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A DEGREE BOUND FOR THE GRAVER BASIS OF

NON-SATURATED LATTICES
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Abstract. Let L be a lattice in Zn of dimension m. We prove
that the total degree of any Graver element of L is not greater than
m(n−m+1)MD, where the integer M is defined by the set of cir-
cuits of L, and the integer D is defined by the saturation of L. The
case M = 1 occurs precisely when L is saturated, and in this case
the bound is a reformulation of a well-known bound given by several
authors. As a corollary, we show that the Castelnuovo-Mumford
regularity of the corresponding lattice ideal IL is not greater than
1
2
m(n− 1)(n−m+ 1)MD.

1. Introduction

Let k be a field, R = k[x] := k[x1, . . . , xn] the polynomial ring in n
indeterminates, and L a lattice, i.e. a Z-module, in Zn. Each monomial
xu := xu1

1 · · ·xun
n in R can be identified with vector u = (u1, . . . , un) ∈

Nn where N stands for the set of non-negative integers. For each vector
u := (u1, . . . , un) ∈ Zn, the set supp(u) := {i | ui ̸= 0} is called the
support of u. Every vector u ∈ Zn can be written uniquely as u =
u+ − u− where u+ and u− are nonnegative and have disjoint supports.

For the lattice L, the binomial ideal IL := ⟨xu+ − xu− | u ∈ L⟩ is the
corresponding lattice ideal in R.
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894 Sabzrou

An element u ∈ L is called primitive if there exists no other element
v ∈ L \ {0,u} such that v+ ≤ u+, and v− ≤ u− where ≤ is the
usual coordinatewise order on Zn. The set of all primitive elements of
L is called the Graver basis of L and is denoted by GrL. Since the

elements u ∈ L correspond to the pure binomials xu+ − xu− ∈ IL, we
can rephrase this definition in terms of pure binomials as follows. A

binomial xu+ − xu− ∈ IL is called primitive if there exists no other

binomial xv+ − xv− ∈ IL such that xv+
divides xu+

and xv−
divides

xu−
. The set of all primitive binomials in IL is again called the Graver

basis of IL and is denoted by GrL.
Graver bases first appeared as a universal test set for integer pro-

gramming problems [5]. Since then, they have been utilized for count-
ing lattice points of polyhedra, finding the Hilbert basis of a given cone,
they are related to the transportation problem and the knapsack prob-
lem [8]. They also contain other important finite bases in L: lattice basis
⊆ Markov basis ⊆ Gröbner basis ⊆ universal Gröbner basis ⊆ Graver
basis, where the definitions of the undefined concepts can be found in [4,
Section 1.3].

When L is saturated, there is a well-known bound on the total degree
of the Graver elements in IL. This bound was obtained by many different
people from very diverse areas [2, 3, 7, 9]. In this paper we generalize
the version given in [9, Theorem 4.7] to the non-saturated lattices. In
fact, for a lattice L in Zn of dimension m, we prove that the total degree
of any Graver element of L is not greater than m(n−m+1)MD, where
M and D are integer constants defined by the set of circuits of L, and

by a defining matrix of the lattice L̃, the saturation of L, respectively
(cf. Theorem 2.10). As shown in Theorem 2.8 (cf. Remark 2.9), the
integers D and M are basis-independent in the sense that choosing a

different basis for L̃ (resp. L) will result in the same D (resp. M). As a
corollary, we will show that the Castelnuovo-Mumford regularity of the
ideal IL is not greater than 1

2m(n−1)(n−m+1)MD (cf. Corollary 2.11).

1.1. Notation and Conventions. Let m and n be two positive inte-
gers. We denote by In the identity matrix of size n. For an integer n×m
matrix B, we denote by C(B) and D(B), the greatest common divisor
and the maximum of the absolute values of all maximal minors of B,
respectively. The integer C(B) is called the content of the matrix B. If
B is over a field, and 1 ≤ i1 < · · · < is ≤ n and 1 ≤ j1 < · · · < jt ≤ m
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A degree bound for the Graver basis 895

are arbitrary integer sequences, we denote by B[i1,...,is|j1,...,jt] the subma-
trix of B whose rows and columns correspond to i1, . . . , is and j1, . . . , jt,
respectively. The submatrix of B obtained by deleting the rows and
columns corresponding to i1, . . . , is and j1, . . . , jt, respectively, will be
denoted by B(i1,...,is|j1,...,jt).

