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ABSTRACT. A finite group G is said to be a POS-group if for each
z in G the cardinality of the set {y € G|o(y) = o(x)} is adivisor of
the order of G. In this paper we study the structure of POS-groups
with some cyclic Sylow subgroups.

1. Introduction

Throughout the paper G denotes a finite group, o(z) the order of
a group element x, and |X| the cardinality of a set X. Denote by
7(G) = {p|p is a prime diviser of |G|}. As in [4], the order subset
(or, order class) of G determined by an element z € G is defined to
be the set OS(x) = {y € Glo(y) = o(z)}. Clearly, for every z € G,
OS(x) is a disjoint union of some conjugacy classes in G. The group G
is said to have perfect order subsets (in short, G is called a POS-group)
if |OS(x)| is a divisor of |G| for all € G. In [4], Finch and Jones first
classified abelian POS-groups. Afterwards they continued the study of
nonabelian POS-groups and gave some non-solvable POS-groups (see
[5],[6]). -Recently, Das gave some properties of POS-groups in [2], and
Shen classified POS-groups of order 2m with (2,m) = 1 (see [14]). In
this note we study POS-groups with some cyclic Sylow subgroups. In
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section 2, POS-groups with cyclic Sylow 2-subgroups are studied. It is
proved that if Sylow 2-subgroups of a POS-group G are cyclic, then 3
divides |G| or G has a self-centralized Sylow 2-subgroup. In the next
section, we investigate the structure of POS-groups with cyclic Sylow
2-subgroups of order 4. Finally POS-groups with two prime divisors are
studied. If S is a subset of G, denote by fg(m) the number of elements
of order m in S. Let U(n) be the unit group of the ring Z/nZ. Denote
by ord,(q) the order of ¢ in the group U(n). First of all, we consider
POS-groups with cyclic Sylow 2-subgroups.

2. Cyclic Sylow 2-subgroups

In this part, we study POS-groups with cyclic Sylow 2-subgroups,
and prove that if Sylow 2-subgroups of a POS-group G are cyclic, then
3 divides |G| or G has a self-centralized Sylow 2-subgroup. A celebrated
theorem of Frobenius asserts that if n is a positive divisor of |G| and
X = {g € G| g™ = 1}, then n divides | X]| (see, for example, Theorem
9.1.2 of [9]). This result is used in the sequel frequently. First, we cite
some lemmas.

Lemma 2.1. (Theorem 1, [10]). If every element of a finite group G
has order which is a power of a prime number and G is solvable, then
m(G)| < 2.

Recall that G is a 2-Frobenius group if G = ABC, where A and
AB are normal subgroups of G, AB and BC are Frobenius groups with
kernels A and B,’and complements B and C respectively. Recall in
addition that G is a Cp,-group if the centralizer of every non-trivial p-
element is a p-group. The following lemma is due to Gruenberg and
Kegel (see Corollary of [15]).

Lemma 2.2. Let G be a solvable Cpy-group, then G is a p-group, a
Frobenius group or a 2-Frobenius group.

Lemma 2.3. (Theorem 3, [16]). Let G be a finite group. Then the
number of elements whose orders are multiples of n is either zero, or a
multiple of the largest divisor of |G| that is prime to n.

Next we give the following main result.

Theorem 2.4. If the Sylow 2-subgroups of a POS-group G are cyclic,
then 3 is a divisor of |G|, or G has a self-centralized Sylow 2-subgroup.
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Proof. Suppose that Ps is a Sylow 2-subgroup of G and | P,| = 2™. Since
Sylow 2-subgroups of G are cyclic, G is 2-nilpotent. Let the normal
2-complement of G be H. Set Cg(P2) = Py x N, where N < H. Next
we will prove that 3 is a divisor of | N| provide P, is not self-centralizing.
If N has an element of order m, then fg(2"m) = |H/N|-2""1. fx(m)
is a divisor of 2" - |H|. So fy(m) divides 2|N|. Note that |N| is odd. It
follows that 4 1 fy(m). Since ¢(m), the Euler’s totient function, divides
fn(m), then we have every order of element of N is a prime power, and
thus |7(N)| < 2 by Lemma 2.1.

Case I. m(N) = {p,q}. Set |[N| = p®¢’. By Lemma 2.2, we have that
N is a Frobenius or 2-Frobenius group. If N is Frobenius; without loss
of generality, we assume that the order of the kernel of N has divisor
q. As p-subgroups are cyclic, then fy(p) = (p — 1)¢” is a divisor of
2IN| = 2p%¢®. So p —1 = 2, then p = 3. If N is 2-Frobenius, we set
N = ABC, where A and AB are normal subgroups.of N, AB and BC
are Frobenius groups with kernels A and B, and complements B and C,
respectively. Now let |A| = p* and |C| = p®¢ Then fy(q) = (¢ — 1)p™
divides 2|N| = 2p%¢®. Since p® | fn(q) by Lemma 2.3, it follows that
q = 2p™ + 1. Clearly, ¢ > p. In addition, fn(p) = fa(p)+ (p — 1)¢°|A:
Cn(c)|, where ¢ is an element of order p of (. Since p — 1 and ¢® are
both divisors of f4(p) and (p—1, g)=1, we have (p—1)¢® | fa(p). Then
p—112p% sop=23.

