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ANNIHILATOR-SMALL SUBMODULES

T. AMOUZEGAR-KALATI AND D. KESKIN-TÜTÜNCÜ∗

Communicated by Bernhard Keller

Abstract. Let MR be a module with S = End(MR). We call a
submodule K of MR annihilator-small if K + T = M , T a sub-
module of MR, implies that ℓS(T ) = 0, where ℓS indicates the left
annihilator of T over S. The sum AR(M) of all such submodules
of MR contains the Jacobson radical Rad(M) and the left singu-
lar submodule ZS(M). If MR is cyclic, then AR(M) is the unique
largest annihilator-small submodule of MR. We study AR(M) and
KS(M) in this paper. Conditions when AR(M) is annihilator-small
and KS(M) = J(S) = Tot(M,M) are given.

1. Introduction

Throughout this paper all rings are associative with identity and mod-
ules are unitary right modules. Let MR be any module. The endomor-
phism ring End(M) of the right R-module M will be denoted by S. We
abbreviate the Jacobson radical as Rad(M) for any right R-module M .
The notations N ⊆ess M and N ⊆max M mean respectively that a sub-
module N of M is essential and maximal in the module MR. The left
annihilator of any submodule X of M is denoted by ℓS(X) while the
right annihilator of any endomorphism f of M , namely the kernel of f ,
is denoted by rM (f).

MSC(2010): Primary: 16D10; Secondary: 16D80.

Keywords: Small submodules, annihilators, annihilator-small submodules.

Received: 2 December 2011, Accepted: 25 September 2012.

∗Corresponding author

c⃝ 2013 Iranian Mathematical Society.

1053

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


1054 Amouzegar-Kalati and Keskin-Tütüncü

In [3], Nicholson and Zhou defined annihilator-small right (left) ideals.
In this work, inspired by this nice work we introduce annihilator-small
submodules of any right R-module M . Let MR be a module and K ⊆
MR a submodule of MR. We say that K is an annihilator-small submod-
ule of MR if K+X = M , X a submodule of MR, implies that ℓS(X) = 0.
Clearly every small submodule is annihilator-small. In Proposition 2.2,
we prove that the converse is true if MR is a coretractable module. Let
MR be a semi-projective module and k ∈ S. Then we prove the following
which generalizes [3, Lemma 4]:

The submodule k(M) is annihilator-small inMR if and only if bk(M) ⫋
b(M) for all 0 ̸= b ∈ S if and only if ℓS(1S − ks) = 0 for all s ∈ S if and
only if ℓS(1S − sk) = 0 for all s ∈ S if and only if ℓS(k − ksk) = ℓS(k)
for all s ∈ S (see Lemma 2.7).

In this note our aim is to generalize the other results of [3] from the
ring case to the module case in light of Lemma 2.7. For example, we
examine when the equalities J(S) = KS(M) = Tot(M,M) are satisfied.
As we mentioned in the abstract we study AR(M) which is the sum
of all annihilator-small submodules of MR. Relevant with it we prove
Proposition 3.5 as a generalization of [3, Theorem 11].

2. Annihilator-small submodules

Definition 2.1. We say that a submoduleK of a moduleMR is annihila-
tor-small (a-small) if K +X = M , X a submodule of MR, implies that
ℓS(X) = 0 where S = End(M). In this case, we write K ≪a M .

It is clear that every small submodule is a-small, but the converse is
not true in general (consider the submodule nZ of the Z-module Z).

An R-module MR is called coretractable if, for any proper submodule
K ofM , there exists a nonzero homomorphism f : M → M with f(K) =
0, that is, Hom (M/K,M) ̸= 0.

Proposition 2.2. Let MR be a coretractable module. If K ≪a M , then
K ≪ M .

Proof. Let K + X = M for any submodule X of M . By hypothesis,
ℓS(X) = 0. But MR is coretractable, thus X = M , and so K ≪ M . □
Lemma 2.3. Let MR be a module. If N ⊆ K ≪a M , where N is a
submodule of M , then N ≪a M .