2. The main result

Let L be a lattice in Zn of dimension m. An integer n × m matrix
B of rank m whose columns generate L as a lattice, is called a defining
matrix for L. Such a matrix is of course not unique, but one can see that
it is unique up to the action of the general linear group GLm(Z). For

the lattice L, the lattice L̃ := (L⊗Z Q) ∩ Zn is called the saturation of

L. In fact, L̃ is the set of all u ∈ Zn for which ru ∈ L for some positive

integer r. In general, we have L̃ ⊇ L, and if the equality occurs, we say
that L is saturated.

Proposition 2.1. Let L be a lattice in Zn of dimension m, and B a
defining matrix of L. The following conditions are equivalent.

(1) L is saurated.
(2) The abelian group Zn/L is torsion free.
(3) There exists an integer (n − m) × n matrix A such that L =

kerZ(A).
(4) C(B), the content of B, equals 1.

Proof. (1) ⇔ (2), (3) ⇒ (1): Trivial.
(1) ⇒ (3): Since Z is a PID, and Zn is a free Z-module, there

exist a basis {u1, . . . ,un} for Zn, and integers c1, . . . , cm such that
{c1u1, . . . , cmum} is a basis for L. Since L is saturated, ciui ∈ L implies
that ui ∈ L for i = 1, . . . ,m. It follows that {um+1 + L, . . . ,un + L} is
a basis for Zn/L, and so Zn/L ≃ Zn−m, as required.

(1) ⇔ (4): [8, Corollary 4.1c]. □

Definition 2.2. Let L be a lattice in Zn. A non-zero element u ∈ L is
said to be a circuit if the support of u is minimal with respect to inclusion
and 1

du ̸∈ L for any positive integer d ̸= 1.

Remark 2.3. Definition 2.2 agrees with the original definition of a cir-
cuit where the lattice L is assumed to be saturated. Indeed, if L is sat-
urated, then a non-zero element u ∈ L is circuit if supp(u) is minimal,
and the coordinates of u are relatively prime.
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Proposition 2.4. There is a one to one correspondence between the

circuits of L and those of L̃.

Proof. Let v be a circuit of L. Since L ⊆ L̃, and L̃ is saturated, then
1

gcd(v)v ∈ L̃. On the contrary suppose that 1
gcd(v)v is not a circuit

in L̃, then there exists v′ ∈ L̃ such that supp(v′) ⫋ supp( 1
gcd(v)v).

Since v′ ∈ L̃, there exits a positive integer m such that mv′ ∈ L and
supp(mv′) = supp(v′) ⫋ supp( 1

gcd(v)v) = supp(v). This contradicts the

assumption that v is a circuit in L.

Conversely, if v ∈ L̃ is circuit, and m is the smallest positive integer
such that mv ∈ L, then mv is circuit in L because otherwise there

exists v′ ∈ L ⊆ L̃ such that supp(v′) ⫋ supp(mv) = supp(v) which is
impossible. □

Remark 2.5. Let L be a lattice in Zn. By Proposition 2.4, and [9,
Lemma 4.9], the set of all circuits of L is finite. One of the main reasons
that the finite set of circuits is useful, is Proposition 2.6 below, which
shows that this set is a special generating set of L. Here we need to
recall that a vector u ∈ L is conformal to a vector v ∈ L if supp(u+) ⊆
supp(v+) and supp(u−) ⊆ supp(v−).

Proposition 2.6. Let L be a lattice in Zn of dimension m. Then
for every vector v ∈ L, there exist non-negative rational coefficients
λ1, . . . , λm, and circuits v1, . . . ,vm in L such that v = λ1v1+· · ·+λmvm,
and each vi is conformal to v. If in addition v is primitive, then λi ≤ 1
for each i.

