APPLICATIONS OF EPI-RETRACTABLE AND CO-EPI-RETRACTABLE MODULES

H. MOSTAFANASAB

Communicated by Bernhard Keller

ABSTRACT. A module M is called epi-retractable if every submodule of M is a homomorphic image of M. Dually, a module M is called co-epi-retractable if it contains a copy of each of its factor modules. In special case, a ring R is called co-pli (respectively, co-pri) if R (respectively, R is co-epi-retractable. It is proved that if R is a left principal right duo ring, then every left ideal of R is an epi-retractable R-module. A co-pli strongly prime ring R is a simple ring. A left self-injective co-pli ring R is left Noetherian if and only if R is a left perfect ring. It is shown that a cogenerator ring R is a pli ring if and only if it is a co-pri ring. Moreover, if R is a left perfect ring such that every projective R-module is co-epi-retractable, then R is a quasi-Frobenius ring.

1. Introduction

Throughout the paper all rings are associative with non-zero identity elements and modules are unitary left modules. Let R be a ring. The ring R is said to be a pli (respectively, pri) if each left (respectively, right) ideal of R is principal. Ghorbani and Vedadi [5] generalized this concept to modules, an R-module M is called epi-retractable if every submodule of M is a homomorphic image of M. Therefore, R is a

MSC(2010): Primary: 16D10, 16S50; Secondary: 16D40, 16E60.

 $\label{eq:Keywords:Epi-retractable} Keywords: \ Epi-retractable, \ co-epi-retractable \ modules, \ hereditary \ ring.$

Received: 4 June 2012, Accepted: 16 August 2012.

© 2013 Iranian Mathematical Society.

pli (respectively, pri) ring if and only if RR (respectively, RR) is epiretractable. Ghorbani [4] introduced dual notions: An R-module M is called co-epi-retractable if it contains a copy of any of its factor modules. It is clear that a left R-module M is co-epi-retractable if and only if for each submodule $N \subseteq M$, there exists an endomorphism $f: M \to M$ such that N = Ker f. A ring R is called co-pli (respectively, co-pri) if RR (respectively, RR) is a co-epi-retractable module. It was shown that a ring R is co-pli (respectively, co-pri) if and only if each of its left (respectively, right) ideals is the left (respectively, right) annihilator of an element of R (see [4, Proposition 1.6]).

In section 2, conditions are found under which an epi-retractable module M is Hopfian and uniform. Also we show that a self-generator module $_RM$ with principal left ideal endomorphism ring $\operatorname{End}_R(M)$ is an epi-retractable module.

In section 3, we prove that a self-injective co-epi-retractable module $_RM$ is a Noetherian module if and only if its endomorphism ring, $\operatorname{End}_R(M)$, is a left perfect ring. A co-epi-retractable strongly prime module M is a strongly coprime module. In particular, a co-pli strongly prime ring R is a simple ring. In [4], Ghorbani shows that if R is a pli ring such that R_R is self-cogenerator, then R is a co-pri ring. We show that if R is a cogenerator ring, then R is a pli ring if and only if it is a co-pri ring. In [5], Ghorbani and Vedadi proved that a right (respectively, left) hereditary ring R is a pri (respectively, pli) ring if and only if every free right (respectively, left) R-module is epi-retractable. We prove that over a left hereditary ring R the following statements are equivalent:

- (a) R is a semisimple ring.
- (b) R is a pli ring.
- (c) R is a co-pli ring.
- (d) Every injective R-module is epi-retractable.
- (e) Every free R-module is epi-retractable.
- (f) Every free R-module is co-epi-retractable.

As before, $_RM$ is a non-zero left module over the ring R, its endomorphism ring $\operatorname{End}_R(M)$ will act on the right side of $_RM$, in other words, $_RM_{\operatorname{End}_R(M)}$ will be studied mainly. For the convenience of the readers, we recall in this section some definitions of modules that will be used in the sequel. Let M be a left R-module. we say that $N \in R$ -Mod is subgenerated by M if N is a submodule of an M-generated module (see

the [13]). The category of M-subgenerated modules is denoted by $\sigma[M]$. When N is a submodule of M, we write $N \ll M$ and $N \leq M$ to denote respectively the condition that N is a superfluous (or small) submodule or that N is an essential submodule in M. Let K be a submodule of M. If for any $f \in \operatorname{End}_R(M)$, $(K)f \subseteq K$, K is called a fully invariant submodule of M. An R-module M is called a duo module provided that every submodule of M is fully invariant. A ring R is called left (right) duo ring if every left (right) ideal of R is an ideal of R. A left or right self-injective ring R is called quasi-Frobenius ring if it is left or right Noetherian, (see Nicholson and Yousif [9]).