Case II. m(N) = {p}. Set | V| = p®. Then by the above discussion we
see that fy(p) | 2p®. Since pt fn(p), we have p = 3. O

Note that indeed there exist POS-groups of Theorem 2.4 whose Sylow
2-subgroups are self-centralized and 3 1 |G|. The following is an example
of a POS group of order 400 whose Sylow 2-subgroups are cyclic and
self-centralizing.

Example 2.5. Let G = (a,b | a® = b0 = 1,a® = a7 [a,b?] = 1).
Then G-is a-POS-group with a cyclic Sylow 2-subgroup of order 2*.

Finch and Jone formulated a question in [4] whether the order of every
POS-group with more than one prime divisor has a divisor 3. Although
this question has a negative answer, it seems that orders of most POS-
groups have the divisor 3. We put the following problem.

Problem 2.6. Classify POS-groups whose order has no divisor 3.
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3. Cyclic Sylow 2-subgroups of order 4

In this section, we deal with the POS-groups with cyclic Sylow 2-
subgroups of order 4. We completely classify such POS-groups whose
order has no divisor 3. First, we determine the number of prime divisors
of these groups.

Proposition 3.1. Let G be a POS-group with cyclic Sylow 2-subgroups
of order 4. Then |1(G)| < 6.

Proof. Let o(G) = max{|r(o(g))| | ¢ € G}, and H be the normal
2-complement of G. Clearly, o(H) < 2. So we have |r(H)| < 5 by
Theorem 1.4(b) of [11]. Therefore, |7(G)| < 6. O

Although such POS-groups have a upper bound of the number of
prime divisors, is 6 the actual bound?

Lemma 3.2. Let |G| = 2"p™ and the Sylow p-subgroup P be normal in
G. If all Sylow subgroups of G are cyclic and G has no element of order
2p™, then G is a Frobenius group.

Proof. Since all Sylow subgroups of G are cyclic, we may see that G =
(a, b]a?" =b*" =1, a® = a") such that r*".=1(mod p™) and (2"(r —
1),p™) = 1. By the above condition, we get that 2" is the order of r in
U(p™). In fact, otherwise if the order ordym (r)(:= o(r)) of r is less than
2™ then
abo(r) . a,,,o(r) 4l a.

hence b°") € Cg(P). On the other hand, since Cg(P) = 1, b°(") = 1,
which contradicts that o(b) = 2". It is easy to see that the order ord,,(r)
is also 2" for 1 <7 < mn — 1. So the centralizer of every nontrivial p-
element is P, and then G is a Frobenius group. U

To complete the proof of Theorem 3.6 and 4.3, we need some conclu-
sions of prime number. We call r,,,(a) a primitive prime divisor of a™ —1
if 7, (@) | @™ =1 but rp,(a) doesn’t divide a* —1 for every i < m. Clearly,
for primitive prime divisor p = 7y, (a), the formula m|p — 1 always holds.
Let ®,(x) be the n' cyclotomic polynomial. It is well known that 2" —1
may be decomposed to the product of all cyclotomic polynomials whose
digit is some divisor of n, that is, 2" — 1 = ][, ®4(z). The existence
of primitive prime divisor is due to Zsigmondy (see [17]), and the prim-
itive prime divisor is closely connected with the cyclotomic polynomial
as follows.
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Lemma 3.3. Primitive prime divisors of a™ — 1 exist except if m = 6
anda =2, orm=2 anda=2F—1.

Lemma 3.4. Suppose that ¢" —1 has at least one primitive prime divisor
andn > 3. Then ®,(q) = (P(n), ®,.(q))-Zn(q), where P(n) is the largest
prime divisor of n and Zy,(q) the largest divisor of ¢" — 1 which contains
all primitive prime divisors.

Proof. By page 207 of [13] and Lemma 2.1 of [3], we have Z,(q) | ®,(q)
and (I)n(Q) | Zn(Q) : P(“)? and then cI)n(q> = (P(n)a (I)n(q)) : Zn(Q)‘ U

Lemma 3.5. (Lemma 5, [12]). Suppose that p is an odd primitive prime
divisor of ¢* — 1. Then p | ®4(q) if and only if f = kp’ for some j > 0.

