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LINEAR PRESERVERS OF G-ROW AND G-COLUMN

MAJORIZATION ON Mn,m

A. ARMANDNEJAD∗, Z. MOHAMMADI AND F. AKBARZADEH

Communicated by Abbas Salemi Parizi

Abstract. Let A and B be n × m matrices. The matrix B is
said to be g-row majorized (respectively g-column majorized) by
A, denoted by B ≺row

g A (respectively B ≺column
g A), if every row

(respectively column) of B, is g-majorized by the corresponding row
(respectively column) of A. In this paper all kinds of g-majorization
are studied on Mn,m, and the possible structure of their linear pre-
servers will be found. Also all linear operators T : Mn,m →Mn,m

preserving (or strongly preserving) g-row or g-column majorization
will be characterized.

1. Introduction

An n× n matrix R (not necessarily nonnegative) is called g-row sto-
chastic if Re = e, where e = (1, 1, . . . , 1)t. A matrix D is called g-doubly
stochastic if both D and Dt are g-row stochastic matrices. The collec-
tion of all n×n g-row stochastic matrices, and n×n g-doubly stochastic
matrices are denoted by GRn and GDn respectively. Throughout the
paper, Mn,m is the set of all n × m matrices with entries in F (R or
C), and Mn := Mn,n. The set of all n × 1 column vectors is denoted
by Fn, and the set of all 1 × n row vectors is denoted by Fn. The
symbol Nk is used for the set {1, . . . , k}. The symbol ei is the row (or
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866 Armandnejad, Mohammadi and Akbarzadeh

column) vector with 1 as ith component and 0 elsewhere. The summa-
tion of all components of a vector x in Fn or Fn is denoted by tr(x).
The symbol [x1/x2/ . . . /xn] (resp. [x1 | x2 | . . . | xm]) is used for the
n×m matrix whose rows (resp. columns) are x1, x2, . . . , xn ∈ Fm (resp.
x1, x2, . . . , xm ∈ Fn). For a matrix X = [xij ] ∈ Mn,m, its average

(column) vector X = [x1/ . . . /xn] ∈ Fn is defined by the components
xi = m−1(xi1 + xi2 + · · ·+ xim), for i ∈ Nn. The letter J stands for the
(rank-1) square matrix all of whose entries are 1.

For A,B ∈ Mn,m, it is said that A is lgs-majorized (resp. rgs-
majorized) by B and denoted by A ≺lgs B (resp. A ≺rgs B) if there
exists an n × n (resp. m ×m) g-doubly stochastic matrix D such that
A = DB (resp. A = BD), see [4, 6].

Let A,B ∈ Mn,m. The matrix A is said to be lgw-majorized (resp.
rgw-majorized) by B and denoted by ≺lgw (resp. ≺rgw ) if there exists
an n × n (resp. m ×m) g-row stochastic matrix R such that A = RB
(resp. A = BR), for more details see [2, 5].

Let ≺ be a relation on Mn,m. A linear operator T : Mn,m → Mn,m

is said to be a linear preserver (resp. strong linear preserver) of ≺, if
X ≺ Y implies TX ≺ TY (resp. X ≺ Y if and only if TX ≺ TY ).

The linear preservers and strong linear preservers of lgs-majorization
are characterized in [6] as follows:

Proposition 1.1. [6, Theorem 3.3] Let T : Mn,m → Mn,m be a lin-
ear operator that preserves lgs-majorization. Then one of the following
statements holds:

(i) There exist A1, A2, . . . , Am ∈ Mn,m such that
TX =

∑m
j=1 tr(xj)Aj, where X = [x1 | . . . | xm];

(ii) There exist S ∈ Mm, a1, . . . , am ∈ Fm and invertible matrices
B1, B2, . . . , Bm ∈ GDn, such that TX = [B1Xa1 | . . . | BmXam] +
JXS.
Proposition 1.2. [6, Theorem 3.7] Let T : Mn,m →Mn,m be a linear
operator. Then T strongly preserves ≺lgs if and only if TX = AXR +
JXS, for some R,S ∈Mm and invertible matrix A ∈ GDn such that
R(R+ nS) is invertible.

In [2, 5], the authors proved that a linear operator T : Mn,m → Mn,m

strongly preserves lgw-majorization (resp. rgw-majorization) if and only
if TX = AXM (resp. TX = MXA), for some invertible matrices
M ∈Mm (resp. M ∈Mn) and A ∈ GRn (resp. A ∈ GRm).
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Linear preservers of g-row and g-column majorization 867

In the present paper, we find the possible structure of linear operators
that preserve lgw, rgw or rgs-majorization. Also, all linear preservers
and strong linear preservers of g-row and g-column majorization will
be characterized. To see some kinds of majorization and their linear
preservers we refer the readers to [1], [3] and [7]-[11].