An R-module M is said to satisfy the (*)-property if every non-zero endomorphism of M is a monomorphism (see [12]). Note that a ring R is domain if and only if ${}_RR$ satisfies the (*)-property. An R-module M is said to satisfy the (**)-property if every non-zero endomorphism of M is an epimorphism (see [14]). In special case, ${}_RR$ is simple if and only if ${}_RR$ satisfies the (**)-property.

2. Epi-retractable modules

We begin our investigation of epi-retractable modules by recalling an important Lemma from 28.1 part (2) and (4) of [13]:

Lemma 2.1. Let M be an R-module and $S = End_R(M)$.

(1) For any submodule $K \subseteq M$,

$$Ker(r.ann_S(K)) = K$$

if and only if M is a self-cogenerator module.

(2) If M is self-injective, then for every finitely generated right ideal $I \subseteq S$,

$$r.ann_S(Ker\ I) = I.$$

Definition 2.2. Recall that $_RM$ is

- Hopfian (respectively, co-Hopfian) if every surjective (respectively, injective) homomorphism of M is an isomorphism.
- co-compressible if M is an epimorphic image of each of its non-zero factor modules.
- uniform if each of its non-zero submodules is essential in M.

Recall that R is called *reversible* if for $a, b \in R$, ab = 0 implies that ba = 0, see Cohn [3].

Proposition 2.3. Let M be an epi-retractable module with $S = End_R(M)$. Then the following statements hold:

- (1) If S is reversible, then M is Hopfian.
- (2) If $_RM$ is a self-injective module and S is a right Noetherian ring, then S is a co-pri ring.
- (3) If M is co-compressible, then every factor module of M is epi-retractable.
- (4) If _RM is a duo module with the (*)-property, then M is uniform.

Proof. (1) Let $f: M \to M$ be an epimorphism. Since M is epiretractable, there exists $g \in \operatorname{End}_R(M)$ such that $\operatorname{Ker} f = (M)g$. Hence gf = 0. By reversibility of S, fg = 0. Since f is epimorphism, we have

Ker
$$f = (M)g = (M)fg = 0$$
.

So the proof is complete.

- (2) Let I be a right ideal of S. Since M is epi-retractable, there exists $f \in S$ such that Ker I = (M)f. Thus $I = \text{r.ann}_S(\text{Ker }I) = \text{r.ann}_S(f)$, by part 2 of Lemma 2.1. Consequently S is a co-pri ring.
- (3) Let $N \subseteq L$ be submodules of M. We show that there exists an epimorphism from M/N to L/N. Since M is co-compressible there exists epimorphism $f: M/N \to M$. On the other hand there exists an epimorphism $g: M \to L$, because M is epi-retractable. Consequently $fg\pi_N: M/N \to L/N$ is an epimorphism, where $\pi_N: L \to L/N$ denotes the canonical projection.
- (4) Let A and B be two non-zero submodules of M with $A \cap B = 0$. Since M is epi-retractable, there exist $f, g \in S$ such that (M)f = A and (M)g = B. Then $(M)gf = (B)f \subseteq A \cap B = 0$. Consequently $B = \text{Im } g \subseteq \text{Ker } f = 0$, a contradiction.
- **Remark 2.4.** Recall that the endomorphism rings of the quasi-cyclic group $\mathbb{Z}(p^{\infty})$ and the group of p-adic integers \mathbb{Q}_p^* are isomorphic commutative rings. On the other hand $\mathbb{Z}(p^{\infty})$ is not Hopfian, so by part (1) of Proposition 2.3, we can see that $\mathbb{Z}(p^{\infty})$ cannot be an epi-retractable \mathbb{Z} -module.

Corollary 2.5. Let R be a pli ring. Then the following statements hold:

- (1) If $_RR$ is co-compressible, then every factor ring of R is a pli ring.
- (2) If R is a left duo domain, then R is a uniform ring.

The following Lemma is needed.

Lemma 2.6. If $_RM$ is a self-generator module, then for any $f \in End_R(M)$, $Ml.ann_S(f) = Ker \ f$.