We also make some preliminaries on the p-adic expansion of any inte-
ger. Let p be a prime. So any positive integer can be written in a base

p expansion in the form
n

Z aipla
i=0
where all a; are integers in {0,1,--- ,p = 1}. Moreover for a given pos-
itive integer m, the coefficients a; in such p-adic expansion of m are
determined uniquely.
Next we give the structure of POS-groups with cyclic Sylow 2-subgroups
of order 4.

Theorem 3.6. Let G be a POS-group with a cyclic Sylow 2-subgroup of
order 4. Then 3.s a-divisor-of |G|, or G is one of the following groups:
(a) the cyclic group of order 4;
(b) Frobenius groups Zsm : Zy;
(¢) quasi-dihedral groups (a,b | a®" =b* =1,a® = a™1).

Proof. Let H be the normal 2-complement. If 4  p — 1 for every p €
m(H), then 3 € 7(H) since the smallest prime number in 7(H) is a
Fermat prime. Next we assume that 7(H) has a prime p such that
4|p—1. Then H is a Cp,-group, and hence H is Frobenius or 2-Frobenius
by Lemma 2.2. Note that 7(H) has only such prime p (see [11]). We
should consider the following three cases.

Case 1. H is Frobenius. Let H = K : L with the kernel K and
the complement L. If L is a p-group, then L is cyclic. Since fr(p) =
(p — 1)|K| divides 4|K]| - |L|, we have p = 5. In addition, since K is
nilpotent, K has at least two prime divisors. If |7(K)| = 1, clearly


www.sid.ir

946 Shen, Shi and Shi

3 € w(H). Next let 7(K) = {p1,p2}. Suppose that P; is a Sylow p;-
subgroup of K fori = 1,2. Then fy(p;) divides 4|Py|-|Ps|-|L|. If 31 |H]|,
then we assume that 5 < p; < p2. Note that p; t fu(p;), so we have
pr=2-54+1with k> 1. Set pp =2- 5k1p]f2+1. Let v be an element
of order 4. By Theorem 2.4, u is a fixed-point-free automorphism of
H. Next we will prove that K is abelian. Otherwise, we assume that
Hy = Ky : Ly is the minimal counterexample. Thus Kj is a pi-group.
Set ®(Kj) the Frattini subgroup of Ky. Clearly ®(Kp) > 1. Since
®(Ky) is a characteristic subgroup of Ky, Ko/P(Kp) : Lo has a fixed-
point-freely automorphism of order 4. So Ko/®(Kj) is abelian, and then
Ky is abelian, a contradiction. Thus K is abelian. Let |G| =4 - 5™p%p}.
Since K is abelian, we may assume that fg(p;) =p;’ — 1 for i =1,2. In
addition, since fr(p;) divides |G|, we get a Diophantine equation

it =1 =2"5piph (3.1)
where j,s5,t > 0 and 1 < u < 2. Next we will prove that s; = 1 for
1 = 1,2. The following two subcases, should be studied.

Subcase I.I ¢ = 1. Then clearly s = 0. In view of Lemma 3.4,
pi* — 1 has a primitive prime divisor except if p; is a Mersenne prime
and s; = 2. If ¢t = 0, since w(p1 — 1) = {2,5}, we have s; = 1 or 2 by
Lemma 3.4. Now if s; = 2, then p; is-a Mersenne prime, say 2/ — 1. So
s —1 =21 (271 + 1) = 2457, then L= 1 since u < 2, a contradiction.
When ¢ > 0, the equation (3.1) becomes

pili=1 = 2Y57ph. (3.2)
Similarly, since 7(p; —1) = {2,5}, then s; is equal to 1 or a prime by
Lemma 3.4. Since py is a primitive prime divisor of pj* —1, s1|ps—1 = 2-
5’“1pr2. Sos; = 1,25 0rp;. If s1 =2, itiseasy tosee 8 | p2—1 = fu(p1),
a contradiction. If s; = 5, by Lemmas 3.5 and 3.6, then (3.2) becomes

5
pi—1 t
—— = Ds. 3.3
5(p1 — 1) D (3.3)

If ko > 0, then (3.3) becomes
1657t 48.5%% 1 8. 5% 4 4.5F 11 = (2.5M1 (2. 55 + 1)k2 1), (3.4)

(3.4) is the expansion of pb, if k > 0 in base 5. The left hand side modulo
52k is 4.5% +1. Clearly, t < 5. So k = k; and t = 2. Moreover, the 5-adic
expansion of the left term of (3.4) is 3-5% 4 54— 1 4 53k—1 1 3.53k 4 52k+1 4
3-5%% 4 4.5% 4 1. But the largest digit of one of the right term is more
than or equal to 2k(k2 + 1), so 2k(k2 + 1) < 4k, then kp = 1. It follows
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that the right term of (3.4) is equal to 16-5%% 4+16-5% +12.5%F 4 4.5F 1,
a contradiction.
If ko = 0, then (3.3) becomes

16- 5% 4 8.5% 1 8.5% 1 4.58 1= (2-5M 4 1)". (3.5)

(3.5) is the expansion of p} in base (5) if ko = 0, then we may see
k = k1. Comparing the largest digits of the formulas of 5-adic expansion
of both sides of (3.5), we got that ¢ < 4. It is easy to check that for
every such t the equation (3.5) does not hold.