2. Lgs-column (rgs-row) majorization on Mn,m

In this section we characterize all linear operators on Mn,m that pre-
serve or strongly preserve lgs-column (rgs-row) majorization.

Definition 2.1. Let A,B ∈Mn,m. It is said that B is lgs-column (resp.

rgs-row) majorized by A, written as B ≺columnlgs A (resp. B ≺rowrgs A), if

every column (resp. row) of B is lgs- (resp. rgs-) majorized by the
corresponding column (resp. row) of A.

We use the following statements to prove the main result of this sec-
tion.
Proposition 2.2. [6, Theorem 2.4] Let T : Fn → Fn be a linear opera-
tor. Then T preserves gs-majorization if and only if one of the following
statements holds:

(a) Tx = tr(x)a, for some a ∈ Fn;
(b) Tx = αDx + β Jx, for some α, β ∈ F and invertible matrix D ∈

GDn.
Proposition 2.3. [6, Lemma 3.1] Let A ∈ GDn be invertible. Then
the following conditions are equivalent:

(a) A = αI + βJ, for some α, β ∈ F;
(b) (Dx+ADy) ≺gs (x+Ay), for all D ∈ GDn and for all x, y ∈ Fn.

Proposition 2.4. [6, Lemma 3.2] Let T1, T2 : Fn → Fn satisfy T1(x) =
αAx + βJx and T2(x) = tr(x)a, for some α, β ∈ F, α 6= 0, invertible
matrix A ∈ GDn and a ∈ (Fn \ Span{e}). Then there exists a g-doubly
stochastic matrix D and a vector x ∈ Fn such that T1(Dx)+T2(Dx) ≺gs
T1(x) + T2(x).

Lemma 2.5. Let a ∈ Fm. The linear operator T : Mn,m → Mn,m

defined by TX = [Xa | . . . | Xa], preserves lgs-column majorization if
and only if a ∈ ∪mi=1Span{ei}.

Proof. If a ∈ ∪mi=1Span{ei}, it is easy to show that T preserves ≺columnlgs .

Conversely, let T preserve ≺columnlgs . Assume that a = (a1, . . . , am)t /∈
∪mi=1Span{ei}. Then there exist distinct i, j ∈ Nm such that ai, aj 6= 0.
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868 Armandnejad, Mohammadi and Akbarzadeh

Without loss of generality assume that a1, a2 6= 0. Put

X :=

(
−a2 −a1
a2 a1

)
⊕ 0, Y :=

(
a2 −a1
−a2 a1

)
⊕ 0 ∈Mn,m.

It is clear that X ≺columnlgs Y , so Xa ≺lgs Y a. But Y a = 0 and Xa 6= 0,
which is a contradiction. �

For every i, j ∈ Nm, consider the embedding Ej : Fm → Mn,m by
Ej(x) = xej and projection Ei : Mn,m → Fn by Ei(A) = Aei. It is easy
to show that for every linear operator T : Mn,m → Mn,m,

TX =

 m∑
j=1

T j1xj

∣∣∣∣ . . . ∣∣∣∣ m∑
j=1

T jmxj

 ,
where T ji = Ei ◦ T ◦ Ej and X = [x1 | . . . | xm]. If T preserves ≺columnlgs ,

it is clear that T ji : Fn → Fn preserves ≺lgs.
Now, we state the main theorem of this section.

Theorem 2.6. Let T : Mn,m → Mn,m be a linear operator. Then T
preserves lgs-column majorization if and only if there exist A1, . . . , Am ∈
Mn,m, b1, . . . , bm ∈ ∪mi=1Span{ei}, invertible matrices B1, . . . , Bm ∈
GDn, and S ∈ Mm such that for every i ∈ Nm, bi = 0 or A1ei =
· · · = Amei = 0 and for all X = [x1 | . . . | xm] ∈Mn,m,

(2.1) TX =
m∑
j=1

tr(xj)Aj + [B1Xb1 | . . . | BmXbm] + JXS.

Proof. First, assume that the condition (2.1) holds. Suppose X = [x1 |
. . . | xm], Y = [y1 | . . . | ym] ∈ Mn,m and X ≺columnlgs Y . Since for
every i ∈ Nm, bi = 0 or A1ei = · · · = Amei = 0, it is easy to see that
TXei ≺lgs TY ei and hence TX ≺columnlgs TY . Conversely, assume that

T preserves ≺columnlgs . For every i, j ∈ Nm, T ji : Fn → Fn preserves ≺lgs.
Then, each T ji is of the form (a) or (b) in Proposition 2.2. Let

I = {k ∈ Nm : ∃l ∈ Nm such that T lk is of the form (b) with αlk 6= 0}.

For every k ∈ I there exists l ∈ Nm such that T lkx = αlkBkx + βlkJx for

some invertible matrix Bk ∈ GDn and αlk 6= 0, βlk ∈ F.

