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ANNIHILATOR-SMALL SUBMODULES

T. AMOUZEGAR-KALATI AND D. KESKIN-TUTUNCU*

Communicated by Bernhard Keller

ABSTRACT. Let Mg be a module with S = End(Mg). We call a
submodule K of Mg annihilator-small if K + 7T = M, T a sub-
module of Mg, implies that £s(T) = 0, where £s indicates the left
annihilator of 7" over S. The sum Agr(M) of all such submodules
of Mg contains the Jacobson radical Rad(M) and the left singu-
lar submodule Zs(M). If Mg is cyclic, then®Ar(M) is the unique
largest annihilator-small submodule of Mz. We study Ar(M) and
Ks(M) in this paper. Conditions when A (M) is annihilator-small
and Kg(M) = J(S) = Tot(M, M) are given.

1. Introduction

Throughout this paper all rings are associative with identity and mod-
ules are unitary right modules. Let My be any module. The endomor-
phism ring End(M) of the right R-module M will be denoted by S. We
abbreviate the Jacobson radical as Rad(M) for any right R-module M.
The notations N C%* M and N C™* M mean respectively that a sub-
module N of M is essential and maximal in the module Mpg. The left
annihilator of any submodule X of M is denoted by ¢g(X) while the
right ‘annihilator of any endomorphism f of M, namely the kernel of f,
is denoted by ry/(f).
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In [3], Nicholson and Zhou defined annihilator-small right (left) ideals.
In this work, inspired by this nice work we introduce annihilator-small
submodules of any right R-module M. Let Mg be a module and K C
Mp a submodule of M. We say that K is an annihilator-small submod-
ule of Mp if K+ X = M, X a submodule of Mp, implies that £g(X) = 0.
Clearly every small submodule is annihilator-small. In Proposition 2.2,
we prove that the converse is true if My is a coretractable module. Let
Mp, be a semi-projective module and £ € S. Then we prove the following
which generalizes [3, Lemma 4]:

The submodule k(M) is annihilator-small in M if and only if bk(M) &
b(M) for all 0 # b € S if and only if £g(1g — ks) = 0 for all s € S if and
only if 5(1g — sk) = 0 for all s € S if and only if {g(k — ksk) = lg(k)
for all s € S (see Lemma 2.7).

In this note our aim is to generalize the other results of [3] from the
ring case to the module case in light of Lemma 2.7. For example, we
examine when the equalities J(S) = Kg(M) = Tot(M, M) are satisfied.
As we mentioned in the abstract we study Az(M) which is the sum
of all annihilator-small submodules of Mpg. Relevant with it we prove
Proposition 3.5 as a generalization of [3, Theorem 11].

2. Annihilator-small submodules

Definition 2.1. We say that a submodule K of a module My, is annihila-
tor-small (a-small) if K+ X'= M, X a submodule of Mg, implies that
ls(X) = 0 where S = End(M). In this case, we write K <, M.

It is clear that every small submodule is a-small, but the converse is
not true in general (consider the submodule nZ of the Z-module Z).

An R-module My is.called coretractable if, for any proper submodule
K of M, there exists a nonzero homomorphism f : M — M with f(K) =
0, that is, Hom (M /K, M) # 0.

Proposition 2.2. Let Mg be a coretractable module. If K <, M, then
K< M.

Proof. Let K + X = M for any submodule X of M. By hypothesis,
ls(X) = 0. But Mg is coretractable, thus X = M, and so K < M. O

Lemma 2.3. Let Mg be a module. If N C K <, M, where N is a
submodule of M, then N <, M.

Proof. Clear. g
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Let Mp be any module. We set Zg(M) = {m € M | lg(m) =
ls(mR) C®° gS}.

Proposition 2.4. If K is an a-small submodule of a finitely generated
module Mg, then so is K + Rad(M) + Zg(M).