Proof. We can easily see that Ml.ann_S $(f) \subseteq \text{Ker } f$. Conversely, consider an arbitrary element $x \in \text{Ker } f$. Since M is self-generator, Ker f = Tr(M, Ker f). Thus $x = \sum_{i=1}^{n} (m_i)g_i$ for some elements $m_i \in M$ and $g_i \in \text{Hom}_R(M, \text{Ker } f)$. But $g_i \in \text{l.ann}_S(f)$ for each i = 1, 2, ..., n. Then $x \in M$ l.ann_S(f). This shows that Ml.ann_S(f) = Ker f.

Proposition 2.7. Let $_RM$ be a self-generator module and $S = End_R(M)$.

- (1) If S is a pli ring, then M is epi-retractable.
- (2) If S is a co-pli ring, then M is co-epi-retractable.

Proof. (1) Let K be an R-submodule of M. Since S is a pli ring, there exists $f \in S$ such that $\operatorname{Hom}_R(M,K) = Sf$. Now since M is self-generator, we have $K = \operatorname{Tr}(M,K) = M\operatorname{Hom}_R(M,K) = (M)f$. Consequently M is epi-retractable.

(2) Let K be an R-submodule of M. Then there exists $f \in S$ such that $\operatorname{Hom}_R(M,K) = \operatorname{l.ann}_S(f)$, because S is a co-pli ring. Since M is self-generator and by Lemma 2.6, we have $K = M\operatorname{Hom}_R(M,K) = M\operatorname{l.ann}_S(f) = \operatorname{Ker} f$, which implies that M is co-epi-retractable. \square

Proposition 2.8. If R is a left principal right duo ring, then any left ideal of R is an epi-retractable R-module.

Proof. Let $J \leq I$ be left ideals of R. If I = Rx and J = Ry, then $y \in Rx \subseteq xR$, because R is right duo. Hence there exists $z \in R$ such that y = xz. Define $f: I \to J$, by (x)f = xz. Obviously f is epimorphism, and so I is epi-retractable.

We need the following Lemma.

Lemma 2.9. [10, Lemma 2.1] Let $M = \bigoplus_{i \in I} M_i$ be a direct sum of submodules M_i $(i \in I)$ and let N be a fully invariant submodule of M. Then $N = \bigoplus_{i \in I} (N \cap M_i)$.

In was shown in [5] that a direct summand of an epi-retractable module need not be epi-retractable.

Proposition 2.10. Let $M = \bigoplus_{i \in I} M_i$ be a duo module. Then M is epi-retractable if and only if each M_i is epi-retractable.

Proof. (⇒). By [5, Proposition 2.11 part (i)]. (⇐). Let each M_i be epi-retractable and N be a submodule of M. Then for any $i \in I$ there exists $f_i \in \operatorname{End}_R(M_i)$ such that $(M_i)f_i = N \cap M_i$. Thus $(M) \oplus_{i \in I} f_i = (\oplus_{i \in I} M_i) \oplus_{i \in I} f_i = \oplus_{i \in I} (N \cap M_i) = N$.

Proposition 2.11. Let M be an epi-retractable module with $S = End_R(M)$. Then the following statements are equivalent:

- (a) M is a simple module.
- (b) S is a division ring.
- (c) M satisfies the (**)-property.
- (d) M satisfies the (*)-property and $Soc(M) \neq 0$.

Proof. $(a) \Rightarrow (b)$. By Schur's Lemma, M is simple implies S is a division ring.

- $(b) \Rightarrow (c)$. This is clear.
- $(c) \Rightarrow (a)$. Let K be a non-zero submodule of M. Since M is epiretractable, there exists a homomorphism $f: M \to M$ such that Im f = K. Because K is non-zero and M satisfies the (**)-property, K = Im f = M. Therefore M is simple.
- $(a) \Rightarrow (d)$ holds trivially.
- $(d) \Rightarrow (a)$. Because $Soc(M) \neq 0$, there exists a simple submodule $K \subseteq M$. Since M is epi-retractable K = Im f for some homomorphism $f: M \to M$. By (d) we have $M \simeq K$ that is simple. \square

Corollary 2.12. Let R be a pli ring. Then the following statements are equivalent:

- (1) $_RR$ is simple.
- (2) R is a division ring.
- (3) R is a domain and $Soc(_RR) \neq 0$.