Proof. Clear. □
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Annihilator-small Submodules 1055

Let MR be any module. We set ZS(M) = {m ∈ M | ℓS(m) =
ℓS(mR) ⊆ess

SS}.

Proposition 2.4. If K is an a-small submodule of a finitely generated
module MR, then so is K + Rad(M) + ZS(M).

Proof. Let (K +Rad(M) + ZS(M)) +X = M where X is a submodule
of MR. Since Rad(M) ≪ M , K + ZS(M) + X = M . Assume that
MR =

∑n
i=1 aiR. Now, ki+zi+xi = ai where ki ∈ K, zi ∈ ZS(M), xi ∈

X. Hence K +
∑n

i=1 ziR + X = M . Thus 0 = ℓS(
∑n

i=1 ziR + X) =
(∩n

i=1ℓS(ziR)) ∩ ℓS(X) since K ≪a M . As ℓS(zi) ⊆ess
SS, we have

ℓS(X) = 0. □
Lemma 2.5. If T is a submodule of MR and ℓS(T ) ⊆ess

SS, then
rMℓS(T ) ≪a MR. In particular, T ≪a MR.

Proof. Let rMℓS(T )+X = M . Then 0 = ℓS(M) = ℓSrMℓS(T )∩ℓS(X) =
ℓS(T )∩ ℓS(X), so ℓS(X) = 0 since ℓS(T ) ⊆ess

SS. The last observation
is by Lemma 2.3 since T ⊆ rMℓS(T ) always holds. □

Note that the converse of Lemma 2.5 is true if rM [ℓS(T ) ∩ Sb] =
rMℓS(T )+rM (b) holds for all submodules T of MR and all b ∈ S. To see
this, let ℓS(T )∩Sb = 0 for an element b of S. Then rMℓS(T )+ rM (b) =
M , so ℓSrM (b) = 0 since rMℓS(T ) ≪a MR. Hence b = 0 because
Sb ⊆ ℓSrM (b), proving that ℓS(T ) ⊆ess

SS.
Following Wisbauer [5, p. 261], an R-module MR is called semi-

injective if for any f ∈ S,

Sf = ℓS(ker(f)) = ℓS(rM (f))

(equivalently, for any monomorphism f : N → M , where N is a factor
module of MR, and for any homomorphism g : N → M , there exists
h : M → M such that hf = g).

Proposition 2.6. Let MR be a coretractable semi-injective module and
T a submodule of MR. Then ℓS(T ) ⊆ess

SS if T ≪a M .

Proof. This follows by Proposition 2.2 and [1, Proposition 4.5]. □
Recall that a module MR is called semi-projective if for any epimor-

phism f : M → N , where N is a submodule of MR, and for any homo-
morphism g : M → N , there exists h : M → M such that fh = g.

Lemma 2.7. Consider the following conditions for a right R-module M
and k ∈ S:
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1056 Amouzegar-Kalati and Keskin-Tütüncü

(1) k(M) ≪a MR.
(2) bk(M) ⫋ b(M) for all 0 ̸= b ∈ S.
(3) ℓS(1S − ks) = 0 for all s ∈ S.
(4) ℓS(1S − sk) = 0 for all s ∈ S.
(5) ℓS(k − ksk) = ℓS(k) for all s ∈ S.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5). If MR is semi-projective, then
(5) ⇒ (1).

Proof. (1) ⇒ (2) Assume that b ∈ S and bk(M) = b(M). Let m ∈ M .
Then b(m) = bk(m′) for some m′ ∈ M . Hence m − k(m′) ∈ rM (b).
Therefore m ∈ rM (b) + k(M). Namely, M = rM (b) + k(M). Since
k(M) ≪a MR, ℓSrM (b) = 0. As Sb ⊆ ℓSrM (b), b = 0.