Proof. Let (K +Rad(M) + Zs(M))+ X = M where X is a submodule
of Mp. Since Rad(M) <« M, K + Zs(M) + X = M. Assume that
Mpr =>"",a;R. Now, k;+zi+x; = a; where k; € K, z; € Zg(M), z; €
X. Hence K+ " ;zR+ X = M. Thus 0 = ls(> iz R+ X) =
(NP 1€s(ziR)) N lg(X) since K <, M. As lg(z;) C°° g9, we have
ls(X) =0. O

Lemma 2.5. If T is a submodule of Mg and (s(T) C° ¢S, then
rvls(T) <4 Mg. In particular, T <, Mg.

Proof. Let rpls(T)+X = M. Then 0 = lg(M) = bgrpls(T)Nls(X) =
ls(T)Nts(X), so £s(X) = 0 since £g(T) C%® gS. The last observation
is by Lemma 2.3 since T' C rj¢s(T") always holds. O

Note that the converse of Lemma 2.5 is true if ry/[ls(T) N Sb] =
rarls(T) 47 (b) holds for all submodules 7" of Mp and all b € S. To see
this, let £5(7") N .Sb = 0 for an element b of S Then ryls(T) +rr(b) =
M, so lgrpy(b) = 0 since rylg(T) <4 Mpr. Hence b = 0 because
Sb C Lgrp(b), proving that £5(17) €% gS.

Following Wisbauer [5,.p. 261},7an R-module Mpg is called semi-
injective if for any f € S,

Sf = ts(ker(f)) = €s(rm(f))

(equivalently, for any monomorphism f : N — M, where N is a factor
module of Mg, and for any homomorphism g : N — M, there exists
h: M — M such that hf = g).

Proposition 2.6. Let Mp be a coretractable semi-injective module and
T a submodule of Mp. Then £g(T) C° ¢S if T <4 M.

Proof. This follows by Proposition 2.2 and [1, Proposition 4.5]. O

Recall that a module My is called semi-projective if for any epimor-
phism f: M — N, where N is a submodule of Mg, and for any homo-
morphism g : M — N, there exists h : M — M such that fh = g.

Lemma 2.7. Consider the following conditions for a right R-module M
and k € S:
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(1) k(M) <a Mp.

(2) bk(M) G b(M) for all0#be S.
(3) ls(lg — ks) =0 forallseS.

(4) ls(ls —sk) =0 foralls € S.

(5) ls(k — ksk) = Lg(k) for all s € S.

s(
Then (1) = (2) = (3) = (4) = (5). If Mg is semi-projective, then

() = (1).

Proof. (1) = (2) Assume that b € S and bk(M) = b(M). Let m € M.
Then b(m) = bk(m’) for some m’ € M. Hence m — k(m') e wyp(b).
Therefore m € rp(b) + k(M). Namely, M = rp(b) + k(M). Since
k(M) <o Mp, tsras(b) = 0. As Sb C Lsrr(b), b= 0.

(2) = (3) Let s € S and b € £s(1g — ks). Then b = bks implies that
b(M) = bks(M) C bk(M). By (2), b=0.

(3) = (4) Let s € S and b € £5(1g — sk). Then b(lg —sk) = 0 implies
that bs(lg — ks) = b(s — sks) = b(1ls — sk)s = 0. Hence bs.= 0 by (3),
and so b = bsk = 0.

(4) = (5) Let s € S and b € lg(k — ksk). By (4), bk = 0. Hence
b € s(k). The other inclusion always holds.

(5) = (1) Assume that Mp is semi-projective. Let M = k(M) + X
for a submodule X of Mp. Let b € £g(X) andm € M. Then there exist
m’ € M and x € X such that m' = k(m’) + z. Now b(m) = bk(m’),
and so b(M) = bk(M). Since Mp is semi-projective, there exists a
homomorphism s € S such.that bks = b. Note that b(k — ksk) = 0.
Hence b € {g(k — ksk) = €g(k). Therefore bk = 0, and hence b =0. O

Note that condition 2 in Lemma 2.7 implies that if k(M) <, Mg and
k € S is not nilpotent, then k(M) 2 k*(M) 2 k3(M) 2 - - is strictly
decreasing.