Proof. Since v ∈ L ⊆ L̃, it follows from [9, Lemma 4.10] that there exist

non-negative rational coefficients λ′
1, . . . , λ

′
m and circuits v′

1, . . . ,v
′
m ∈ L̃

such that v = λ′
1v

′
1+· · ·+λ′

mv′
m and each v′

i is conformal to v. Let vi :=
miv

′
i where mi is the smallest positive integer such that miv

′
i ∈ L, and

λi := λ′
i/mi. Then by Proposition 2.4, vi is a circuit of L, and we have

v = λ1v1+ · · ·+λmvm as requested. The fact that each vi is conformal
to v implies that v+ = λ1v

+
1 +· · ·+λmv+

m, and v− = λ1v
−
1 +· · ·+λmv−

m.
Suppose the contrary that λi > 1 for some i. Then λi = k + λ′

i where
k ≥ 1 is an integer and 0 ≤ λ′

i ≤ 1. Therefore v+ − kv+
i and v− − kv−

i

are non-negative vectors. Hence v+
i ≤ v+ and v−

i ≤ v−, contradicting
the fact that v is primitive. □
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The next elementary lemma is a folklore result in linear algebra. We
present a proof for it for the convenience of the reader.

Lemma 2.7. Let M be a n× n matrix over a field partitioned as

M =

[
Id | C

−CT | In−d

]
where C is a d× (n− d) matrix, and CT is the transpose of C. Then

detM(1,...,d|j1,...,jd) = (−1)1+···+d+j1+···+jd detM [1,...,d|j1,...,jd].

Proof. We consider the submatrix N := M [1,...,d|j1,...,jd] of M , and as-
sume that 1 ≤ j1 < · · · < jℓ ≤ d < jℓ+1 < · · · < jd ≤ n. Let {j′1, . . . , j′ℓ}
be a subset of {j1, . . . , jd} such that j′1 < · · · < j′ℓ. If (j1, . . . , jℓ) ̸=
(j′1, . . . , j

′
ℓ), then one of the columns of the matrix N(j1,...,jℓ|j′1,...,j′ℓ) is a

part of a column of N indexed by one of j1 . . . , jℓ, and is zero. Hence,
in this case, we have detN(j1,...,jℓ|j′1,...,j′ℓ) = 0. On the other hand, if
(j1, . . . , jℓ) = (j′1, . . . , j

′
ℓ), then detN [j1,...,jℓ|j′1,...,j′ℓ] = det Iℓ = 1, and

N(j1,...,jℓ|j′1,...,j′ℓ) = M [σ1|σ2] where σ1 := {1, . . . , d} \ {j1, . . . , jℓ} and
σ2 := {jℓ+1, . . . , jd}. Thus using the Laplace expansion for the matrix
N with respect to the rows indexed by j1, . . . , jℓ, we have

detM [1,...,d|j1,...,jd] = detN = (−1)1+···+ℓ+j1+···+jℓ detM [σ1|σ2].
Now let N ′ := M(1,...,d|j1,...,jd), and {j′1, . . . , j′d−ℓ} be a subset of

{1, . . . , n} such that j′1 < · · · < j′d−ℓ and j′i ̸∈ {j1, . . . , jd}. If the columns
of N ′ indexed by j′1, . . . , j

′
d−ℓ are not the first d− ℓ columns of N ′, then

the matrix N ′[jℓ+1−d,...,jd−d|j′1,...,j′d−ℓ] has at least one zero column which
implies detN ′[jℓ+1−d,...,jd−d|j′1,...,j′d−ℓ] = 0. On the other hand, if the
columns of N ′ indexed by j′1, . . . , j

′
d−ℓ are the first d− ℓ columns of N ′,

then we have detN ′(jℓ+1−d,...,jd−d|j′1,...,j′d−ℓ) = 1 and

detN ′[jℓ+1−d,...,jd−d|j′1,...,j′d−ℓ] = detN ′[jℓ+1−d,...,jd−d|1,...,d−ℓ].