(2) ⇒ (3) Let s ∈ S and b ∈ ℓS(1S − ks). Then b = bks implies that
b(M) = bks(M) ⊆ bk(M). By (2), b = 0.

(3) ⇒ (4) Let s ∈ S and b ∈ ℓS(1S − sk). Then b(1S − sk) = 0 implies
that bs(1S − ks) = b(s − sks) = b(1S − sk)s = 0. Hence bs = 0 by (3),
and so b = bsk = 0.

(4) ⇒ (5) Let s ∈ S and b ∈ ℓS(k − ksk). By (4), bk = 0. Hence
b ∈ ℓS(k). The other inclusion always holds.

(5) ⇒ (1) Assume that MR is semi-projective. Let M = k(M) + X
for a submodule X of MR. Let b ∈ ℓS(X) and m ∈ M . Then there exist
m′ ∈ M and x ∈ X such that m = k(m′) + x. Now b(m) = bk(m′),
and so b(M) = bk(M). Since MR is semi-projective, there exists a
homomorphism s ∈ S such that bks = b. Note that b(k − ksk) = 0.
Hence b ∈ ℓS(k − ksk) = ℓS(k). Therefore bk = 0, and hence b = 0. □

Note that condition 2 in Lemma 2.7 implies that if k(M) ≪a MR and
k ∈ S is not nilpotent, then k(M) ⫌ k2(M) ⫌ k3(M) ⫌ · · · is strictly
decreasing.

Corollary 2.8. (See [3, Lemma 4]) If R is a ring, then the following
are equivalent for k ∈ R:

(1) kR ≪a RR, namely if R = kR +X, X a right ideal of R, then
ℓR(X) = 0.

(2) bR ⫌ bkR for all 0 ̸= b ∈ R.
(3) ℓR(1− kr) = 0 for all r ∈ R.
(4) ℓR(1− rk) = 0 for all r ∈ R.
(5) ℓR(k − krk) = ℓR(k) for all r ∈ R.

Let us define KS(M) = {s ∈ S | s(M) ≪a MR} for any module MR.
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Annihilator-small Submodules 1057

Corollary 2.9. Let MR be a module and k ∈ KS(M). Then kS ⊆
KS(M). If MR is semi-projective, then Sk ⊆ KS(M).

Proof. By Lemma 2.3, kS ⊆ KS(M). Now assume that MR is semi-
projective. Let s ∈ S. We show that sk(M) ≪a MR. Let g ∈ S. Then
ℓS(1S − gsk) = 0 since k(M) ≪a MR, by Lemma 2.7(4). Again by
Lemma 2.7(4), sk(M) ≪a MR. Hence Sk ⊆ KS(M). □

Corollary 2.10. We have KS(M) ⊆ rS(Soc(SS)). Moreover, J(S) ⊆
KS(M) provided that MR is semi-projective.

Proof. Let s ∈ KS(M). We need to show that Soc(SS)s = 0. Let
0 ̸= t ∈ Soc(SS). Then t ∈ S1 ⊕ S2 ⊕ · · · ⊕ Sn, where S1, · · · , Sn are
the simple right ideals of S. Assume ts ̸= 0 and t = t1 + t2 + · · · + tn
where ti ∈ Si. Then tis ̸= 0 for some i ∈ {1, · · · , n}. Since Si is simple,
tisS = Si. Now, ti = tisα for some α ∈ S. Then ti(1S − sα) = 0,
namely ti ∈ ℓS(1S−sα). Since s(M) ≪a M , ℓS(1S−sα) = 0 by Lemma
2.7, hence ti = 0, a contradiction. Thus ts = 0. So we proved that
Soc(SS)KS(M) = 0, hence KS(M) ⊆ rS(Soc(SS)).