A submodule U of R-module N is called M-rational in N if for any $U \subseteq V \subseteq N$, $\operatorname{Hom}_R(V/U,M) = 0$. M is called polyform if any essential submodule is rational in M. The dual notions are: A submodule X of N is called M-corational in N if for any $Y \subseteq X \subseteq N$, $\operatorname{Hom}_R(M,X/Y) = 0$. M is called copolyform if any superfluous submodule is corational in M. A ring R is called V on V neumann regular if for any V is an element V is with V above V is an element V in V is an element V is an element V is an element V in V is an element V in V is an element V in V

Proposition 2.13. If M is a finitely cogenerated epi-retractable module with $S = End_R(M)$, then the following statements are equivalent:

- (a) M is copolyform.
- (b) Rad(M) = 0.
- (c) M is semisimple.
- (d) S is a semisimple ring.
- (e) S is a Von Neumann regular ring.

- *Proof.* $(a) \Rightarrow (b)$. Let M be a copolyform module. Assume K be a non-zero superfluous submodule of M. Since M is epi-retractable, there exists an epimorphism $f: M \to K$. Thus $\operatorname{Hom}_R(M,K) \neq 0$, a contradiction, because M is copolyform. Hence M has no non-zero superfluous submodule, i.e., $\operatorname{Rad}(M) = 0$.
- $(b) \Rightarrow (a)$. Since Rad(M) = 0, M has no non-zero superfluous submodule. Thus M is copolyform.
- $(b) \Rightarrow (c)$ and $(c) \Rightarrow (d)$. By [13, 21.6 part (6)] and [13, 20.8], respectively.
- $(c) \Rightarrow (b)$. See [1, Proposition 9.16].
- $(d) \Rightarrow (e)$. This is obvious.
- $(e) \Rightarrow (c)$. Let K be a submodule of M, then K = Im f for some $f \in S$. Now apply [13, 37.7 part (2)].

3. Co-epi-retractable modules

A ring R is said to be right Bezout if every finitely generated right ideal of R is principal. Also, a ring R is left strongly prime if for every left ideal $I \subseteq R$ there is a monomorphism $R \hookrightarrow I^k$ for some $k \in \mathbb{N}$ (Handelman-Lawrence [6]). This notion was extended to left modules in Beidar-Wisbauer [2]. A module M is called strongly prime if for any non-zero fully invariant submodule $K \subseteq M$, $M \in \sigma[K]$. Dually, M is called strongly coprime if for any proper fully invariant submodule K of M, $M \in \sigma[M/K]$.

An R-module M is called hollow if each of its proper submodules is superfluous in M.

Proposition 3.1. Let M be a co-epi-retractable module with $S = End_R(M)$. Then:

- (1) If S is reversible, then M is co-Hopfian.
- (2) If _RM is a self-injective module, then S is a right Bezout ring.
- (3) If $_RM$ is a strongly prime module, then M is a strongly coprime module.
- (4) If _RM is a duo module with the (**)-property, then M is hollow.
- *Proof.* (1) Let $f: M \to M$ be a monomorphism. Since M is co-epiretractable, there exists $g \in \operatorname{End}_R(M)$ such that $\operatorname{Im} f = \operatorname{Ker} g$. Hence fg = 0. By reversibility of S, gf = 0. Since f is monomorphism, we have (M)g = 0. So $\operatorname{Im} f = \operatorname{Ker} g = M$. Consequently M is co-Hopfian.

(2) Let I be a finitely generated right ideal of S. Because ${}_RM$ is co-epiretractable, then there exists $f \in S$ such that Ker I = Ker f = Ker fS. Since M is self-injective,

$$I = \text{r.ann}_S(\text{Ker } I) = \text{r.ann}_S(\text{Ker } fS) = fS,$$

by part (2) of Lemma 2.1. Then S is a right Bezout ring.

(3) Let K be a proper fully invariant submodule of M. Since M is coepi-retractable, then there exists a non-zero submodule L of M such that, $M/K \simeq L$. Since M is strongly prime, M is subgenerated by L, i.e., $M \in \sigma[L]$. Thus $M \in \sigma[M/K]$ and then M is strongly coprime.