If s1 = p1, then, by Lemmas 3.5 and 3.6, (3.2) becomes

-1
pli—l = D2 (3.6)

If ko = 0, then po is a primitive prime divisor of p}" =1 since p; < po.
Sop1 | p2—1=2-5% and then p; = 2 or 5. By (3.6), we have p} = 3 or
781. Since 781 = 11 - 71 has two prime divisors, it follows that py = 3,
which contradicts that py > 5.

When ky > 0, we extend the number of (3.6) into the p;-adic ex-
pansion, in which the first and second' digits of the left and right are
p1 + 1 and l-p’fZ +1 and p; > L= 2t -5¥(modp;). So ko = 1 and
2t-5F = 1(mod py). It follows that py | 2¢-5% —1+p; = 2-5%(¢t+1), and
then ¢t +1 = 0(mod p1). On the other hand, t < p; , we have t = p; — 1.
Thus (3.6) is changed into

P =1
pr—1
It is not hard to see that the largest digit of right hand of (3.7) is more
than one of left term in light of the form of the p;-adic expansion of

both sideof (3.7),a contradiction. Thus s; = 1.
Subcase I.II. i = 2. Then (3.1) becomes

= (2-5%p; + 1)L, (3.7)

p3? — 1 =2U5p;. (3.8)

Clearly, s # 2 (otherwise 8 | p2 — 1). If k; and ko are both more than
0, since m(py — 1) = {2,5,p1}, we have that s, = 1 by Lemma 3.4. If
ki = 0, then 5 is a primitive prime divisor of p5* — 1. So sy ’ 5—1=4,
hence s = 1 or 4. But if s = 4, gives that 8 | p3 — 1, a contradiction.
ko = 0, gives that so ‘ pp—1=2. 5%. So sy = 5. Next we may only
consider following Diophantine equation by Lemmas 3.5 and 3.6 that is
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= 5p5. (3.9)

Using the same method as one of (3.3), we can get that the (3.9) also
has no solution. Thus ss is also equal to 1. Therefore, K is cyclic. Since
5™ divides fr(p;), we have p; =2-5™ +1 and py = 2- 5™ -plfQ + 1 with
ko > 0. Now note that f(pip}) = d(piph) = 4- 52mp]f2+“_1pg_1 divides
|G| = 4 - 5™p$ph, a contradiction.

If K is a p-group, then fg(q) divides 4|L| for every ¢ € w(L). But
since 4 1 ¢ — 1 and the smallest prime in 7(L) is a Fermat one; we have
3emn(Ll).

Case II. H is 2-Frobenius. Similarly, assume that H = ABC, where
A, B,C are the same as above. Clearly, the commutator subgroup
H' = AB. 1f 3 1 |H|, by Theorem 2.4, H admits a fixed=point-freely
automorphism of order 4. Then H' is nilpotent (see Exercises 1, Chap.
10, [7]), a contradiction.

Case III. H is a p-group. Certainly, p = 5. By Proposition 2.8
of [2], the Sylow 5-subgroup, that is H, is-eyclie. Let |H| = 5™. By
Theorem 2.4 we have that the Sylow 2-subgroup of G is self-centralized.
So G is not cyclic. Then G = {(a,b | a®" =b* = 1,a® = a") such
that r* = 1(mod5™) and (r — 1,5™) = 1. If the centralizer of a is
(a), then G is Frobenius by Lemma 3.3. If |Cg(a)| = 2 - 5™, then
r?2 = 1(mod5™). Since (r — 1,5™)="1, we have r = —1(mod5™).
Therefore, G = (a,b | a®" = b*=1,a" =a™1). O

4. POS-groups with two prime divisors

In this section, assume that |G| = 2"p"™ with p an odd prime num-
ber. If G is a POS=group, then p is a Fermat prime, say 22" 4 1. By
Proposition 3.1 of [2], we know that if 2" < (p — 1)3,i. e., n < 3- 2%
then the Syloew p-subgroup is cyclic and normal. Certainly there exists
a POS-group with non-normal cyclic Sylow subgroups, such as SLy(3)
of order 24. In this section, we give the structure of G with cyclic Sylow
p-subgroups. First we cite some lemmas.