Now let k ∈ J(S). We show that k ∈ KS(M). Let s ∈ S. Take
α ∈ ℓS(1S−ks). Then α(1S−ks) = 0. Since 1S−ks is invertible, α = 0.
Thus ℓS(1S − ks) = 0 for all s ∈ S. By Lemma 2.7, k ∈ KS(M). □

Corollary 2.11. Let MR be a quasi-projective module. Then KS(M) =
J(S) = ∇(M), where ∇(M) = {ϕ ∈ S | Imϕ ≪ M}.

Proof. Let f ∈ KS(M). We show that fS ≪ SS . Let I + fS = S
for a right ideal I ⊆ S. Then 1 = fs + g for some s ∈ S, g ∈ I
and M = fs(M) + g(M) ⊆ f(M) + g(M). Then the composition

M
f→ M

ρ→ M/g(M) is an epimorphism and there exists λ ∈ S with
ρ = ρfλ. This means that ρ(1 − fλ) = 0. Since f(M) ≪a M , by
Lemma 2.7, ℓS(1 − fλ) = 0. Thus ρ = 0, namely g(M) = M . As MR

is quasi-projective, there exists h ∈ S with 1 = gh which means I = S.
Now we have the equalities by using Corollary 2.10 and [2, 4.25]. □

Corollary 2.12. Let MR be a module and f ∈ S. If f(M) ≪a MR,
then fS ≪a SS. The converse is true if MR is semi-projective.

Proof. First, assume that f(M) ≪a M . Let S = fS + I where I is
a right ideal of S. Then 1S = fs + x, s ∈ S, x ∈ I. Hence M =
fs(M) + x(M) = f(M) + x(M). Since f(M) ≪a M , ℓS(x(M)) = 0.
Thus ℓS(IM) = 0, and so ℓS(I) = 0. Therefore fS ≪a SS . Conversely,
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1058 Amouzegar-Kalati and Keskin-Tütüncü

let fS ≪a SS . By Corollary 2.8, ℓS(f − fsf) = ℓS(f) for all s ∈ S. By
Lemma 2.7, f(M) ≪a MR. □
Corollary 2.13. Let MR be any module. If f2 = f ∈ KS(M), then
f = 0.

Proof. Observe that by Lemma 2.7 (4) f(M) ≪a MR implies ℓS(1S −
f) = 0. Since f ∈ ℓS(1S − f), f = 0. □
Corollary 2.14. Let MR be any module. The following are equivalent
for a maximal left ideal I of S = End(M):

(1) rM (I) ≪a MR.
(2) I ⊆ess

SS.

Proof. (1) ⇒ (2) Let rM (I) ≪a MR. Assume that I is not essential in

SS. Then there exists a nonzero left ideal J of S such that I ∩ J = 0.
Since I is a maximal left ideal of S, then I is a direct summand of

SS. So, there exists an idempotent e ∈ S such that I = Se. Hence
rM (I) = (1 − e)(M) ≪a M . Then 1 − e ∈ KS(M). By Corollary 2.13,
e = 1, a contradiction.

(2) ⇒ (1) Let I ⊆ess
SS. Let M = rM (I) +X for a submodule X of

MR. Then ℓS(M) = 0 = ℓSrM (I) ∩ ℓS(X) implies that I ∩ ℓS(X) = 0.
Since I is essential in SS, ℓS(X) = 0. □

Let f be an element in S. Then f is said to be partially invertible if,
fS (equivalently, Sf) contains a nonzero idempotent.

For an R-module MR, the total of MR is defined as

Tot(S) = Tot(M,M) = {f ∈ S | f is not partially invertible}.
The total may not be closed under addition. In fact, if 0 and 1 are the
only idempotents in S, then total of MR is the set of non-isomorphisms.

Proposition 2.15. If MR is a module, then KS(M) ⊆ Tot(M,M).

