertible function ψ
are known continuous functions on [0, 1]. Then, the unknown boundary
γ is given by

(2.6) γ(ξ1) = iξ1 − iφ−1(ψ(ξ1)).

Proof. By substituting the boundary conditions (1.2)-(1.3) and funda-
mental solution (2.3) in (2.1)-(2.2) we get

φ(ξ1) = −1/(π i)

∫ 1

0

φ(x1)

x1 − ξ1
dx1

+1/π

∫ 1

0

ψ(x1)

γ(x1) + i(x1 − ξ1)
(−1 + iγ′(x1))dx1

ψ(ξ1) = −1/π

∫ 1

0

φ(x1)

−γ(ξ1) + i(x1 − ξ1)
dx1

+1/π

∫ 1

0

ψ(x1)

γ(x1)− γ(ξ1) + i(x1 − ξ1)
(−1 + iγ′(x1))dx1

Comparing the above two relations we obtain

φ(ξ1 − iγ(ξ1)) = ψ(ξ1).

Therefore by using implicit and inverse functions theorems [10] we have

γ(ξ1) = iξ1 − iφ−1(ψ(ξ1)).

�

Remark 2.3. By utilizing (2.6) and (2.5) in first case on the right-hand
side of (2.4), we obtain the solution for the main problem (1.1)-(1.3)
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represented by

u(ξ) = −
∫ 1

0
u(x1, 0)U(x1 − ξ1,−ξ2)dx1

+

∫ 1

0
u(x1, γ(x1))U(x1 − ξ1, γ(x1)− ξ2)(−1 + i γ′(x1))dx1

= 1/(2π)

∫ 1

0

φ(x1)

ξ2 − i(x1 − ξ1)
dx1

+1/(2π)

∫ 1

0

ψ(x1)

−ξ2 + i(2x1 − ξ1 − φ−1(ψ(x1)))
(−2 +

1

φ′(x1)
) dx1.

3. The Stephen’s problem with two unknown boundaries

Consider the inverse boundary value problem of the Stephen’s kind

∂u1(x)

∂x2
+ i

∂u1(x)

∂x1
= 0, x ∈ Ω1,(3.1)

∂u2(x)

∂x1
+
∂u2(x)

∂x2
= 0, x ∈ Ω2,(3.2)

u1(x1, γ1(x1)) = ψ1(x1)(3.3)

u1(x1, 0) = u2(x1, 0) = ψ0(x1)(3.4)

u2(x1, γ2(x1)) = ψ2(x1)(3.5)

where Ω1 = { (x1, x2) ∈ R2; x1 ∈ (0, 1), x2 ∈ (0, γ1(x1))}, Ω2 =
{ (x1, x2) ∈ R2; x1 ∈ (0, 1), x2 ∈ (γ2(x1), 0)} are bounded convex
regions in R2. Also γ1 and γ2 are unknown boundaries but the real
continuous functions ψ0, ψ1 and ψ2 are known on [0, 1].

3.1. Calculating the Unknown Boundaries γ1 and γ2. By the pre-
vious section, the unknown boundary γ1 is given by

(3.6) γ1(ξ1) = iξ1 − iψ−1
0 (ψ1(ξ1)).

Here we try to present an analytic expression for the second part of
boundary Γ, which is denoted by Γ2 : x2 = γ2(x1).
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Analytic solutions for the Stephen’s inverse problem 861

Lemma 3.1. The expression for the boundary values of unknown func-
tion u2(x1, x2) of problem (3.2) and (3.4) − (3.5) satisfies the following
relations

u2(ξ1, 0) = 2

∫ 1

0
u2(x1, 0)U2(x1 − ξ1, 0)dx1

+2

∫ 1

0
u2(x1, γ2(x1))U2(x1 − ξ1, γ2(x1))(γ′2(x1)− 1)dx1(3.7)

u2(ξ1, γ2(ξ1)) = 2

∫ 1

0
u2(x1, 0)U2(x1 − ξ1,−γ2(ξ1))dx1

+2

∫ 1

0
u2(x1, γ2(x1))U2(x1 − ξ1, γ2(x1)(3.8)

−γ2(ξ1))(γ′2(x1)− 1)dx1

where U2(x− ξ) is the fundamental solution for the equation(3.2) given
by

(3.9) U2(x− ξ) = θ(x2 − ξ2)δ(x1 − ξ1 − (x2 − ξ2))

in which θ and δ are the symmetric Heaviside and Dirac’s delta functions
respectively [12].