We show that if k ∈ I, then T jk is of form (b) with same invertible
matrix Bk ∈ GDn, for every j ∈ Nm.
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Linear preservers of g-row and g-column majorization 869

Suppose k ∈ I, then there exist l ∈ Nn, αlk 6= 0, βlk ∈ F, invertible

matrix Bk ∈ GDn such that T lkx = αlkBkx + βlkJx. For every x, y ∈
Fn define X = xej + yel ∈ Mn,m. It is clear that DX ≺columnlgs X,

and hence TDX ≺columnlgs TX, for all D ∈ GDn. This implies that

T jkDx+ T lkDy ≺lgs T
j
kx+ T lky. Then by Propositions 2.3 and 2.4, there

exist αjk, β
j
k ∈ F such that T jkx = αjkBkx + βjkJx. For k ∈ I, set bk :=

(α1
k, . . . , α

m
k )t, sk := (β1k, . . . , β

m
k )t ∈ Fm and for k ∈ (Nm \ I) set bk =

sk := 0 ∈ Fm. Define S := [s1 | . . . | sm] ∈Mm.

If k /∈ I, then T jk is of form (a) for every j ∈ Nm and hence T jkx =

(trx)ajk, for some ajk ∈ Fn. For k ∈ I, put ajk = 0 and define Aj := [aj1 |
. . . | ajm] ∈Mn,m.

It is clear that for every i ∈ Nm, bi = 0 or A1ei = · · · = Amei = 0 and
by a straightforward calculation one may show that for any X = [x1 |
. . . | xm] ∈Mn,m,

TX =
m∑
j=1

tr(xj)Aj + [B1Xb1 | . . . | BmXbm] + JXS.

If bj /∈ ∪mi=1Span{ei} for some j ∈ Nm, then Lemma 3.7 implies that T

is not a linear preserver of ≺columnlgs which is a contradiction. Therefore

b1, . . . , bm ∈ ∪mi=1Span{ei}, as desired. �

The structure of strong linear preservers of lgs-column majorization
is characterized as follows:

Theorem 2.7. Let T : Mn,m → Mn,m be a linear operator. Then
T strongly preserves lgs-column majorization if and only if there exist
invertible matrices B1, . . . , Bm ∈ GDn, S ∈ Mm and, b1, . . . , bm ∈
∪mi=1Span{ei} such that D(D + nS) is invertible and

(2.2) TX = [B1Xb1 | . . . | BmXbm] + JXS,

where D = [b1 | . . . | bm].

Proof. The fact that the condition (2.2) is sufficient for T to be a strong
linear preserver of ≺columnlgs is easy to prove. So, we prove the necessity

of the conditions. Assume that T is a strong linear preserver of ≺columnlgs .
It can be easily seen that T is invertible. By Theorem 2.6, there exist
A1, . . . , Am ∈ Mn,m, b1, . . . , bm ∈ ∪mi=1Span{ei}, S ∈ Mm, and invert-
ible matrices B1, . . . , Bm ∈ GDn such that for all X = [x1 | . . . | xm] ∈
Mn,m, TX =

∑n
j=1 tr(xj)Aj + [B1Xb1 | . . . | BmXbm] + JXS and for
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870 Armandnejad, Mohammadi and Akbarzadeh

every i ∈ Nm, bi = 0 or A1ei = · · · = Amei = 0. We show that for
every j ∈ Nm, Aj = 0. Assume that there exists j ∈ Nm, such that
Aj 6= 0. Without loss of generality suppose that Aje1 6= 0, then b1 = 0.
Set V := Span{b2, . . . , bm}, so dimV 6 m − 1. It follows that there
exists 0 6= s ∈ V ⊥. Set X := [st/ − st/0/ . . . /0] ∈ Mn,m. Then X is
nonzero and TX = 0, which is a contradiction. Therefore Aj = 0, for
every j ∈ Nm.

Now, we prove (by contradiction) that D is invertible. Indeed, assume
that D is not invertible. Choose a nonzero s ∈ (Span{b1, . . . , bm})⊥ and
put X := [st/− st/0/ . . . /0] ∈Mn,m. Then X is nonzero and TX = 0,
which is a contradiction. Therefore D is invertible.

Finally, we show that D+nS is invertible. Assume, by contradiction,
that D + nS is not invertible. Choose a nonzero x ∈ Fm such that
(D + nS)x = 0 and put X := [x/ . . . /x] ∈ Mn,m. Then X is nonzero
and

TX = [B1Xb1 | . . . | BmXbm] + JXS = X(D + nS) = 0,

which is a contradiction. Therefore D + nS is invertible and the proof
is complete. �

Let T : Mn,m →Mn,m be a linear operator. Define τ : Mm,n →Mm,n

by τX = (TXt)t. It is easy to see that T is a (strong) linear preserver of
≺rowrgs if and only if τ is a (strong) linear preserver of ≺columnlgs . Combining
this fact and previous theorems, we have the following corollaries:

Corollary 2.8. Let T : Fn → Fn be a linear operator. Then T preserves
rgs-majorization if and only if one of the following statements holds:

(a) Tx = tr(x)a, for some a ∈ Fn;
(b) Tx = αxD + βxJ, for some α, β ∈ F and invertible matrix D ∈

GDn.