Proof. If f ∈ KS(M) but f ̸∈ Tot(M,M), then f is partially invertible.
So, there exists 0 ̸= e2 = e ∈ fS. By Corollary 2.9, e ∈ KS(M), which
contradicts Corollary 2.13. □

If I is a subset of a ring R, then R is said to be I-semipotent if every
right (equivalently, left) ideal not contained in I contains a nonzero
idempotent, equivalently if every element a ̸∈ I has a partial inverse. A
ring R is called semipotent if R is J(R)-semipotent.

Lemma 2.16. Let I be a subset of S = End(MR). Then the following
are equivalent:
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Annihilator-small Submodules 1059

(1) S is I-semipotent.
(2) Tot(M,M) ⊆ I.

Proof. See [3, Lemma 20]. □
Let U be a submodule of an R-module MR. The module MR is called

U -semipotent if, for every submodule A of M such that A ̸⊆ U , there
exists a nonzero idempotent e : M → M such that e(M) ⊆ A and
e(M) ̸⊆ U . Clearly R is a semipotent ring if and only if RR is J(R)-
semipotent (see [4, Definition 2.5]).

Lemma 2.17. Let U be a submodule of a semi-projective module MR.
If M is U -semipotent, then Tot(M,M)M ⊆ U .

Proof. Let a ∈ Tot(M,M). If a(M) ⊈ U , then by hypothesis, there
exists a nonzero idempotent e : M → M such that e(M) ⊆ a(M) and
e(M) ⊈ U . Since MR is semi-projective, there exists f : M → M
such that af = e, it is a contradiction. Therefore a(M) ⊆ U , hence
Tot(M,M)M ⊆ U . □
Proposition 2.18. Let S = End(MR) for any module MR. Then S is
semipotent if and only if J(S) = Tot(M,M).

Proof. See [3, Theorem 21]. □
Proposition 2.19. Let S = End(MR) for any semi-projective module
MR. Then J(S) = KS(M) = Tot(M,M) if S is semipotent.

Proof. By Corollary 2.10, J(S) ⊆ KS(M). Let s ∈ KS(M). If s ̸∈
J(S), then since S is J(S)-semipotent, KS(M) have a nonzero idem-
potent, which is a contradiction (see Corollary 2.13). Thus J(S) =
KS(M). By Proposition 2.15, KS(M) ⊆ Tot(M,M). On the other
hand, S is KS(M)-semipotent since J(S) = KS(M). So by Lemma
2.16, Tot(M,M) ⊆ KS(M) (also see Proposition 2.18). □
Proposition 2.20. Let S = End(MR) for any semi-projective module
MR in which ℓS(a) = 0, a ∈ S, implies aS = S. Then KS(M) = J(S).

Proof. Observe that J(S) ⊆ KS(M) by Corollary 2.10. Let k ∈ KS(M).
Then k(M) ≪a M , so ℓS(1S−ks) = 0 for all s ∈ S by Lemma 2.7. Hence
(1S − ks)S = S by hypothesis. Thus k ∈ J(S). □

A ring R is called right Kasch if each simple right R-module embeds
in R; equivalently, if ℓR(T ) ̸= 0 for every (maximal) right ideal T of R.
Call R left principally injective if every R-linear map Ra → R, a ∈ R,
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1060 Amouzegar-Kalati and Keskin-Tütüncü

extends to R → R; equivalently if aR is a right annihilator in R for each
a ∈ R. Finally, call R a left C2 ring if every left ideal that is isomorphic
to a direct summand of RR is itself a direct summand of RR.

Example 2.21. In each of the following cases we have J(S) = KS(M)
for a semi-projective module MR:

(1) S is semipotent.
(2) S is right Kasch.
(3) S is left principally injective.
(4) S is a left C2 ring.

Proof. (1) Follows by Proposition 2.19.
(2) Let a ∈ S and ℓS(a) = 0. If aS ̸= S, then ℓS(aS) ̸= 0 by

(2); that is, ℓS(a) ̸= 0, a contradiction. Thus by Proposition 2.20,
J(S) = KS(M).