Lemma 4.1. (Theorem 1, [1]). Let G be a 2-group of order 2" and
exp(G) = 2¢ > 2. Then the number of elements of order 2 is a multiple
of 2 for 2 < i < e except in the following cases:

(a) the cyclic 2-group;
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(b) the dihedral 2-group {a,b|a®" = b2 =1,a"=a7');

(¢) the semi-dihedral 2-group (a,b|a® =b%=1,a" = a2" "~1);

(d) the generalized quaternion 2-group (a,b | a2n_1 = 1,a¥"" =
b2 ab =a™1).

Lemma 4.2. Let G be a finite group with a normal subgroup N. If
x € G\N has order m, then fxz(m) = fny(m) for all cosets Ny which
are G /N -conjugate to Nx.

Proof. Suppose that Ny is G /N-conjugate to Nz, so Ny = Ng~lzg for
some g € G. Then the map ¢ : Nz +— Ny, defined by nz¢+ g~ 'nag,
induces a bijection between the subset of elements of order m.in Nz and
the corresponding subset of Ny. g

In the following we give the structure of POS-groups with two prime
divisors and cyclic Sylow p-subgroups.

Theorem 4.3. Let G be a POS-group with a cyclic .Sylow p-subgroup

P and |7(G)| = 2. Then G is a Frobenius group Zym : Zy, where

p=1+ 22 s a Fermat prime and m >0 arbitrary, or satisfies one of
the following conditions:

(CL) p = 37 CG'( ) P x Z2 X Zg and Ng( ) P: (ZQ X Z4)

(b) the number of elements of order 2 of G is 1;

(¢) G is p-nilpotent.

Proof. Suppose that P = {(x).is a Sylow p-subgroup and the number of
Sylow p-subgroups is |G': Ng(P)| = 2'. By Zassenhaus’s theorem we
may let N = Ng(P) =P : K and C = Cg(P) = P x U, where K and
U are 2-subgroups of G. Since Cg(2Y) = Cg(x)? and Cg(z) = Ca((x)),
we have that the number f;(2p™) of elements of order 2p™ i

260" fog, (2) = 272 " ey, (2),

where ¢ is Euler totient function. Let |G| = 2"p™, where p = 22" 4 1is
Fermat. Since f¢(2p™) is a divisor of |G| = 2"p™ and fc,, (2) is odd
or 0, it leads to fCG(z)(2) = 0,1 or p. Now note that
K/U = N/C < Aut(P) = Z22kpm,1,

so U/K is cyclic. If K/U =1, that is N = C, then G is p-nilpotent by
the well-known Burnside’s theorem. If K/U # 1, then N/U = P : K/U
has no element of order 2p™. In fact, otherwise we may choose an
element y € K\U such that 2UYY = 2U, and then 27 '2¥ € U. Since
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(x) = P< G, we have v 12¥ € P. So a7 '2¥ € UN P =1, then 2¥ = z.
Hence y € U, a contradiction. Therefore N/U is a Frobenius group by
Lemma 3.3. If U # 1, that is fy(2) # 0, then we have

fa(2) = fu(2) + fnmo (2) + fen(2) = fu(2) + " fyu (2) + fern (2)

by Lemma 4.2, where o(yU) = 2. If f,y(2) # 0, then fg(2) > p™,
which contradicts that fg(2) | p™. So fa(2) = fu(2) + faw(2) =
ngec ue(2) + fg\Ugech(Z). If fu(2) = 1, denote by z the unique
element of order 2 in U, then ngeG vs(2) = |G : Cg(z)|. So we may
assume that f __ vo (2) = 2°. Now we choose any element a.of order 2
in G\ Uyeq K7, we see that p™ { |Cg(a)l, hence p | fa\U,eo xa(2). We
set fa Uyec k9(2) = p- 1. Now use class equation of G, we can obtain
fa(2) =2°+p-1|p™ Sos=1=0, and then fg(2) = 1. Next we
consider the case of fi7(2) = p. Now assume that |U] =2".

If fiy(4) = 0, then U is an elementary abelian 2-group. So f(2) =
2 — 1 = p. It follows that v = 2 and k' =-0. By Lemma 2.3, we
have 27 | fo(p™) + fa(2p™) = 2072 pm=1(1 £ p). = 20+3pm=1 and then
n<t+3. So |K|=2""t <23 It is easy to see that K is Zy x Zy.