Corollary 2.9. Let T : Mn,m → Mn,m be a linear operator. Then
T preserves rgs-row majorization if and only if there exist A1, . . . , An ∈
Mn,m, b1, . . . , bn ∈ ∪ni=1Span{ei}, invertible matrices B1, . . . , Bn ∈ GDm,
and S ∈Mn such that for every i ∈ Nn, bi = 0 or eiA1 = · · · = eiAn = 0
and for all X = [x1/ . . . /xn] ∈Mn,m,

TX =

n∑
j=1

tr(xj)Aj + [b1XB1/ . . . /bnXBn] + SXJ.

Corollary 2.10. Let T : Mn,m → Mn,m be a linear operator. Then T
strongly preserves rgs-row majorization if and only if there exist
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B1, . . . , Bn ∈ GDm, S ∈ Mn and b1, . . . , bn ∈ ∪ni=1Span{ei} such that
D(D +mS) is invertible and

TX = [b1XB1/ . . . /bnXBn] + SXJ,

where D = [b1/ . . . /bn].

3. Rgw and lgw-majorization on Mn,m

In this section, we begin to study the structure of linear preservers
of rgw and lgw-majorization on Mn,m, and then the linear operators
T : Mn,m → Mn,m preserving or strongly preserving rgw-row (lgw-
column) majorization will be characterized.
In the following theorems we state some results from [2].
Proposition 3.1. [2, Theorem 2.3] Let T : Fm → Fm be a linear
operator. Then, T preserves ≺rgw if and only if one of the following
statements holds:

(i) Tx = αxB, for some α ∈ F and some invertible B ∈ GRn;
(ii) Tx = αxB, for some α ∈ F and some B ∈ GRn such that

{x : xB = 0} = {x : tr (x) = 0}.
Proposition 3.2. [2, Lemma 2.6] Let A ∈ Mn and α be a nonzero
scalar in F. Then A = γ I for some γ ∈ F if and only if we have

αxRA+ yR ≺rgw αxA+ y, ∀x, y ∈ Fm, ∀R ∈ GRm.

Lemma 3.3. Let A ∈ GRm be invertible and 0 6= α ∈ F. Define
T1 : Fm → Fm by T1x = αxA and suppose T2 : Fm → Fm is a linear
preserver of ≺rgw such that

T1xR+ T2yR ≺rgw T1x+ T2y,

for all x, y ∈ Fm and R ∈ GRm. Then there exists λ ∈ F such that
T2x = λxA.

Proof. Since T2 preserves ≺rgw, T2 is of form (i) or (ii) in Proposition
3.1. Assume that T2 is of form (ii), then T2x = tr(x)a for some nonzero
a ∈ Fm. Let x = − 1

αaA
−1, and set y := e1. Then we have

αxRA+ tr(yR)a ≺rgw αxA+ tr(y)a,

for all R ∈ GRm. It follows that

α(− 1

α
aA−1)RA+ tr(e1R)a ≺rgw α(− 1

α
aA−1)A+ tr(e1)a = −a+ a = 0.

So −aA−1RA+a = 0, for all R ∈ GRm. Thus aR = a, for all R ∈ GRm,
and hence a = 0, a contradiction. Therefore, T2x = βxA2, for some
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872 Armandnejad, Mohammadi and Akbarzadeh

β ∈ F and invertible matrix A2 ∈ GRm. Now, by Proposition 3.2,
T2x = λxA, for some λ ∈ F. �

For every i, j ∈ Nn consider the embedding Ej : Fm → Mn,m and
the projection Ei : Mn,m → Fm, where Ej(x) = ejx and Ei(A) = eiA.
It is easy to prove that for every linear operator T : Mn,m → Mn,m,

TX = T [x1/ · · · /xn]=

 n∑
j=1

T j
1xj/ · · · /

n∑
j=1

T j
nxj

, where xi is the ith row

of X and T ji = Ei ◦ T ◦ Ej . If T : Mn,m → Mn,m preserves rgw-

majorization, then its easy to see that T ji : Fm → Fm preserves rgw-
majorization.

Now, we find the possible structure of linear operators preserving
≺rgw on Mn,m.

