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2-RECOGNIZABILITY OF THE SIMPLE GROUPS Bn(3)

AND Cn(3) BY PRIME GRAPH
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Communicated by Ali Reza Ashrafi

Abstract. Let G be a finite group and let GK(G) be the prime
graph of G. We assume that n > 5, is an odd number. In the paper,
we show that the simple groups Bn(3) and Cn(3) are 2-recognizable
by their prime graphs. As the result, the characterizability of the
groups Bn(3) and Cn(3) by their spectra and by the set of orders
of maximal abelian subgroups are obtained. Also, we conclude that
the AAM’s conjecture is true for these groups.

1. Introduction

For a finite group G we denote by π(G) the set of all prime divisors
of |G| and the spectrum ω(G) of G is the set of element orders of G,
i.e., a natural number n is in ω(G) if there is an element of order n in
G. The prime graph (or Gruenberg-Kegel graph ) GK(G) of G is the
graph with vertex set π(G) where two distinct vertices p and q are adja-
cent by an edge (briefly, adjacent) if pq ∈ ω(G), in which case, we write
(p, q) ∈ GK(G). Given an arbitrary subset ω of the set of natural num-
bers, denote by h(ω) the number of pairwise nonisomorphic finite groups
G such that ω(G) = ω. Given a natural number m, a group G is said
to be m-recognizable by spectrum if h(ω(G)) = m. In particular, G is
said to be characterizable by spectrum if h(ω(G)) = 1. The recognition
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problem is solved for a finite group G if we know the value of h(ω(G)).
Along side the above definitions, we denote by k(GK(G)) the number of
isomorphism classes of the finite groups H satisfying GK(G) = GK(H).
Hence, if G is a finite group then k(GK(G)) > 1. Given a natural
number m, a finite group G is called m-recognizable by prime graph if
k(GK(G)) = m. Usually, a 1-recognizable group by prime graph is
called a characterizable group by prime graph. The recognition problem
by prime graph have been considered for most of finite nonabelian simple
groups with disconnected prime graphs ([8, 9, 10, 15, 20]), but L16(2) is
the only group with connected prime graph which its recognizability by
prime graph has been solved completely so far ([11, 21]). Here, we prove
that the simple groups Bn(3) and Cn(3), where n > 3 is an odd number,
are 2-recognizable by prime graph and since these groups have connected
prime graphs when n is non-prime, thus we obtain the first example of
two infinite series of finite simple groups with connected prime graphs
which their recognition problem by prime graph are solved thoroughly.
In fact, we have the following main theorem:

Main theorem. Let n > 3 be an odd number. The simple groups
Bn(3) and Cn(3) are 2-recognizable by prime graph. In fact if G is a
finite group with GK(G) = GK(Bn(3)), then G ∼= Bn(3) or G ∼= Cn(3).
Also, if G is a finite group such that GK(G) = GK(B3(3)), then
G ∼= B3(3), C3(3), D4(3), or G/O2(G) = Aut(2B2(8)).

Note that for an odd prime n, the above groups have disconnected
prime graphs and their 2-recognizability by prime graph have been con-
sidered in [15]. Since the method we used to prove the main theorem is
based on our result in [6], we give a new proof for 2-recognizability of
these groups in the disconnected case as well.

In [22, 23], it has been proved that if n > 3 is an odd prime and Bn(3)
and Cn(3) have disconnected prime graphs, then these groups are char-
acterizable by their spectra. Since the knowledge of ω(G) determines
GK(G), as the first result of the main theorem, we can conclude that
these groups are characterizable by their spectra in the connected case
as well.

The non-commuting graph of a nonabelian group G, denoted by ΓG,
is the graph with vertex set G \Z(G), where two distinct vertices x and
y are connected by an edge if xy 6= yx. Problem 16.1 in the Kourovka
notebook [12] is the AAM’s conjecture, which asserts that simple groups
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are determined uniquely by the non-commuting graph. As prominent
corollaries of the main theorem, the validity of the AAM’s conjecture
and characterizability by the set of orders of maximal abelian subgroups
can be obtained for the groups Bn(3) and Cn(3), where n > 3 is odd.

2. Preliminaries

If q is a natural number, r is an odd prime and gcd(r, q) = 1, then by
e(r, q) we denote the smallest natural number m such that qm ≡ 1 (mod
r). If r = 2, then we put e(2, q) = 1 if q ≡ 1 (mod 4), and e(2, q) = 2
otherwise.