Corollary 2.8. (See (3, Lemma 4]) If R is a ring, then the following
are equivalent for k € R:
(1) kR <4 Rr, namely if R = kR + X, X a right ideal of R, then
(r(X)=0.
bR 2 bkR for all 0 # b € R.
lr(1 —Fkr) =0 for allT € R.
lr(1 —71k) =0 for allT € R.
Cr(k — krk) = (gr(k) for allr € R.

Let us define Kg(M) ={s€ S| s(M) <, Mg} for any module Mp.

(2)
(3)
(4)
(5)
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Corollary 2.9. Let Mp be a module and k € Kg(M). Then kS C
Kg(M). If My is semi-projective, then Sk C Kg(M).

Proof. By Lemma 2.3, kS C Kg(M). Now assume that Mp is semi-
projective. Let s € §. We show that sk(M) <, Mg. Let g € S. Then
ls(lg — gsk) = 0 since k(M) <, Mg, by Lemma 2.7(4). Again by
Lemma 2.7(4), sk(M) <4 Mpg. Hence Sk C Kg(M). O

Corollary 2.10. We have Kg(M) C rg(Soc(Sg)). Moreover, J(S) C
Kg(M) provided that Mg is semi-projective.

Proof. Let s € Kg(M). We need to show that Soc(Sg)s = 0. Let
0 #t e Soc(Ss). Thent € S1®Sy®--- @S, where Sy,---,S, are
the simple right ideals of S. Assume ts # 0 and ¢ = ¢ + t9 + -+ t,
where t; € S;. Then t;s # 0 for some i € {1,--- ,n}. Since S; is simple,
t;sS = S;. Now, t; = tjsa for some a € S. Then #;(lg — sa) = 0,
namely t; € £g(1lg —sa). Since s(M) <4 M, ¢s(1lg—sa) = 0 by Lemma
2.7, hence t; = 0, a contradiction. Thus'ts.= 0. So we proved that
Soc(Sg)Ks(M) =0, hence Kg(M) C rg(Soe(Ss)).

Now let k € J(S). We show that k€ Kg(M). Let s € S. Take
a € lg(lg—ks). Then a(lg—ks) = 0. Since 1g— ks is invertible, o = 0.
Thus ¢s(1s — ks) =0 for all s € S. By Lemma 2.7, k € Kg(M). O

Corollary 2.11. Let Mg be a-quasi-projective module. Then Kg(M) =
J(S) =V (M), where V(M) ={p &S| Imp < M}.

Proof. Let f € Kg(M). We show that fS <« Sg. Let I + fS = S
for a right ideal I €S. Then 1 = fs+ g for some s € S, g € [
and M = fs(M)+ g(M) € f(M)+ g(M). Then the composition

M i> M M /g(M) is an epimorphism and there exists A € S with

p = pfA. This means that p(1 — fA) = 0. Since f(M) <, M, by
Lemma 2.7, ¢5(1 — f\) = 0. Thus p = 0, namely g(M) = M. As Mp
is quasi-projective, there exists h € S with 1 = gh which means I = S.
Now we have the equalities by using Corollary 2.10 and [2, 4.25]. (]

Corollary 2.12. Let Mg be a module and f € S. If f(M) <, Mg,
then fS <, Sg. The converse is true if Mg is semi-projective.

Proof. First, assume that f(M) <, M. Let S = fS + I where I is
a right ideal of S. Then 1g = fs+z, s € S, z € I. Hence M =
fs(M) +xz(M) = f(M) + x(M). Since f(M) <4 M, ls(x(M)) = 0.
Thus £5(IM) = 0, and so ¢g(I) = 0. Therefore fS <, Sg. Conversely,
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let fS <, Sg. By Corollary 2.8, {s(f — fsf) = £s(f) for all s € S. By
Lemma 2.7, f(M) <, Mg. O

Corollary 2.13. Let My be any module. If f?> = f € Kg(M), then
f=0.