(4) Let A and B be two proper submodules of M with A + B = M. Since M is co-epi-retractable, there exist $f, g \in S$ such that $\operatorname{Ker} f = A$ and $\operatorname{Ker} g = B$. Then $M = (M)f = (A + B)f = (\operatorname{Ker} g)f \subseteq \operatorname{Ker} g$. Thus g = 0, a contradiction.

A co-Hopfian module need not be co-epi-retractable:

Remark 3.2. We can easily see that there does not exist an endomorphism $f \in \operatorname{End}_{\mathbb{Z}}(\mathbb{Q})$ such that $\mathbb{Z} = \operatorname{Ker} f$. Then $\mathbb{Z}\mathbb{Q}$ is not co-epiretractable. But we know that $\mathbb{Z}\mathbb{Q}$ is co-Hopfian.

The following theorem gives some information about self-injective coepi-retractable modules.

Theorem 3.3. Let $_RM$ be a self-injective co-epi-retractable module with $S = End_R(M)$. Then the following statements are equivalent:

- (a) _RM is a Noetherian module.
- (b) S satisfies dcc for cyclic right ideals.
- (c) S is a left perfect ring.

Proof. $(a) \Rightarrow (b)$. A descending chain of cyclic right ideals $f_1S \supseteq f_2S \supseteq \cdots$ yields an ascending chain of submodules $\operatorname{Ker} f_1S \subseteq \operatorname{Ker} f_2S \subseteq \cdots$. By assumption, there is some $n \in \mathbb{N}$ such that $\operatorname{Ker} f_iS = \operatorname{Ker} f_nS$ for all $i \geq n$. With applying $\operatorname{r.ann}_S(-)$ to this module, and by part (2) of Lemma 2.1, we have $f_iS = f_nS$ for all $i \geq n$. This shows that S satisfies dcc for cyclic right ideals.

 $(b) \Rightarrow (a)$. Let $K_1 \subseteq K_2 \subseteq \cdots$ be an ascending chain of submodules of M. Because M is co-epi-retractable, each K_i is of the form $\operatorname{Ker} f_i = \operatorname{Ker} f_i S$ for some $f_i \in S$. With applying $\operatorname{r.ann}_S(-)$ to this chain, we see that $f_1 S \supseteq f_2 S \supseteq \cdots$. But S satisfies dcc for cyclic right ideals, thus there is some n such that $f_i S = f_n S$ for all $i \ge n$, and then $K_i = K_n$ for all $i \ge n$. Therefore M is left Noetherian.

 $(b) \Leftrightarrow (c)$. This follows from [13, 43.9].

Corollary 3.4. Let R be a co-pli ring. Then the following statements hold:

- (1) If R is a reversible ring, then $_RR$ is co-Hopfian.
- (2) If R is a left self-injective ring, then R is a right Bezout ring.
- (3) If R is a left self-injective, then the following are equivalent:
 - (a) R is a left Noetherian ring.
 - (b) R satisfies dcc for cyclic right ideals.
 - (c) R is a left perfect ring.
- (4) If R is a strongly prime ring, then R is a simple ring.

We note that over a left perfect ring R, every left R-module has a projective cover.

Proposition 3.5. Let R be a left perfect ring such that every projective R-module is co-epi-retractable. Then R is a quasi-Frobenius ring.

Proof. By [8, Remark 15.10], we need to show that every injective R-module is projective. Now, let M be an injective R-module and let P be the projective cover of RM. Then, by our assumption, $M \hookrightarrow P$. Because RM is injective, then M is isomorphic to a direct summand of P, and so is projective.

Proposition 3.6. Let $_RM$ be a self-cogenerator, and set $S = End_R(M)$. (1) If S is a co-pri ring, then:

- (i) M is epi-retractable.
- (ii) M is left Noetherian if and only if S is right Artinian.
- (2) If S is a pri ring, then M is co-epi-retractable.

Proof. (1) (i). Let K be an R-submodule of M. Since S is a co-pri ring, there exists $f \in S$ such that $\operatorname{r.ann}_S(K) = \operatorname{r.ann}_S(f)$. Since M is self-cogenerator, we have

$$K = \operatorname{Ker}(\operatorname{r.ann}_S(K)) = \operatorname{Ker}(\operatorname{r.ann}_S((M)f)) = (M)f,$$

by part (1) of Lemma 2.1. Thus M is epi-retractable.