Theorem 3.4. If a linear operator T : Mn,m → Mn,m preserves rgw-
majorization, then there exist A ∈Mn(Fm), b1, . . . , bn ∈ Fn, and invert-
ible matrices A1, . . . , An ∈ GRm, such that

TX = mAX + [b1XA1/ . . . /bnXAn], ∀X ∈Mn,m.

Proof. For every p ∈ Nn, one of the following cases holds:
Case 1: there exists q ∈ Nn such that T qpx = αxAp for some 0 6= α ∈ F

and invertible Ap ∈ GRm . We show that for all j ∈ Nn, T jpx = λjpxAp,

for some λjp ∈ F. For x, y ∈ Fm put X = epx + ejy. It is clear that
XR ≺rgw X, for all R ∈ GRm, therefore TXR ≺rgw TX, for all R ∈
GRm and hence,

T qpxR+ T jp yR ≺rgw T qpx+ T jp y, ∀x, y ∈ Fm,∀R ∈ GRm.

Use Lemma 3.3 to conclude that T jpx = λjpxAp, for some λjp ∈ F. Put

bp := (λ1p, . . . , λ
n
p ) ∈ Fn

and A(p) = 0 ∈ Fn(Fm).

Case 2: For every q ∈ Nn, T qp is of form (ii) in Proposition 3.1. Then
T qpx = tr(x)aqp for some aqp ∈ Fm. Put A(p) = [a1p . . . a

n
p ] ∈ Fn(Fm) and

bp = 0 ∈ Fm. Now, Let A = [A(1)/ . . . /A(n)]. Then
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Linear preservers of g-row and g-column majorization 873

TX = T [x1/ . . . /xn]

=

 n∑
j=1

T j1xj/ . . . /

n∑
j=1

T jnxj


= [b1XA1/ . . . /bnXAn] +mAX,

where A ∈Mn(Fm), b1, . . . , bn ∈ Fn, and A1, . . . , An ∈ GRm are invert-
ible matrices. �

Corollary 3.5. Let {b1, . . . , bn} ⊂ Fn and dim(Span{b1, . . . ,bn}) ≥ 2.
Assume that A1, . . . , An ∈ GRm are invertible and define T : Mn,m →
Mn,m by TX = [b1XA1/ . . . /bnXAn]. If T preserves ≺rgw, then there

exist B ∈Mm and invertible A ∈ GRm such that TX = BXA.

Proof. Without loss of generality we can assume that {b1, b2} is a lin-
early independent set. Let X ∈ Mn,m, R ∈ GRm be arbitrary. Then
XR ≺rgw X, and hence TXR ≺rgw TX. It follows that

[b1XRA1/ . . . /bnXRAn] ≺rgw [b1XA1/ . . . /bnXAn]
⇒ b1XRA1 + b2XRA2 ≺rgw b1XA1 + b2XA2

⇒ b1XR+ b2XR(A2A
−1
1 ) ≺rgw b1X + b2X(A2A

−1
1 ).

Since {b1, b2} is linearly independent, for every x, y ∈ Fn, there exists
Bx,y ∈ Mn,m such that b1Bx,y = x and b2Bx,y = y. Put X = Bx,y in
the above relation. Thus,

xR+ yR(A2A
−1
1 ) ≺rgw x+ y(A2A

−1
1 ),∀R ∈ GRm,∀x, y ∈ Fm.

Then by Proposition 3.2, (A2A
−1
1 ) = α I and hence A2 = αA1, for some

0 6= α ∈ F. For every i ≥ 3, if bi = 0 we can choose Ai = A1; if bi 6= 0
then {b1, bi} or {b2, bi} is linearly independent. By the same argument as
above, we conclude that Ai = γiA1, for some 0 6= γi ∈ F, or Ai = λiA2,
for some 0 6= λi ∈ F.
Define A = A1. Then for every i ≥ 2, Ai = αiA, for some αi ∈ F and
we get

TX = [b1XA/(r2b2)XA/ . . . /(rnbn)XA] = BXA,

where B = [b1 | r2b2/ . . . /rnbn], for some r2, . . . , rm ∈ F. �

If A ∈ GRm is invertible and B ∈ Mn, it is easy to see that X 7→
BXA is a linear preserver of ≺rgw. But the following example shows
that there exist linear preservers of ≺rgw which are not of this form.
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874 Armandnejad, Mohammadi and Akbarzadeh

Example 3.6. Let T : M2 → M2 be such that

TX =

(
x11 x12

−x11 − x12 x11 + x22

)
where X = [xij ].

We show that T preserves ≺rgw but T is not of the form X 7→MXA.