Proof. Observe that by Lemma 2.7 (4) f(M) <, Mg implies ¢g(1lg —
f)=0. Since f € ls(1s— ), f=0. O

Corollary 2.14. Let My be any module. The following are equivalent
for a mazximal left ideal I of S = End(M):

(1) rar(I) <o Mp.

(2) I C*% gS.

Proof. (1) = (2) Let rpr(I) <o Mp. Assume that I is not essential in
5S. Then there exists a nonzero left ideal J of S such that 1 NJ = 0.
Since I is a maximal left ideal of S, then I is a direct summand of
sS. So, there exists an idempotent e € S such that I =/Se. Hence
rv(I) =(1—e)(M) <, M. Then 1 —e € Kg(M). By Corollary 2.13,
e = 1, a contradiction.

(2) = (1) Let I C**% gS. Let M = rp () + X for a submodule X of
Mp. Then ¢g(M) =0 = lgrp (1) N Lg(X) implies that I N/lg(X) = 0.
Since I is essential in g5, £g(X) = 0. O

Let f be an element in S. Then f is said to be partially invertible if,
fS (equivalently, Sf) contains a nonzero idempotent.
For an R-module Mg, the total of Mg is defined as

Tot(S) = Tot(M, M) ={f € S| f is not partially invertible}.
The total may not be closed under addition. In fact, if 0 and 1 are the
only idempotentsin S, then total of Mg is the set of non-isomorphisms.
Proposition 2.15. If Mg is a module, then Kg(M) C Tot(M,M).

Proof. If f € Kg(M) but f & Tot(M, M), then f is partially invertible.
So, there'exists 0 # e? = e € fS. By Corollary 2.9, e € Kg(M), which
contradicts Corollary 2.13. O

If I is a subset of a ring R, then R is said to be I-semipotent if every
right (equivalently, left) ideal not contained in I contains a nonzero
idempotent, equivalently if every element a ¢ I has a partial inverse. A
ring R is called semipotent if R is J(R)-semipotent.

Lemma 2.16. Let I be a subset of S = End(Mg). Then the following
are equivalent:
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(1) S is I-semipotent.
(2) Tot(M,M)C 1.

Proof. See [3, Lemma 20]. O

Let U be a submodule of an R-module Mp. The module My is called
U -semipotent if, for every submodule A of M such that A € U, there
exists a nonzero idempotent e : M — M such that e(M) C A and
e(M) € U. Clearly R is a semipotent ring if and only if Rp is J(R)-
semipotent (see [4, Definition 2.5]).

Lemma 2.17. Let U be a submodule of a semi-projective module Mp.
If M is U-semipotent, then Tot(M,M)M C U.

Proof. Let a € Tot(M,M). If a(M) ¢ U, then by hypothesis, there
exists a nonzero idempotent e : M — M such that e(M) € a(M) and
e(M) ¢ U. Since Mg is semi-projective, there exists f : M — M
such that af = e, it is a contradiction. Therefore a(M) C U, hence
Tot(M, M)M C U. 0

Proposition 2.18. Let S = End(Mg) for any module Mr. Then S is
semipotent if and only if J(S) = Tot(M,M).

Proof. See [3, Theorem 21]. O

Proposition 2.19. Let S = End(MRg) for any semi-projective module
Mp. Then J(S) = Kg(M) = Tot(M;M) if S is semipotent.

Proof. By Corollary 2.10, J(S) € Kg(M). Let s € Kg(M). If s ¢
J(S), then since S is J(S)-semipotent, Kg(M) have a nonzero idem-
potent, which is a contradiction (see Corollary 2.13). Thus J(S) =
Kgs(M). By Proposition 2.15, Kg(M) C Tot(M,M). On the other
hand, S is Kg(M)-semipotent since J(S) = Kg(M). So by Lemma
2.16, Tot(M, M) ©Kg(M) (also see Proposition 2.18). O

Proposition 2.20. Let S = End(Mg) for any semi-projective module
Mpg in whichlg(a) =0, a € S, implies aS = S. Then Kg(M) = J(S).