If fiy(4) # 0, then fa(4p™) = 202 fu(d) | 2'p™. So fu(4) |
9n=t=2"; On the other hand, since

411+ fu(2) + fu®) =2+2% + fu(4),

and fy(4) | 2p. By Lemma 4.1, we have that U is a dihedral or semi-
dihedral 2-group. If U is a semi-dihedral one, then fy7(2) = 1+2%~2 and
fu(4) = 242472 which contradicts that fi/(2) = p and fy(4) | 2p. If U
is a dihedral one, then fr(2) =271 + 1 =p and fy(2°) = ¢(2°) = 201
for 1 <i<wu-—1. Certainly, u =1+ 22 gince 2¢"1 +1 = p, we get that

U| = 22"+1, (4.1)

Moreover, since K /U is a cyclic 2-group, we have that there exists L <1 K
such that L/U = Zs. By the above discussion, we may see that L has
no element of order 2. In addition, L\U has an element of order 4. In
fact, otherwise fr(4) = 2, by Lemma 4.1, L is a cyclic, dihedral, semi-
dihedral or generalized quaternion 2-group, which have an element of
order 4 in L\U, a contradiction. So fz(4) > 2. Next we discuss the
number of elements of order 4 in G. Clearly,

fa(d) = fu,cque(d) + fa\u,cqvs (4)-
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Note that two elements of order 4 in U are conjugate, so the elements
of order 4 in | gec U? make one congugacy class of G. Thus

fUyeove®) = |G = Cow)],

where w is of order 4in U. Since p™ | |Ca(w)|, we may set ngEG ve(4) =
2°. In addition, obviously p | fe\ Uyeq K° (4). Assume that fe\ Uyea K9 (4)
= p-l. Then we have fg(4) = 2°+p-1|2"p", hence fg(4) = 27 for
1 < j < n. Since fg(2) | p™, we may set fg(2) = p'. By Frobenius’s
theorem, we have
411+ fa(2) + fa(4) =1+2 +p".

Since fg(4) > 2, we have 4 | 1 + p%, and thus k =-0 and i is odd.
By Lemma 2.3 we have 2" | fa(p™) + fa(2p™) + -wort fo (24 ™M) =

2t+1pm71(1 +p+ fU(4>) N fU(2u71)) — 2t+2pm71(1 + 2u72)’ and
son <t+ 2. It leads to

|K| =2""t <22, (4.2)

By (4.1) we may get U = K, which contradicts that U # K.

If U =1, then N = P : K is a Frobenius group and K is cyclic.
Then the number fy(2) of order 2 in N is equal to p™ fx(2). Since
fr(2) > 1, we have fg(2) > fn(2)> p™. On the other hand, f(2) |
p™. Hence fg(2) = p™. By Lemma 2.3, we have 2" | fq(p™), and
fa(p™) =2t - ¢(p™). Hence t = n — 2%, Next we use induction to prove
that fg(2)) = 20 1pmfor4.< i < 2%, Clearly when i = 1, it is true.
Assume that it is true for ¢ = j = 1. Now we deal with the case of i = j.
Since
2| 1+ fa(2)+ -+ fo (2= 14+p™ + -2 1277 1™ - fo N (2)
and p™ = 1(mod 27); we have 27 | fe\n(27). On the other hand, since
fa(27) =21 \p™ e fe v (27) | 27p™, we have 27§ f(27). Hence fg(27) =
27— 1p™  Since every Sylow 2-subgroup of G has at most one subgroup of
order 2 of N (otherwise the generated subgroup by some two elements
of order 2 of N is a Frobenius group, which is not a 2-group), we have
that the number of Sylow 2-subgroups is p'™, and then the intersection
of every pair Sylow 2-subgroups is trivial. Thus G is a Frobenius group.
It leads to ¢ = 0, that is n = 2, hence G = Zym : Zyok is a Frobenius
group. O

Note that there exist groups satisfying the condition (a) of Theorem
4.3. We give an example as follows.
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Example 4.4. (a,b,c | a®" = 0> = ! = 1,a® = q, ac® = a,a’ =
a"l,[b,c] = 1) is a POS-group of order 8 - 3™ with cyclic Sylow 3-
subgroups.

Using the GAP software [8], it seems that the group satisfying the
condition (a) has not been found except those of Example 4.4. We put
the following conjecture.

Conjecture 4.5. POS-groups satisfying the condition (a) of Theorem
4.8 are those of Example 4.4.

It is not hard to determine groups satisfying the condition (b) of The-
orem 4.3. Since the number of elements of order 2 of GG is 1, so is for a
Sylow 2-subgroup P of G. Thus P; is cyclic or a generalized quaternion
group. Those groups were classified by Zassenhaus in [18]. The Table 1
lists all such groups with two prime divisors.

TABLE 1.
Type | Order | Generators Relations Conditions
1 2np™m cyclic' group
17 2np™ a,b "= =1, | (r—1,p™) =1,
a’ = a” r2" = 1(mod p™)
IIT | 2ntipm a,b, c b2 =2 n > 2,
a®=a®,b¢=b"1| 52 = 1(mod p™)

We now give the following result. Note that p = 22° 1 1 is a Fermat
prime.