Let X =

(
x11 x12
x21 x22

)
and Y =

(
y11 y12
y21 y22

)
, and suppose that

X ≺rgw Y . If y11 + y12 = 0, so x11 + x12 = 0, and TX ≺rgw TY .
Let y11 + y12 6= 0. Without loss of generality assume that y11 + y12 = 1.
Since X ≺rgw Y , there exists R ∈ GR2, such that X = Y R. Let

R =

(
a 1− a
b 1− b

)
and y = (λ, 1 − λ). Put S :=

(
α 1− α

α− 1 2− α

)
,

where α = λ(a− b) + b− λ+ 1. Therefore S ∈ GR2 and TY S = TX.
So TX ≺rgw TY . By a straightforward calculation one may show that
T is not of the form X 7→ BXA.

The proof of the following lemma is similar to the proof of Lemma
2.5.

Lemma 3.7. Let a ∈ Fn. The linear operator T : Mn,m → Mn,m de-
fined by TX = [aX/ . . . /aX] preserves ≺rowrgw if and only if a ∈ ∪ni=1Span{ei}.

The structure of linear preservers and strong linear preservers of rgw-
row majorization is characterized as follows:

Theorem 3.8. Let T : Mn,m → Mn,m be a linear operator. Then T
preserves rgw-row majorization if and only if there exist A ∈ Mn(F),
b1, . . . , bn ∈ ∪ni=1Span{ei}, and invertible matrices A1, . . . , An ∈ GRm

such that for every i ∈ Nn, bi = 0 or A(i) = 0, where A = [A(1)/ . . . /A(n)]
and

(3.1) TX = mAX + [b1XA1/ . . . /bnXAn] .

Proof. The fact that the condition (3.1) is sufficient for T to be a linear
preserver of ≺rowrgw is easy to prove. So, we prove the necessity of the
condition. Therefore, assume that T preserves ≺rowrgw. For every i, j ∈ Nn,

T ji : Fm → Fm preserves ≺rgw. Then, each T ji is of the form (i) or (ii)
in Proposition 3.1. Let

I = {k ∈ Nn : ∃l ∈ Nn such that T lk is of the form (ii) with αlk 6= 0}.

We show that if k ∈ I, then T jk is of form (ii) of Proposition 3.1, with
the same invertible matrix Ak ∈ GRm, for every j ∈ Nn. Suppose k ∈ I,
then there exist l ∈ Nn, 0 6= αlk ∈ F and invertible matrix Ak ∈ GRm
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such that T lkx = αlkxAk. Set X = elx+ ejy. It is clear that XR ≺rowrgw X
and hence TXR ≺rowrgw TX for all R ∈ GRm. This implies that

T lkxR+ T jkyR ≺rgw T
l
kx+ T jky, ∀x, y ∈ Fm, ∀R ∈ GRm.

So by Proposition 3.2, there exists αjk ∈ F such that T jkx = αjkxAk. Set
bk := (α1

k, . . . , α
n
k) if k ∈ I, and bk = 0 if k /∈ I.

If k /∈ I, then T jk is of form (i) of Proposition 3.1, for every j ∈ Nn
and hence T jkx = majkx where ajk ∈ Fm. If k ∈ I, put ajk = 0 for every
j ∈ Nn. For k ∈ Nn define A(k) = [a1k . . . a

n
k ].

It is clear that for every i ∈ Nn, bi = 0 or A(i) = 0. Let A =

[A(1)/ . . . /A(n)]. Then TX = [
∑n

j=1 T
j
1xj/ . . . /

∑n
j=1 T

j
nxj ] = mAX +

[b1XA1/ . . . /bnXAn]. To complete the proof we must apply Lemma 3.7
to conclude that bi ∈ Span{ei} for every i ∈ Nn.

�

Theorem 3.9. A linear operator T : Mn,m →Mn,m is a strong linear
preserver of rgw-row majorization if and only if there exist invertible
matrices A1, . . . , An ∈ GRm and b1, . . . , bn ∈ ∪ni=1Span{ei} such that
B := [b1/ . . . /bn] is invertible and

TX = [b1XA1/ . . . /bnXAn].

Proof. Assume that there exists a k ∈ (Nn\I). Without loss of generality
let 1 ∈ (Nn \ I), so b1 = 0. Set V := Span{b2, . . . , bn}, then dimV 6
n − 1. It follows that dimV ⊥ ≥ 1 and there exists 0 6= s ∈ V ⊥. Set
X := [s | −s | 0 | . . . | 0]. Therefore X is nonzero and for every
i ∈ Nn, biX = 0 so TX = 0, which is a contradiction. Then I = Nn and
TX = [b1XA1/ . . . /bnXAn].
Now, we show that B is invertible. If B is not invertible, set V :=
Span{b1, . . . , bn}. So dimV 6 n − 1. Therefore dimV ⊥ ≥ 1 and there
exists 0 6= s ∈ V ⊥. Set X := [s | −s | 0 | . . . | 0]. Then X is nonzero and
TX = 0, which is a contradiction. �

In the remainder of this section we characterize linear operators that
preserve or strongly preserve lgw or lgw-column majorization. We begin
with a theorem of [5].
Theorem 3.10. [5, Theorem 2.4] A linear operator T : Fn → Fn
preserves lgw-majorization if and only if one of the following assertions
holds:

(i) There exists R ∈ Mn such that Ker(R) = Span{e}, e /∈ Im(R),
and Tx = Rx for every x ∈ Fn;
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876 Armandnejad, Mohammadi and Akbarzadeh

(ii) There exist an invertible matrix R ∈ GRn and α ∈ F such that
Tx = αRx for every x ∈ Fn.