Thus the Laplace expansion for the matrix N ′ with respect to the rows
jℓ+1−d, . . . , jd−d implies detN ′ = (−1)(jℓ+1−d)+···+(jd−d)+1···+(d−ℓ) detP
where P = −CT [jℓ+1−d,...,jd−d|{1,...,d}\{j1,...,jℓ}] = −M [σ1|σ2]T . Therefore
we have

detN ′ = (−1)(jℓ+1−d)+···+(jd−d)+1···+(d−ℓ)(−1)d−ℓ detM [σ1|σ2]
= (−1)jℓ+1+···+jd+d(d−ℓ)+1+···+(d−ℓ)+(d−ℓ) detM [σ1|σ2]
= (−1)(j1+···+jd)+(1+···+d)+(j1+···+jℓ)+(1+···+ℓ) detM [σ1|σ2]
= (−1)j1+···+jd+1+···+d detN

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


898 Sabzrou

where the second equality holds because (−1)−d(d−ℓ) = (−1)d(d−ℓ), and
the third equality holds because the sum of the exponents of (−1) on
both sides of the equality is even. □

Theorem 2.8. Let m,n be two integers with 0 < m < n, B an integer
n × m matrix with rank(B) = m, and A an integer d × n matrix with

d := rank(A) = n −m such that the sequence 0 −→ Zm B−→ Zn A−→ Zd

of abelian groups is exact. Let σ := {j1, . . . , jd} be a subset of {1, . . . , n}
with j1 < · · · < jd, and σ̄ be its complement. Then

detA[1,...,d|σ] = (−1)1+···+d+j1+···+jdC(A) detB[σ̄|1,...,m].
Consequently, D(A) = C(A)D(B), and if B′ is another matrix with the
same property as B, then C(B) = C(B′) and D(B) = D(B′).

Proof. We consider the n× n partitioned matrix

M =

[
A

BT

]
over the field of rational numbers. Since the matrix BT is full row
rank, there exists an integer sequence 1 ≤ i1 < · · · < id ≤ n such
that detM(1,...,d|i1,...,id) ̸= 0. Without loss of generality, we assume
that (i1, . . . , id) = (1, . . . , d). Let α := detM(1,...,d|1,...,d), and β :=
detM [1,...,d|1,...,d]. For any sequence 1 ≤ j1 < · · · < jd ≤ n, we claim
that

detM [1,...,d|j1,...,jd] = (−1)1+···+d+j1+···+jd
β

α
detM(1,...,d|j1,...,jd).

To prove the claim, we note that the equality remains unchanged when
we apply the elementary row operations to the first d rows or the second
n − d rows. Note that, for example, permuting two of the first d rows
changes the sign of β as well as detM [1,...,d|j1,...,jd]. Hence using the
hypotheses on the matrices A and B, we may assume that

M =

[
Id | C

−CT | In−d

]
.

Therefore the claim follows from Lemma 2.7. Now let γ := gcd(α, β).
By the claim α/γ divides detM(1,...,d|j1,...,jd) for all sequences 1 ≤ j1 <
· · · < jd ≤ n. Since the lattice L = kerZ(A) = ImZ(B) is saturated, it
follows from Proposition 2.1 that α/γ = 1 which implies that β = αβ′

for some integer β′. Therefore

detM [1,...,d|j1,...,jd] = (−1)1+···+d+j1+···+jdβ′ detM(1,...,d|j1,...,jd).
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A degree bound for the Graver basis 899

Since gcd(M(1,...,d|j1,...,jd) | 1≤j1<···<jd≤n) = 1, we conclude β′ = C(A).
□

Remark 2.9. Let L be a lattice in Zn of dimension m, and B a defining

matrix of L̃. Then by Theorem 2.8, the integer D(B) does not depend

on B and hence we can set D(L̃) := D(B). Furthermore, if L is satu-
rated, we may assume that L = kerZ(A) for some integer (n − m) × n
matrix A, by Proposition 2.1. We may also assume that C(A) = 1,
by [6, Propositions 1.1 and 1.2]. Hence, in this case, D(L) = D(A), by
Theorem 2.8.