Theorem 4.6. Let G be a POS-group with a cyclic Sylow p-subgroup
and |w(G)|.= 2. If the number of elements of order 2 of G is 1, then G
is one of the following groups:

(a) eyclic groups Zanzm;

(b) groups (a,b|a®" =b*" =1,a> = a”), where ordym(r) > 2F;

m PLEE] ok _
(c) groups (a,b | a?" = b? =1, =ca=a",a°=a"'b° =

b=1), where ordym (1) > 2.

Proof. Clearly if G is cyclic, then G = Zynzm. Let ordym(r) = o(r).
Assume that G is of Type IL Since a® = a” and o(r) = ordy(r) for
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1 <t < m, we have (apl)bo(r) = (apz)ro(r) =a” with1<i<m-—1. SoG
has an element of order 27°(")p™~% and the number of these elements
is ¢(2n—o(r)pm—i) — 22k+n—o(r)—1pm—i—1‘ Then 2¢ +n— 0(7") —1<mn,
that is o(r) > 2¥ — 1. Clearly 0(7‘)|22k, thus o(r) > 2¥. For other order
2 of the element z; € G for 1 < i < n, the number of these elements is
#(2%) - |G : Ng({z;))|, which is a divisor of |G|.

Assume that G is of Type III. If s = 1(modp™), then fg(4) =
2[{a,b) : Nygpy((z))| + (2"p™ — p™ + 1), where x € (a,b) is of order
4. We may assume that [(a,b) : Ny ((z))| = p'. Then fg(4) =
2p' + (2" — 1)p™ + 1 is a divisor of 2"t1p™. So t = 0.and p = 3,
we may get a Diophantine equation

1+@2"—1)-3m 1 =20, (4.3)
Clearly, n|i. So
20 — 1 .
=3ml 4.4

By Lemma 3.4, we have that 3 is a primitive prime divisor of 22 — 1. It
follows that ¢ = 2 or 6. Thus n =1 and m =2, or n = 3 and m = 3.
Since n > 2, we have n = 3 and m = 3, that is G = (a,b,c|a®” = b® =
1,a® = a",b* = %,a° = a,b° = b™Y). Using the GAP [8], we checked
r=1or —1, G is not a POS-group:

If s = —1(mod p™), then all elements of G\(a,b) are of order 4. So
fa(4) = 2pt + 2"p™, where 2p! is the number of elements of order 4 in
(a,b). Then we can get an equation as follows, that is

opt + 2™ = 247 (4.5)

Clearly, i = 1./ Then (4.5) becomes p' + 2" 1p™ = pJ. So j > t. Thus
the (4.5) becomes

142"t =/t (4.6)
Since 7 —¢.> 0, we have m = t. So the (4.6) becomes
o=l — =t 1. (4.7)

Since 2 is a primitive prime divisor of p — 1, by Lemma 3.4 we have
j—t=11in (47). Then n = 2¥ 4 1. Since (a,b) is same as one of
Type II, fG(Qn—o(r)pm—i) — ¢(2n—o(r)pm—i) — 22k+n—o(r)—1pm—i—1‘ So
28 +m —o(r) =1 < n+1, then o(r) > 2*. Thus G = (a,b | a?" =

ok 1 2k _ —
b2 =1,a’=a",0* =c%a=a"1b¢=0b"1). O
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For the remain part (¢) of Theorem 4.3, we may get the following
result.

Theorem 4.7. Let G be a POS-group with a cyclic Sylow p-subgroup
P and |7(G)| = 2. If G is p-nilpotent, then G = Zaynzm, Dg X Zsm,
Qgak 42 X Zpm , where p = 92" 11 a Fermat prime, or satisfies the condition
that p =3 and Ng(P) = Cq(P) = Zy x Zy x P.

Proof. By the proof of Theorem 4.3 we see that Ng(P) = Cg(P). Let
N = Ng(P) = P x U, |G : N| =2"and P, be the Sylow 2-subgroup.
Then fg(2p™) = 2t+2kpm_1fU(2), so fu(2) =1 or p. We divide into two
cases.

Case (a). fu(2) =1.
Then U is cyclic or a generalized quaternion group. If U is cyclic,
then

fG(antpm) — 2t+2kpm712n7t71 — 22k+n71 ‘ on m7
and so 2F < 1, that is p = 3. Since we may assume that ngEG re(4) = 20
Also

fald) = fu, s (D) + Fu, B
Since 3 ‘ fPQ\UgGG ve(4), we have fg(4) is a-power of 2, say 2/. Let

fc(2) = 3" for h > 0. Now assume that P acts on the set Q of elements
of order 2 of GG, we have

fa(2) =3"=|0q(P)| = 1(mod3).