Corollary 3.11. A linear operator T : Fn → Fn preserves
lgw-majorization if and only if one of the following assertions holds:
(i) there exists an invertible matrix D ∈ GRn, such that

Tx =

(
D − 1

n
J

)
x for every x ∈ Fn;

(ii) There exist an invertible matrix R ∈ GRn and α ∈ F such that
Tx = αRx for every x ∈ Fn.

Proof. Let R ∈ Mn. We show that Ker(R) = Span{e} and e /∈ Im(R)
if and only if R = (D − 1

nJ) for some invertible matrix D ∈ GRn.

First, Let R = (D − 1
nJ) for some invertible matrix D ∈ GRn. It

is clear that Span{e} ⊂ Ker(R). If x ∈ Ker(R), then Dx = 1
ntr(x)e

and x ∈ Span{e}. Therefore Ker(R) = Span{e}. Assume that e ∈
Im(R), then (D − 1

nJ)x = e for some x ∈ Rn. It implies that Dx =(
1

n
tr(x) + 1

)
e and hence x ∈ Span{e}, which is a contradiction. So

e /∈ Im(R).

Conversely. Let Ker(R) = Span{e} and e /∈ Im(R). Put D := R+
1

n
J.

Since Re = 0, D ∈ GRn. It is enough to show that D is invertible. If

Dx = 0 then Rx =

(
− 1

n
tr(x)

)
e. If tr(x) 6= 0, then e ∈ Im(R) which

is a contradiction, so tr(x) = 0 and Rx = 0. Therefore x ∈ Span{e},
which implies that x = 0. �

Lemma 3.12. Let A ∈ GRn be invertible. Then the following condi-
tions are equivalent:

(a) A = α I + βJ, for some α, β ∈ R;
(b) Dx+ADy ≺lgw x+Ay, for all D ∈ GDn and for all x, y ∈ Rn.

Proof. (a⇒ b) If A = αI + βJ, it is easy to show that Dx+ ADy ≺lgw
x+Ay, for all D ∈ GDn and for all x, y ∈ Fn.

(b⇒ a) The matrix A is invertible, so condition (b) can be written as
follows:

Dx+ADA−1y ≺lgw x+ y, ∀D ∈ GDn, ∀x, y ∈ Fn.

Put x = e − ei and y = ei in the above relation. Thus, [e − (D −
ADA−1)ei] ≺lgw e, for every i ∈ Nn. So (D − ADA−1)ei = 0, for every
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i ∈ Nn, and DA = AD, for every D ∈ GDn. Therefore, A = αI + β J,
for some α, β ∈ F.

�

Theorem 3.13. Let T : Mn,m → Mn,m be a linear operator that pre-
serves lgw-majorization. Then, there exist invertible matrices A1, . . . , Am
∈ GRn, b1, . . . , bm ∈ Fm and S ∈Mm such that

TX = [A1Xb1 | . . . | AmXbm] + JXS.

Proof. Suppose that T preserves lgw-majorization. It is easy to prove

that T ji : Fn → Fn preserves lgw-majorization. Then by Corollary 3.11,

for every i, j ∈ Nm, T ji x = (αjiA
j
i−

1
nγ

j
i J)x, for some invertible matrices

Aji ∈ GRn, αji ∈ F and γji ∈ {0, 1}. Then

TX = T [x1| . . . |xm]

=

 m∑
j=1

T j1xj

∣∣∣∣ . . . ∣∣∣∣ m∑
j=1

T jmxj


=

 m∑
j=1

(αj1A
j
1 −

1

n
γj1J)xj

∣∣∣∣ . . . ∣∣∣∣ m∑
j=1

(αjmA
j
m −

1

n
γjmJ)xj

 .
For every x, y ∈ Fn, define X = Ej(x) + Eq(y) ∈ Mn,m. If αqi = 0 for
every i ∈ Nm, then put Aqi = I. Now, suppose that there exists some
p ∈ Nm such that αqp 6= 0. Then for every D ∈ GDn, DX ≺lgw X, and

hence [αq1A
q
1Dx+ αj1A

j
1Dy| . . . |α

q
mA

q
mDx+ αjmA

j
mDy] ≺lgw

[αq1A
q
1x+ αj1A

j
1y| . . . |α

q
mA

q
mx+ αjmA

j
my]

⇒ αqpA
q
pDx+ αjpA

j
pDy ≺lgw αqpAqpx+ αjpA

j
py

⇒ Dx+ (Aqp)−1A
j
pD(

αj
p

αq
p
y) ≺lgw x+ (Aqp)−1A

j
p(
αj
p

αq
p
y).