Proof. Observe that J(S) C Kg(M) by Corollary 2.10. Let k € Kg(M).
Then k(M) <4 M, so ls(1s—ks) = 0forall s € S by Lemma 2.7. Hence
(1g — ks)S = S by hypothesis. Thus k € J(S). O

A ring R is called right Kasch if each simple right R-module embeds
in R; equivalently, if /r(T") # 0 for every (maximal) right ideal T" of R.
Call R left principally injective if every R-linear map Ra — R, a € R,
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extends to R — R; equivalently if aR is a right annihilator in R for each
a € R. Finally, call R a left C ring if every left ideal that is isomorphic
to a direct summand of gR is itself a direct summand of gR.

Example 2.21. In each of the following cases we have J(S) = Kg(M)
for a semi-projective module Mpg:

(1) S is semipotent.

(2) S is right Kasch.

(3) S is left principally injective.
(4) S is a left Co ring.

Proof. (1) Follows by Proposition 2.19.

(2) Let a € S and fg(a) = 0. If aS # S, then fg(aS) # 0 by
(2); that is, ¢s(a) # 0, a contradiction. Thus by Proposition 2.20,
J(S) = Kg(M).

(3) Let a € S and £g(a) = 0. By (3), aS = rg(X). Then X C lg(a) =
0, so aS =rg(X) = S. Thus by Proposition 2.20, J(S) = Kg(M).

(4) Let a € S and fg(a) = 0. Then Sa ='S. By (4), Sa is a direct
summand of S. Then a = aba for some element b of S. But then 0 =
ls(a) = Lg(ab) = S(1g — ab). Now ab = 1g and § = (ab)S & (15 — ab)S
imply that S = aS. By Proposition 2:20, Kg(M) = J(5). O

3. The submodule Ar(M)

Lemma 3.1. Let M = mR, where m € M, be a cyclic R-module. Then
the following are equivalent for k € M :

(1) kR <, M.

(2) f(kR) S f(M) for allO# f € S.
(3) bg(m=kr)=0 for allT € R.

Proof. (1) = (2) If f(kR) = f(M), then f(m) = f(kr) for some r € R.
Thus f € ¢s(m — kr). But kR + (m — kr)R = mR = M. So, by (1),
ls(m —kr)=0. Thus f =0.

(2)= (3) If f € bg(m —kr) and r € R, then f(m) = f(kr) C f(kR).
By (2)7 /=0

(3) = (1) If kR + X = M, where X is a submodule of Mg, then
m=kr+z, re€ R, ve X Iffels(X),then f(m)= f(kr). So
f €ls(m—kr). Hence f =0 by (3). O
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Let Mg be amodule. An element & € M is called a-smallif kR <, M.
For convenience, define

KpM)={ke M | kisa—smallin M} ={ke M | kR <, M}.

Note that Kr(M) may not be closed under addition: for example, con-
sider —2 and 3 in the Z-module Z.

Proposition 3.2. Let M = mR be a cyclic R-module and K any sub-
module of Mr. Then the following are equivalent:

(1) K is a-small in M.

(2) K C Kr(M).

(3) s(m — k) =0 for every k € K.

Proof. (1) = (2) By Lemma 2.3.

(2) = (3) Lemma 3.1.

(3) = (1) Let K + X = M, where X is a submodule of Mp. If
m=k+ux, ke K, v X, then £5(X) C lg(m —k) =0 by (3). Hence
K<, M. O

The sum of a-small submodules need not be a-small: for example,
consider 3Z + (—2)Z in the Z-module Z.
Let Mg be a module. We define

AR(M) =Y {K <Mp | K <4 M}.

Clearly, Kr(M) C Ar(M) in every right R-module Mg, but this may
not be equality (consider the Z-module Z).