Lemma 2.1. [18, Corollary to Zsigmondy’s theorem] Let q be a natural
number greater than 1. For every natural number m there exists a prime
r with e(r, q) = m, except for the cases q = 2 and m = 1, q = 3 and
m = 1, and q = 2 and m = 6.

The prime r with e(r, q) = m is called a primitive prime divisor of
qm−1. It is obvious that qm−1 can have more than one primitive prime
divisor. We denote by rm(q) some primitive prime divisor of qm−1. Also,
η(n) for an integer n, has been defined in [17] as follow:

η(n) =

{
n if n is odd;
n
2 otherwise.

Lemma 2.2. [18, Proposition 2.4], [17, Proposition 3.1] Let G be
one of the simple groups of Lie type Bn(q) or Cn(q) over a field of
characteristic p and let r, s be odd primes with r, s ∈ π(G) \ {p}. Let
k = e(r, q), l = e(s, q) and suppose that 1 ≤ η(k) ≤ η(l). The following
statements hold:

(1) r and s are nonadjacent if and only if η(k) + η(l) > n and l
k is

not an odd natural number,
(2) r and p are nonadjacent if and only if η(e(r, q)) > n− 1.

Lemma 2.3. [17, Proposition 4.3] Let G = Bn(q) or G = Cn(q) be a
finite simple group of Lie type over a field of order q with odd charac-
teristic p. Let r be an odd prime divisor of |G|, r 6= p, and k = e(r, q).
Then r and 2 are nonadjacent if and only if η(k) = n and one of the
following holds:

(1) n is odd and k = (3− e(2, q))n;
(2) n is even and k = 2n.
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Definition 2.4. [2] Let S be a finite simple group of Lie type in charac-
teristic p. Let A be any abelian p-group with an S-action. An element
s ∈ S is said to be unisingular on A if s has a (non-zero) fixed point on
A. S is said to be unisingular if every element s ∈ S acts unisingularly
on every finite abelian p-group A with an S-action.

Lemma 2.5. [7, Theorem 1.3] The simple groups Bn(q) and Cn(q) of
characteristic p is unisingular if and only if q = p 6= 2.

Lemma 2.6. [14, Lemma 1] Let G be a finite group, let N be a normal
subgroup of G and let G/N be a Frobenius group with Frobenius kernel
F and cyclic complement C. If gcd(|F |, |N |) = 1 and F not lying in
NCG(N)/N then s.|C| ∈ ω(G) for some s ∈ π(N).

3. Main results

Lemma 3.1. If n > 3 is an odd number and q is the power of an odd
prime p, then the groups Bn(q) and Cn(q) include subgroups isomorphic
to Frobenius groups of the form U : Zrn(q) and T : Zrn−2(q), where U and
T are nontrivial p-groups.

Proof. By [13, Proposition 4.1.20], Bn(q) contains a subgroup iso-
morphic to U : SLn(q), where U is a nontrivial p-group. Since rn(q) ∈
π(SLn(q)), SLn(q) has a cyclic subgroup of order rn(q), namely Z. Now
by Lemma 2.2(2), since n is odd, we can conclude that U : Z is the first
desired Frobenius subgroup. Also, similar to the previous argument
Bn−2(q) has a Frobenius subgroup of the form T : Zrn−2(q), where T is
a nontrivial p-group.

Let bd(C1, C2, ..., Cm) denote a block-diagonal matrix with square
blocks C1, C2, ..., Cm. Put

Wn = bd(

n times︷ ︸︸ ︷
W,W, ...,W , 1), where W =

(
0 1
1 0

)
.

We have SO2n+1(q) = {X ∈ SL2n+1(q)| XtWnX = Wn} and Bn(q) is
the derived subgroup of SO2n+1(q). Of course
M = {bd(I4, X)|X ∈ SL2n−3(q), XtWn−2X = Wn−2} is a subgroup of
SO2n+1(q) and it is isomorphic to SO2n−3(q). Thus the derived sub-
group of M is a subgroup of Bn(q) and it is isomorphic to Bn−2(q), so
we can assume that Bn−2(q) ↪→ Bn(q) and hence, Bn(q) has the second
desired Frobenius subgroup as well.
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Now we consider Cn(q). For Jn =

[
0 In
−In 0

]
we have Sp2n(q) =

{X ∈ GL2n(q)| XtJnX = Jn}. Let H and K be the following sets:

H :=

{[
In A
0 In

]
| A ∈Mn(q) and At = A

}
,

K :=

{[
B 0
0 (Bt)−1

]
| B ∈ GLn(q)

}
.