Proof. Multiplying both sides of equation (3.2) by the fundamental so-
lution (3.10), integrating over region Ω2 and applying the Ostrogradskii-
Gauss’s formula (similar to previous section) we get

0 =

∫
Ω2

(
∂u2(x)

∂x1
+
∂u2(x)

∂x2
)U2(x− ξ) dx

=

∫
Ω2

∂u2(x)

∂x1
U2(x− ξ) dx+

∫
Ω2

∂u2(x)

∂x2
U2(x− ξ) dx

=

∫
Γ
u2(x)U2(x− ξ) cos(n, x2) dx−

∫
Ω2

u2(x)
∂U2(x− ξ)

∂x2
dx

+

∫
Γ
u2(x)U2(x− ξ) cos(n, x1) dx−

∫
Ω2

u2(x)
∂U2(x− ξ)

∂x1
dx.

where Γ is the boundary of region Ω2 as Γ = Γ1 ∪ Γ2 where Γ1 =
{ (x1, 0) ∈ R2; x1 ∈ [0, 1] },Γ2 = { (x1, γ2(x1)) ∈ R2; x1 ∈ [0, 1]}.
Now, using the properties of the fundamental solution and Dirac’s delta

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


862 Jahanshahi and Sajjadmanesh

function we obtain∫
Γ
u2(x)U2(x− ξ) [cos(n, x1) + cos(n, x2)] dx =

∫
Ω2

u2(x)δ(x− ξ)dx

=

 u2(ξ), ξ ∈ Ω2,
1/2u2(ξ), ξ ∈ Γ,
0, ξ /∈ Ω̄2.

(3.10)

Let (ni, xj), (τi, xj) j = 1, 2 be the angle between outward unit normal
and tangent vectors on the boundary Γi (i = 1, 2) respectively with
coordinates axes. Then we obtain

cos(n1, x1) = 0 , cos(n1, x2) = 1

cos(n2, x1) = sin(τ2, x1) , cos(n2, x2) = − cos(τ2, x1)

cos(τ2, x1) =
dx1

dx
, tan(τ2, x1) = γ′2(x1)(3.11)

From the second case on the right-hand side of (3.11) we have

u2(ξ) = 2

∫
Γ
u2(x)U2(x− ξ)[cos(n, x1) + cos(n, x2)] dx, ξ ∈ Γ

which leads to (3.7)-(3.9) of lemma 3.1 by considering ξ ∈ Γ1 and ξ ∈ Γ2,
respectively, and using (3.12). �

Theorem 3.2. Let the Stephen inverse problem be given by equation
(3.2) with boundary conditions (3.4)-(3.5) and known continuous func-
tions ψ0, ψ1 and ψ2 on [0, 1]. Further assume that the function ψ2 is
invertible. Then, the unknown boundary γ2 is given by

(3.12) γ2(σ(ξ1)) = σ(ξ1)− ξ1

where σ(ξ1) = ψ−1
2 oψ0(ξ1).

Proof. Using the fundamental solution (3.10) and the boundary condi-
tions (3.4)-(3.5) in (3.7)-(3.9) we have

ψ0(ξ1) = 2

∫ 1

0
ψ0(x1)θ(0)δ(x1 − ξ1)dx1

+2

∫ 1

0
ψ2(x1)θ(γ2(x1))δ(x1 − ξ1 − γ2(x1))(γ′2(x1)− 1)dx1

= −
∫ 1

0
ψ2(x1)δ(x1 − ξ1 − γ2(x1)) (γ′2(x1)− 1)dx1.(3.13)
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ψ2(ξ1) = 2

∫ 1

0
ψ0(x1)θ(−γ2(ξ1))δ(x1 − ξ1 + γ2(ξ1))dx1

+2

∫ 1

0
ψ2(x1)θ(γ2(x1)− γ2(ξ1))δ(x1 − ξ1

−(γ2(x1)− γ2(ξ1))(γ′2(x1)− 1)dx1

=

∫ 1

0
ψ0(x1)δ(x1 − ξ1 + γ2(ξ1))dx1

+2

∫ 1

0
ψ2(x1)θ(γ2(x1)

−γ2(ξ1))δ(x1 − ξ1 − (γ2(x1)− γ2(ξ1)))(γ′2(x1)− 1)dx1.

(3.14)

Let 1 − γ′2(x1) > 0 which is the relative derivation of x1 − ξ1 − γ2(x1)
with respect to x1. Note that x1 − ξ1 − γ2(x1) is the argument of Dirac
delta function appeared in (3.14). Therefore, x1−ξ1−γ2(x1) is a strictly
increasing function on [0, 1]. On the other hand we have

x1 − ξ1 − γ2(x1)|x1=0 = −ξ1 < 0 , x1 − ξ1 − γ2(x1)|x1=1 = 1− ξ1 > 0

Therefore this function has only one zero in [0, 1] which is denoted by
x1 = σ(ξ1).
From (3.14)-(3.15), by using the property of the Dirac’s delta function,
we obtain two necessary conditions

ψ0(ξ1) = ψ2(σ(ξ1))

ψ2(ξ1) = u1(ξ1 − γ2(ξ1), 0).

One can prove that the above two relations are equivalent and so we
obtain the unknown boundary γ2 as (3.13). �
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