Proposition 3.3. Let Mp be a module. Then:
(1) Ag(M) ={a1+zo+ -+, | 2, € Kp(M) for each i, n > 1}.
(2) Ap(M)=Kr(M)R.
(3) Rad(M) C Kg(M) and Zs(M) € Kg(M).

Proof. (1)Set X ={z1+z2+-- -+, | 2; € Kr(M) for each i, n > 1}.
If & €@ Ag(M); then x € X1 + X9 + -+ + X, where X; <, Mp, for each
. fe=x14+20+ -+ 2y, x; € X;, then ;R <, Mg by Lemma 2.3.
Hence x; € Kr(M) for each i. Thus Ar(M) C X. It is easy to see that
X C Ap(M).

(2) Follows by (1) and the fact that Kr(M) C Ar(M).

(3) Let x € Rad(M). Then zR < M and hence zR <, M. So
xz € Kr(M). Therefore Rad(M) C Kr(M). Now let y € Zg(M). Then
ls(y) = ls(yR) C*** ¢S. By Lemma 2.5, yR <, M. Soy € Kr(M).
Therefore Zg(M) C Kr(M). O
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Proposition 3.4. Let Mg be a coretractable module. Then Rad(M) =
Ar(M) = Kr(M). Moreover, if Mg is semi-injective, then Rad(M) =
AR(M) = Kgr(M) = ry(Soc(sS)) = Zs(M).

Proof. By Proposition 2.2, Rad(M) = Ar(M) = Kr(M). Now sup-
pose that Mp is semi-injective. Then by [1, Corollary 4.7], Rad(M) =
Ar(M) = Kr(M) = rp(Soc(sS)). Now, let z € Kr(M). Then
xR <, M. By Proposition 2.6, {g(zR) C** gS. Thus x € Zg(M).
Hence Zg(M) = Kr(M) by Proposition 3.3(3). O

Proposition 3.5. Let Mp be a module. Consider the following condi-
tions:

)
) <oq M.
)

Moreover, if M = mR, wherem € M, and one of the above conditions
holds, then we have:

(a) Ar(M) is the unique largest a-small submodule of M.
(b) Ap(M) ={ke M | ls(m = kr)=0 for all r € R}.
(c) Ar(M) = (WU €™ M'| Ag(M) C U}.

Proof. (1) = (2) Since (k + )R € kR + IR, Kr(M) is closed under
addition by Lemma 2.3.

(2) = (3) It is clear that Kp(M) C Ar(M). By (2) and Proposition
3.3(1), Ar(M) C Kp(M).

(4) = (1) Let K <q¢ M and L <, M. Then K C Ar(M) and
L C Ar(M); so K + L C Ar(M). Thus, by (4) and Lemma 2.3,
K+ L<, M.

(3) =.(4) Let. M = mR for some m € M and Ar(M)+ X = M for
a submodule X of Mg. So Kr(M)+ X = M by 3). If m = k+x
with k € Kr(M) and = € X, then M = kR+ X and kR <, M. Hence
ls(X)=0,80 Ap(M) <o, M.

Finally, (a) is clear by (4), and (b) follows from (3) and Lemma 3.1.
Asto (¢): If a ¢ Ar(M), then aR is not a-small by (3), so aR+ X = M
for some submodule X of Mg with {g(X) # 0. As Ar(M) <, M by
(4), we have Ap(M) + X # M. If AR(M)+ X C U €™ M, then
a ¢ U, this proves (c). O
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Corollary 3.6. Let Mp be a cyclic module. If Kr(M) is closed under
addition, then Rad(M/Ar(M)) = Rad(M/Kgr(M)) = 0.

Proof. This follows by part (¢) of Proposition 3.5. O

Proposition 3.7. Let Mg be a finitely generated module. If Ar(M) C
Rad(M) + Zs(M), then the sum of any two a-small submodules is a-
small.

Proof. Let K <4 Mp and L <, Mp. Then K + L C Ar(M). By
Proposition 2.4 and Lemma 2.3, K + L <, Mg. O
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