Obviously, H, K ≤ Sp2n(q), K ∼= GLn(q) and K ≤ NSp2n(q)(H). Also,
it is easy to check that H is a nontrivial p-group and does not contain
the center of Sp2n(q) which consists of the matrices ±I2n and hence
Cn(q) has a subgroup of the form U : K̄, where U = H{±I2n}/{±I2n}
is a nontrivial p-group and K̄ = K/{±I2n}. Since rn(q) ∈ π(K̄), K̄
has a cyclic subgroup of order rn(q), namely Z. By Lemma 2.2(2) since
n is odd, we conclude that U : Z is one of the desired Frobenius sub-
group of Cn(q). Also N = {bd(I2, X, I2)|X ∈ GL2(n−2)(q), X

tJn−2X =
Jn−2} is a subgroup of Sp2n(q) and it is isomorphic to Sp2(n−2)(q).
Thus N{±I2n}/{±I2n} is a subgroup of Cn(q) which is isomorphic to
Sp2(n−2)(q). But as it was mentioned, Sp2(n−2)(q) contains a subgroup of
the form U0 : Z0, where U0 a is nontrivial p-group and Z0 is a cyclic sub-
group of order rn−2(q). We claim that U0 : Z0 is a Frobenius subgroup of
Sp2(n−2)(q). If not, then U0 : Z0 contains an element of order prn−2(q),
so (p, rn−2(q)) ∈ GK(Sp2(n−2)(q)). Thus since p 6= 2 and Cn−2(q) =
Sp2(n−2)(q)/{±I}, we deduce that (p, rn−2(q)) ∈ GK(Cn−2(q)), contra-
dicting Lemma 2.2(2). This leads us to find the second desired Frobenius
subgroup of Cn(q).

Proof of the main theorem. In [6] we have proved that if n ≥ 9 and
GK(G) = GK(Bn(3)), then there exists a finite nonabelian simple group
S such that S ≤ G/K ≤ Aut(S) and S ∼= Bn(3) or S ∼= Cn(3), where
K is the maximal normal solvable subgroup of G. Also, we know that
|Out(Bn(3))| = |Out(Cn(3))| = 2, hence G/K = S or G/K = Aut(S).
Thus the last step to complete the proof is to show that G ∼= S and
K = 1. We will do it in the following two steps:

Step I. In this step, we will prove that G/K = S. If not, then
G/K = Aut(S) and we will consider the cases S ∼= Bn(3) and S ∼= Cn(3)
separately:
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Case 1. If S ∼= Bn(3), then since [SO2n+1(3) : Bn(3)] = 2, we have
Bn(3) is a normal subgroup of SO2n+1(3) and hence,

NSO2n+1(3)(Bn(3)) = SO2n+1(3), Bn(3) ∩ CSO2n+1(3)(Bn(3))CBn(3)

and Bn(3)CSO2n+1(3)(Bn(3)) ≤ SO2n+1(3).

Thus, since Bn(3) is a nonabelian simple group, we deduce that the or-
der of the group CSO2n+1(3)(Bn(3)) divides 2. If |CSO2n+1(3)(Bn(3))| = 2,
then since CSO2n+1(3)(Bn(3)) is a normal subgroup of SO2n+1(3), we can
easily conclude that CSO2n+1(3)(Bn(3)) ⊆ Z(SO2n+1(3)) which leads us
to a contradiction, because Z(SO2n+1(3)) = 1. Thus CSO2n+1(3)(Bn(3)) =
1. Now we have SO2n+1(3) ∼= NSO2n+1(3)(Bn(3))/CSO2n+1(3)(Bn(3)). So
Aut(S)contains a subgroup isomorphicto SO2n+1(3) and since SO2n+1(3)
has a maximal torus of order 3n − 1, we conclude that

(2, rn(3)) ∈ GK(G) = GK(Bn(3)),

which is impossible by Lemma 2.3.

Case 2. If S ∼= Cn(3), then (G/K)/Cn(3) = Out(Cn(3)). As was stated

in the proof of Lemma 3.1, for Jn =

[
0 In
−In 0

]
, we have Sp2n(3) =

{X ∈ GL2n(3)| XtJnX = Jn} and Cn(3) = Sp2n(3)/{±I}. Accord-

ing to [13, Relation 2.4.3 and Proposition 2.4.4], Out(Cn(3)) = 〈δ̈〉,
where δ = bd(−In, In){±I} and δ̈ denotes the image of δ in Out(Cn(3)).
Thus δ centralizes a subgroup K = {bd(A, (At)−1){±I}|A ∈ GLn(3)} of
Cn(3) which is isomorphic toGLn(3)/{±I}. This shows that Aut(Cn(3))
has an element of order 3n− 1 and we can get a contradiction similar to
the previous case.