So by Lemma 3.12, (Aqp)−1A
j
p = λjpI + βjpJ. Set Ap := Aqp, then

Ajp = λjpAp + βjpJ. Therefore for some µji ∈ F we have

TX =

A1

m∑
j=1

µj1xj

∣∣∣∣ . . . ∣∣∣∣Ap m∑
j=1

µjpxj

∣∣∣∣ . . . ∣∣∣∣Am m∑
j=1

µjmxj

+ JXS,
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where

S =


− 1

n
γ11 + β11 . . . − 1

n
γ1m + β1m

...
...

− 1

n
γm1 + βm1 . . . − 1

n
γmm + βmm

 .

Now, For every i ∈ Nm, define

bi =


µ1i
µ2i
...
µmi

 .

Then,
TX = [A1Xb1 | . . . | AmXbm] + JXS.

�

Corollary 3.14. Let T satisfy the condition of Theorem 3.13 and let
rank[b1 | . . . | bm] ≥ 2. Then TX = AXR+JXS, for some R,S ∈Mm,
and invertible matrix A ∈ GRn.

Proof. Without loss of generality we can assume that {b1, b2} is a lin-
early independent set. Let X ∈ Mn,m, D ∈ GDn be arbitrary. Then
DX ≺lgw X and hence, TDX ≺lgw TX. It follows that

[A1DXb1 | . . . | AmDXbm] ≺lgw [A1Xb1 | . . . | AmXbm]
⇒ A1DXb1 +A2DXb2 ≺lgw A1Xb1 +A2Xb2
⇒ DXb1 + (A−11 A2)DXb2 ≺lgw Xb1 + (A−11 A2)Xb2.
Since {b1, b2} is linearly independent, for every x, y ∈ Rn, there exists

Bx,y ∈ Mn,m such that Bx,yb1 = x and Bx,yb2 = y. Put X := Bx,y in
the above relation. Thus,

DBx,yb1 + (A−11 A2)DBx,yb2 ≺lgw Bx,yb1 + (A−11 A2)Bx,yb2 ⇒

Dx+ (A−11 A2)Dy ≺lgw x+ (A−11 A2)y,∀D ∈ GDn.

Then by Lemma 3.12, A−11 A2 = α I + βJ and hence A2 = αA1 + β J,
for some α, β ∈ F, α 6= 0. For every i ≥ 3, if bi = 0 we can choose
Ai = A1. If bi 6= 0 then {b1, bi} or {b2, bi} is linearly independent. Then
by the same argument as above, Ai = γiA1 + δiJ, for some γi, δi ∈ F,
γi 6= 0, or Ai = λiA2 + µiJ , for some λi, µi ∈ F, λi 6= 0.
Define A := A1. Then for every i ≥ 2, Ai = αiA2 + βiJ, for some
αi, βi ∈ F and hence

TX = [AXb1 | AX(r2b2) | . . . | AX(rmbm)] + JXS = AXR+ JXS,
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where, R = [b1 | r2b2 | . . . | rmbm], for some r2, . . . , rm ∈ F and S is as
in Theorem 3.13. �

Lemma 3.15. Let b1, . . . , bm ∈ Fm. The linear operator T : Mn,m →
Mn,m defined by TX = [Xb1| . . . | Xbm] preserves ≺columnlgw if and only if

bj ∈ ∪ni=1Span{ei}, for every j ∈ Nm.

The following theorems give the structure of linear and strong linear
preserver of ≺columnlgw on Mn,m. Since the proofs are similar to the proofs
of Theorems 2.6 and 2.7, we leave the proofs to the readers.

Theorem 3.16. Let T : Mn,m → Mn,m be a linear operator. Then T

preserves ≺columnlgw if and only if there exist invertible matrices A1, . . . , Am
∈ GRn, b1, . . . , bm ∈ ∪mi=1Span{ei} and D ∈ Mm such that for every
i ∈ Nn, bi = 0 or A1ei = . . . = Amei = 0 and for all X = [x1 | . . . |
xn] ∈Mn,m, TX = [A1Xb1 | . . . | AmXbm] + JXD.

Theorem 3.17. Let T : Mn,m → Mn,m be a linear operator. Then
T strongly preserves lgw-column majorization if and only if there exist
invertible matrices A1, . . . , Am ∈ GRn and b1, . . . , bm ∈ ∪mi=1Span{ei}
such that B := [b1 | . . . | bm] is invertible and

TX = [A1Xb1 | . . . | AnXbm].
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