Thus h =0, i.e. fg(2)=1. On the other hand, by Frobenius’s theorem
we can get that 4 | 1+ fo(2) + fo(4) = 2+ 2/, and then fg(4) = 2.
By Lemma 4.1, P is also cyclic. Therefore, G is 2-nilpotent, that is
G =2 Zongm.

If U is a generalized quaternion group, then fy;(4) = 2"t~ +2. So

fG(4pm) — 2t+2k+1pm—1(2n—t—2 + 1) | 2n m’

then p =2""""2 4+ 1. Thus n —t = 2 + 2. Let fg(2) = p" for h > 0.
Similarly, assume that P acts on the set €2 of elements of order 2 of G,
we have

fa(2) = p" = |Ca(P)| = 1(modp).
Thus h = 0, i.e., fg(2) = 1. By Lemma 4.1, P, is also a generalized

quaternion group. Choose an element  of order 2”71, then (x) is char-
acteristic in P». So (x) is normal in G. Apply the N/C-theorem, we
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have Ng((z))/Cq(z) < Aut({(z)), then Cg(z) = (x) x P. It leads to
z €U, so P, =U. Therefore G = Q,ok 5 X Zpm, where p = 22" 1 1.

Case (b). fu(2) =p.

Similarly, if fi(4) # 0, then fy(4) | 2"p. On the other hand, since
411+ fu(2)+ fu(4), it follows that fi7(4) =2 or 2p. By Lemma 4.1, U is
a dihedral or semi-dihedral group. If U is a dihedral one, then fy(2) =
1+2" 1 and fy(4) =2. Son—t =2+ 1. Also U has an element
of order 277 t=1 g0 fo(2nt-lpm) = 2t+2k+n—t—2pm—1 — 2n+2k’—2pm—1'
Then n + 2% — 2 < n, that is k = 1. Thus p = 5 and U = Dg. Since
two elements of order 4 of U are conjugate, we have that ngEG Us(4) is

a 2-power, say 2¢. Also clearly
Fo(8) = U, o 0a(4) + Fra, o ur@)

But 5 | fp,\y, ., vs(4) and fa(4) | 2°5™, s0 51 fa(4). Let fa(4) = 2h
for h > 1. Set fg(2) = 5/ for j > 1. By Frobenius’s theorem we can
obtain that 4 | 14 2° + 5/, so h = 1, that is fg(4) = 2. In view of
Lemma 4.1, it is easy to see that P, is also a dihedral group. Obviously,
for all x € P, the element = is an automorphism of P». On the other
hand, the order of the automorphism group of a dihedral 2-group is
still a 2-group, so P acts trivially on P. It leads to G = P x Ps, i.e.,
G = Zsm x Dan. Moreover, fa(2) =1+ 2""1. So we get a Diophantine
equation 1+ 2""! = 5/. By Lemma 3:4, the solution is n = 3 and j = 1.
Thus G = Dg X Z5m.

If U is a semi-dihedral one, then fi;(2) = 1+ 2772 and fy(4) =
2 4277172 Since fi7(4) > 2, fu(4) = 2fuy(2), which is impossible.

Next assume that fi7(4) = 0. Then U is an elementary abelian 2-
group of order 2", We'may let U > 1 (otherwise fg(p™) = 2”+2kpm_1 |
2"p™ a contradiction). By Lemma 2.3, we have 2" | fa(p™)+ fa(2p™) =
9t+2 ym—1 " ot42"ym gy ¢ < 2% 4 1. In addition, let P act on the
set of elements of order 2 in G, so we have

fa(2) = fu(2) = 2" — 1(mod p). (4.8)

We make the equation (4.8) into two cases to consider.

Case I. fg(2) = fu(2) = 2"t — 1. Then 2"¢ — 1 | p™, and hence
n—t=2andp=3.

Case IL. f(2) > fy(2). Then n—t > 2% and thus n—t = 2¥+1. Since
fa(2) | p™, wehave p | fy(2) =221 —1. Sop=3andn—t=2. O
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Using GAP software, we checked all small POS-groups G (|G| <
2000), G has a cylic Sylow p-subgroup or a generalized quaternion Sy-
low 2-group or a normal p-complement or a normal Sylow p-subgroup
for every p € m(G). We put a conjecture to close this note.

Conjecture 4.8. Let G be a POS-group and p € 7(G). Then G satisfies
one of following conditions:

(a) G has a cylic Sylow p-subgroup or a generalized quaternion Sylow
2-group;

(b) G has a normal p-complement;

(¢) G has a normal Sylow p-subgroup.
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