 $(ii)(\Rightarrow)$. Consider the ascending chain $I_1 \supseteq I_2 \supseteq \cdots$ of right ideals of S. Since S is co-pri, then for each i there exists $f_i \in S$ such that $I_i = r.ann_S(f_i) = r.ann_S((M)f_i)$. With applying $\mathrm{Ker}(-)$ to this chain and by part (1) of Lemma 2.1 we get the descending chain $(M)f_1 \subseteq (M)f_2 \subseteq \cdots$ of submodules of M. Because M is left Noetherian, there exists some $n \in \mathbb{N}$ such that $(M)f_i = (M)f_n$ for all $i \geqslant n$. So we have $\mathrm{r.ann}_S(f_i) = \mathrm{r.ann}_S(f_n)$ for all $i \geqslant n$. Thus S satisfies dcc for its right ideals.

(\Leftarrow). Let $K_1 \subseteq K_2 \subseteq \cdots$ be an ascending chain of submodules of M. Then $\operatorname{r.ann}_S(K_1) \supseteq \operatorname{r.ann}_S(K_2) \supseteq \cdots$. But S satisfies dcc on its right ideals, thus there is some n such that $\operatorname{r.ann}_S(K_i) = \operatorname{r.ann}_S(K_n)$ for all $i \ge n$. With applying $\operatorname{Ker}(-)$ to this module, and by part (1) of Lemma 2.1, we have $K_i = K_n$ for all $i \ge n$. Therefore M is left Noetherian.

(2) Let K be an R-submodule of M. Since S is pri ring, then there exists $f \in S$ such that $\operatorname{r.ann}_S(K) = fS$. Since M is self-cogenerator, we deduce that

$$K = \text{Ker}(\text{r.ann}_S(K)) = \text{Ker } (fS) = \text{Ker } f,$$

by part (1) of Lemma 2.1. Thus M is co-epi-retractable.

Example 3.7. By Example 3.7 of [7], $\operatorname{End}_Z(\mathbb{Q}/\mathbb{Z}) \simeq \prod_p \mathbb{Q}_p^*$. Since for any prime number p, Q_p^* is a commutative principal ideal domain, then $\operatorname{End}_Z(\mathbb{Q}/\mathbb{Z})$ is a commutative principal ideal ring. Consequently by part (2) of Proposition 3.6, the cogenerator \mathbb{Z} -module \mathbb{Q}/\mathbb{Z} is co-epiretractable.

Corollary 3.8. Let $_RR$ be a self-cogenerator module.

- (1) If R is a co-pri ring, then:
 - (i) R is a pli ring.
 - (ii) R is left Noetherian if and only if R is right Artinian.
- (2) If R is a pri ring, then R is a co-pli ring.

A cogenerator ring is a ring R for which both R and R are cogenerators. Quasi-Frobenius rings are examples of cogenerator rings (see Lam [8, 15.11 part (1)]).

Theorem 3.9. A cogenerator ring R is a pli ring if and only if it is a co-pri ring.

Proof. By Corollary 3.8 and [4, Corollary 2.6].

Proposition 3.10. Let $_RM$ be a hollow copolyform module. Then M is co-epi-retractable if and only if $M/N \simeq M$, for all proper submodules N of M.

Proof. (\Leftarrow). By definition.

 (\Rightarrow) . Let N be a proper submodule of M. Then there exists a non-zero submodule K of M such that $M/N \simeq K$. If K is proper, then since M is hollow copolyform, $\operatorname{Hom}_R(M,M/N) = \operatorname{Hom}_R(M,K) = 0$, a contradiction. Thus $M/N \simeq M$.

It is well known that a module M is semisimple if and only if each of its submodules is essentially closed.

Proposition 3.11. The following are equivalent for a nonsingular Rmodule M:

- (a) $_{R}M$ is semisimple.
- (b) _RM is co-epi-retractable.

Proof. $(a) \Rightarrow (b)$. This is clear.

 $(b) \Rightarrow (a)$. Let N be a submodule of ${}_RM$. By assumption, there exists a submodule K of M such that $M/N \simeq K$. Because M/N is nonsingular, then N is an essentially closed submodule of M. So M is semisimple. \square

An R-module M is called subisomorphic to an R-module M' if there exist monomorphisms $f: M \to M'$ and $g: M' \to M$.

Proposition 3.12. Let M be an R-module. Then the following statements are equivalent:

- (a) M is a co-epi-retractable.
- $(b)\ M\ is\ subisomorphic\ to\ a\ co-epi-retractable\ module.$
- (c) There exists a monomorphism $\varphi: M \to K$ for some co-epi-retractable submodule K of M.