Step II. Here we want to show that K = 1. It suffices to show that
GK(G) 6= GK(S) whenever K 6= 1. Replacing K by K/K1, where K1

is a maximal subgroup of K which is normal in G allows us to assume
that K is an elementary abelian p-group and S acts on K faithfully and
irreducibly. If p = 3 , then by Lemma 2.5 each element of S centralizes
some nontrivial element of K, and so 3 and rn(3) are adjacent which is
impossible by Lemma 2.2(2).

If p 6= 3, then we can assume that e(p, 3) = u. Of course by Lemma
3.1, there are Frobenius subgroups of the form U : Zrn(3) and T :
Zrn−2(3) in S = G/K, where U and T are nontrivial 3-groups. Ac-
cording to Lemma 2.6, p is adjacent to rn(3) and rn−2(3) in GK(S).
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Since (p, rn(3)) ∈ GK(S), Lemma 2.3 implies that p 6= 2. Thus by
Lemma 2.2(1), n+η(u) ≤ n or n/u is an odd number, because n is odd.
This leads to u | n. Therefore u is an odd number, so η(u) = u. Also,
(p, rn−2(3)) ∈ GK(S), so Lemma 2.2(1) implies that n − 2 + η(u) =
n− 2 + u ≤ n or (n− 2)/u is an odd number. This shows that u ≤ 2 or
u | (n, n− 2) = 1 and hence, u = 1, because n and u are odd numbers.
This implies that p = r1(3) which is impossible by Lemma 2.1.

Thus, according to Steps I and II, the main theorem is obtained for
n > 9. Also, if n 6 7, then the Main theorem in [15] completes the proof.

As consequences of our main result, we have the following corollaries:

Corollary 3.2. Let n be an odd number. The simple groups Bn(3) and
Cn(3) are characterizable by their spectra except the case B3(3) which is
2-recognizable.

Proof. Since ω(Bn(3)) 6= ω(Cn(3)) [16, Proposition] and ω(B3(3)) =
ω(D4(3)) [4], thus the proof is straightforward by the main theorem. �

If G is a finite group, by M(G) we denote the set of orders of maxi-
mal abelian subgroups of G and a group G is said to be characterizable
by the set of orders of its maximal abelian subgroups, if G is uniquely
determined by M(G).

Lemma 3.3. [3, Lemma 2] Let G and H be finite groups. If M(G) =
M(H), then GK(G) = GK(H).

Corollary 3.4. If n is an odd number, then the simple groups Bn(3)
and Cn(3) are characterizable by their sets of orders of maximal abelian
subgroups.

Proof. Table 2 in [19] shows thatM(Cn(3)) 6= M(Bn(3)) andM(B3(3)) 6=
M(D4(3)) 6= M(C3(3)). Also, it implies that max(M(B3(3))) = 35,
max(M(C3(3))) = 36 and max(M(2B2(8))) = 24.
Also, since [Aut(2B2(8)) : 2B2(8)] = 3, M(G/O2(G)) 6= M(Aut(2B2(8))),
for every finite group G with M(G) = M(B3(3)) or M(G) = M(C3(3))
and hence, Lemma 3.3 and the main theorem complete the proof. �

The Non-commuting graph of a nonabelian group G , denoted by
ΓG is the graph with vertex set G \ Z(G), where two distinct vertices
x and y are adjacent by an edge if xy 6= yx. Problem 16.1 in the
Kourovka notebook [12] is AAM’s conjecture, which says simple groups
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are determined uniquely by the non-commuting graph. This conjecture
is valid for all non-abelian finite simple groups with disconnected prime
graph (for examples see paper by Darafsheh [5] and references quoted
in that paper).

Lemma 3.5. [1, Theorem 2] Let P be a finite nonabelian simple group
and G is a group such that ΓG

∼= ΓP , then GK(G) = GK(P ) and
M(G) = M(P ).

Corollary 3.6. The AAM’s Conjecture is true for the groups under
study.

Proof. By Lemma 3.5 and Corollary 3.4, the proof is straightforward.
�
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