Theorem 2.10. Let L be a lattice in Zn of dimension m, M the max-
imum of the values gcd(v) where v runs over the set of circuits of L,

and D := D(L̃). Then the total degree of any Graver element of L is
less than or equal to m(n−m+1)MD. Furthermore, M = 1 if and only
if L is saturated.

Proof. Let v be a circuit in L. Then by Proposition 2.4, v = gcd(v)v′

where v′ is a circuit of L̃. Therefore, ∥v∥1 = gcd(v)∥v′∥1 where ∥v∥1 is
the sum of the absolute values of coordinates of v. Then

∥v∥1 ≤ gcd(v)(n−m+ 1)D ≤ M(n−m+ 1)D

where the first inequality holds by Remark 2.9, and [9, Lemma 4.8,
4.9]. Let v ∈ L be a Graver element, i.e. a primitive vector of L. By
Theorem 2.6, there exist non-negative rational coefficients λ1, . . . , λm,
and circuits v1, . . . ,vm in L such that v = λ1v1 + · · · + λmvm and
λi ≤ 1. Therefore

∥v∥1 ≤
m∑
i=1

λi∥vi∥1 ≤
m∑
i=1

∥vi∥1 ≤ m(n−m+ 1)MD.

Since the degree of v or equivalently the degree of xv+ − xv−
is equal

to max{∥v+∥1, ∥v−∥1}, the first part follows.
To prove the last part, we note that if M = 1, then by Proposition 2.4,

the sets of circuits of L and L̃ coincide. Hence by Proposition 2.6, we

have L = L̃, as required. The converse is also obvious. □

Let I be a homogeneous ideal in the polynomial ring R = k[x1, . . . , xn]
graded with deg(xi) = 1 for i = 1, . . . , n. Then the ith Betti number
of the ideal I in degree j is defined to be the vector space dimension
dimkTori(k, I)j and is denoted by βi,j(I). The integer reg(I) := max{j−
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i | βi,j(I) ̸= 0} is called the Castelnuovo-Mumford regularity of I, and
is an important measure of the complexity of I.

Corollary 2.11. Let IL be a homogeneous lattice ideal in
R = k[x1, . . . , xn] where L is a lattice in Zn of dimension m. Then we
have the inequality

reg(IL) ≤
1

2
m(n− 1)(n−m+ 1)MD

where reg(IL) is the Caselnuovo-Mumford regularity of IL, and the con-
stants M and D are as in Theorem 2.10.

Proof. Let p := 1
2m(n−m+ 1)MD, and u ∈ L a Graver element of L.

Since IL is homogeneous, it follows from Theorem 2.10 that ∥u+∥1 =
∥u−∥1 ≤ p. Let < be a term order. Since the Graver basis contains
the universal Gröbner basis, it follows that p is an upper bound for the
degree of any minimal monomial generator of in<(IL). By the Taylor
resolution [1, Section 2], we have βi,j(in<(IL)) = 0 for j > (i+1)p. Since
βi,j(IL) ≤ βi,j(in<(IL)), we have βi,j(IL) = 0 for j > (i+ 1)p. Hence

reg(IL) ≤ max{(i+ 1)p− i | 0 ≤ i ≤ pdR(IL)}
≤ (pdR(IL) + 1)p

≤ pdR(R/IL)p.

Therefore reg(IL) ≤ pdR(R/IL)p. Since each monomial is regular over
R/IL, we have depth(R/IL) > 0 which implies that pdR(R/IL) ≤ n −
1. □
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Birkhäuser Verlag, Basel, 2009.

[5] J. Graver, On the foundations of linear and integer linear programming, I, Math.
Programming 9 (1975), no. 2, 207–226.

[6] H. Ohsugi and T. Hibi, Centrally symmetric configurations of integer matrices,
arXiv:1105.4322v1 (2001).

[7] L. Pottier, Minimal Solutions of Linear Diophantine Systems: Bounds and Al-
gorithms, Rewriting Techniques and Applications, 162–173, Lecture Notes in
Comput. Sci., 488, Springer, Berlin, 1991.

[8] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience
Series in Discrete Mathematics, John Wiley & Sons, Chichester, 1986.
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