Proof. $(a) \Rightarrow (b)$. This is clear.

- $(b)\Rightarrow (c)$. Suppose that there exist a co-epi-retractable module M' and monomorphisms $\alpha:M\to M',\ \beta:M'\to M$. Set $K:=\mathrm{Im}\ \beta\simeq M'.$ Then, $\alpha\beta:M\to K$ is a monomorphism for co-epi-retractable submodule K of M.
- $(c)\Rightarrow (a)$. Let L be any submodule of M. By our assumption, for submodule $K':=(L)\varphi$ of K, there exists a monomorphism $\theta:K/K'\to K$. Consider inclusion map $i_K:K\to M$ and monomorphism $\overline{\varphi}:M/L\to K/K'$ with $(m+L)\overline{\varphi}=(m)\varphi+K'$. Then $\overline{\varphi}\theta i_K:M/L\to M$ is a monomorphism, proving that M is co-epi-retractable. \square

Proposition 3.13. Let $M = \bigoplus_{i \in I} M_i$ be a duo module. Then M is co-epi-retractable if and only if each M_i is co-epi-retractable.

Proof. (\Rightarrow) . By [4, Proposition 1.1 part (4)].

(\Leftarrow). Let each M_i be epi-retractable and N be a submodule of M. By Lemma 2.9, submodule N can be written as $N = \bigoplus_{i \in I} (N \cap M_i)$. On the other hand, for any $i \in I$ there exists a monomorphism $f_i : M_i/(N \cap M_i) \to M_i$. Thus the homomorphism

$$f: \bigoplus_{i\in I} [M_i/(N\cap M_i)] \to \bigoplus_{i\in I} M_i, \ (m_i+N\cap M_i)_{i\in I} \mapsto \sum_{i\in I} (m_i+N\cap M_i) f_i$$

is injective. Moreover we have the monomorphism

$$g: M/N \to \bigoplus_{i \in I} [M_i/(N \cap M_i)], \sum_{i \in I} m_i + N \mapsto (m_i + N \cap M_i)_{i \in I}.$$

Consequently the homomorphism $gf: M/N \to M$ is injective, as desired.

Proposition 3.14. Let M be a co-epi-retractable module with $S = End_R(M)$. Then the following statements are equivalent:

- (a) M is a simple module.
- (b) S is a division ring.
- (c) M satisfies the (*)-property.
- (d) M satisfies the (**)-property and Rad(M) = 0.

Proof. $(a) \Rightarrow (b)$ and $(b) \Rightarrow (c)$ are obvious.

- $(c) \Rightarrow (a)$. Let K be a proper submodule of M. Since M is coepi-retractable, there exists a homomorphism $f: M \to M$ such that Ker f = K. Because K is proper and M satisfies the (*)-property, K = Ker f = 0. Consequently M is simple.
- $(a) \Rightarrow (d)$. Straightforward.
- $(d)\Rightarrow (a)$. There exists a maximal submodule $N\subset M$, because $\mathrm{Rad}(M)\neq M$. Since M is co-epi-retractable $N=\mathrm{Ker}\ f$ for some homomorphism $f:M\to M$. By the (**)-property we have $M/N\simeq M$, which implies that M is simple. \square

Corollary 3.15. Let R be a co-pli ring. Then the following statements are equivalent:

- (1) $_{R}R$ is simple.
- (2) R is a division ring.
- (3) R is a domain.

A ring R is called *left hereditary* if all of its left ideals are projective. Moreover, R is left hereditary if and only if every submodule of every projective R-module is projective if and only if quotients of injective R-modules are injective (see [8, Corollary 2.26] and [8, Theorem 3.22]).

Proposition 3.16. Let R be a left hereditary ring. Then every projective co-epi-retractable R-module is semisimple.

Proof. Assume that R is a left hereditary ring and K is a submodule of a co-epi-retractable projective R-module M. Since M is co-epi-retractable, M/K is isomorphic to a submodule of M. Thus M/K is projective, and we can lift $I_{M/K}$ to $f \in \operatorname{Hom}_R(M/K, M)$ with $f\pi_K = I_{M/K}$.

Hence $M = \text{Im } f \oplus \text{Ker } \pi_K = \text{Im } f \oplus K$. Consequently M is semisimple. \square

Proposition 3.17. Let M be a projective module over a left hereditary ring R. Then the following statements are equivalent:

- (a) M is semisimple.
- (b) M is epi-retractable.
- (c) M is co-epi-retractable.
- (d) In $\sigma[M]$ every injective module is epi-retractable.

Proof. $(a) \Rightarrow (b), (a) \Rightarrow (c) \text{ and } (a) \Rightarrow (d) \text{ are trivial.}$

- $(b) \Rightarrow (a)$. By [11, 3.1 part (2)].
- $(c) \Rightarrow (a)$. See 3.16.
- $(d) \Rightarrow (a)$. According to [11, 3.1 part (1)], the *M*-injective hull M of M in $\sigma[M]$ is semisimple. Then M is also semisimple.

The following result generalizes [5, Proposition 2.5].

Corollary 3.18. Let R be a left hereditary ring. Then the following statements are equivalent:

- (a) R is a semisimple ring.
- (b) R is a pli ring.
- (c) R is a co-pli ring.
- (d) Every injective R-module is epi-retractable.
- (e) Every free R-module is epi-retractable.
- (f) Every free R-module is co-epi-retractable.

Proposition 3.19. If M is a co-epi-retractable module with $S = End_R(M)$. Then the following statements are equivalent:

- (a) M is polyform.
- (b) M is semisimple.
- (c) S is a Von Neumann regular ring.

Proof. $(a) \Rightarrow (b)$. Let L be an essential submodule of M. Since M is coepi-retractable, there exists a monomorphism $M/L \hookrightarrow M$. Because M is polyform, we have $\operatorname{Hom}_R(M/L,M)=0$. Then L=M. Consequently $\operatorname{Soc}(M)=\bigcap_{L \preceq M} L=M$, i.e. M is semisimple.

- $(b) \Rightarrow (a)$. Is trivial.
- $(b) \Rightarrow (c)$. By [13, 37.7 part (2)].
- $(c) \Rightarrow (b)$. Let K be a submodule of M, then K = Ker f for some $f \in S$. Now apply [13, 37.7 part (2)].

Corollary 3.20. If R is a co-pli ring, then the following statements are equivalent:

- (a) $_{R}R$ is polyform.
- (b) R is a semisimple ring.
- (c) R is a Von Neumann regular ring.

Acknowledgments

The author thanks the referee for his/her useful suggestions.

References

- [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York-Heidelberg, 1974.
- [2] K. Beidar and R. Wisbauer, Properly semiprime self-pp-modules, *Comm. Algebra* **23** (1995), no. 3, 841–861.
- [3] P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641–648.
- [4] A. Ghorbani, Co-epi-retractable modules and co-pri-rings, Comm. Algebra 38 (2010), no. 10, 3589–3596.
- [5] A. Ghorbani and M. R. Vedadi, Epi-retractable modules and some applications, Bull. Iranian Math. Soc. 35 (2009), no. 1, 155–166.
- [6] D. Handelman and J. Lawrence, Strongly prime rings, Trans. Amer. Math. Soc. 211 (1975) 209–223.
- [7] P. A. Krylov, A. V. Mikhalev and A. A. Tuganbaev, Endomorphism rings of Abelian groups, Algebras and Applications, 2, Kluwer Academic Publishers, Dordrecht, 2003.
- [8] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, Springer-Verlag, New York, 1998.
- [9] W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, 158, Cambridge University Press, Cambridge, 2003.
- [10] A. Ç. Özcan, A. Harmanci and P. F. Smith, Duo modules, Glasg. Math. J. 48 (2006) 533–545.
- [11] B. M. Pandeya, A. K. Chaturvedi and A. J. Gupta, Applications of epiretractable modules, Bull. Iranian Math. Soc. 38 (2012), no. 2, 469–477.
- [12] A. K. Tiwary and B. M. Pandeya, Modules Whose Nonzero Endomorphisms are Monomorphisms, Algebra and its Applications, New Delhi, 1981, 199–203, Lect. Notes Pure Appl. Math. 91, Dekker, New York, 1984.
- [13] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, 1991.
- [14] W. Xue, On Morita Duality, Bull. Austral. Math. Soc. 49 (1994), no. 1, 35–45.

H. Mostafanasab

Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111 Isfahan, Iran

Email: h.mostafanasab@math.iut.ac.ir