(3) Let a ∈ S and ℓS(a) = 0. By (3), aS = rS(X). Then X ⊆ ℓS(a) =
0, so aS = rS(X) = S. Thus by Proposition 2.20, J(S) = KS(M).

(4) Let a ∈ S and ℓS(a) = 0. Then Sa ∼= S. By (4), Sa is a direct
summand of S. Then a = aba for some element b of S. But then 0 =
ℓS(a) = ℓS(ab) = S(1S − ab). Now ab = 1S and S = (ab)S ⊕ (1S − ab)S
imply that S = aS. By Proposition 2.20, KS(M) = J(S). □

3. The submodule AR(M)

Lemma 3.1. Let M = mR, where m ∈ M , be a cyclic R-module. Then
the following are equivalent for k ∈ M :

(1) kR ≪a M .
(2) f(kR) ⫋ f(M) for all 0 ̸= f ∈ S.
(3) ℓS(m− kr) = 0 for all r ∈ R.

Proof. (1) ⇒ (2) If f(kR) = f(M), then f(m) = f(kr) for some r ∈ R.
Thus f ∈ ℓS(m − kr). But kR + (m − kr)R = mR = M . So, by (1),
ℓS(m− kr) = 0. Thus f = 0.

(2) ⇒ (3) If f ∈ ℓS(m− kr) and r ∈ R, then f(m) = f(kr) ⊆ f(kR).
By (2), f = 0.

(3) ⇒ (1) If kR + X = M , where X is a submodule of MR, then
m = kr + x, r ∈ R, x ∈ X. If f ∈ ℓS(X), then f(m) = f(kr). So
f ∈ ℓS(m− kr). Hence f = 0 by (3). □
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Annihilator-small Submodules 1061

LetMR be a module. An element k ∈ M is called a-small if kR ≪a M .
For convenience, define

KR(M) = {k ∈ M | k is a− small in M} = {k ∈ M | kR ≪a M}.
Note that KR(M) may not be closed under addition: for example, con-
sider −2 and 3 in the Z-module Z.

Proposition 3.2. Let M = mR be a cyclic R-module and K any sub-
module of MR. Then the following are equivalent:

(1) K is a-small in M .
(2) K ⊆ KR(M).
(3) ℓS(m− k) = 0 for every k ∈ K.

Proof. (1) ⇒ (2) By Lemma 2.3.
(2) ⇒ (3) Lemma 3.1.
(3) ⇒ (1) Let K + X = M , where X is a submodule of MR. If

m = k + x, k ∈ K, x ∈ X, then ℓS(X) ⊆ ℓS(m− k) = 0 by (3). Hence
K ≪a M . □

The sum of a-small submodules need not be a-small: for example,
consider 3Z+ (−2)Z in the Z-module Z.

Let MR be a module. We define

AR(M) =
∑

{K ≤ MR | K ≪a M}.

Clearly, KR(M) ⊆ AR(M) in every right R-module MR, but this may
not be equality (consider the Z-module Z).

Proposition 3.3. Let MR be a module. Then:

(1) AR(M) = {x1+x2+ · · ·+xn | xi ∈ KR(M) for each i, n ≥ 1}.
(2) AR(M) = KR(M)R.
(3) Rad(M) ⊆ KR(M) and ZS(M) ⊆ KR(M).

Proof. (1) Set X = {x1+x2+ · · ·+xn | xi ∈ KR(M) for each i, n ≥ 1}.
If x ∈ AR(M), then x ∈ X1 +X2 + · · ·+Xn where Xi ≪a MR for each
i. If x = x1 + x2 + · · ·+ xn, xi ∈ Xi, then xiR ≪a MR by Lemma 2.3.
Hence xi ∈ KR(M) for each i. Thus AR(M) ⊆ X. It is easy to see that
X ⊆ AR(M).

(2) Follows by (1) and the fact that KR(M) ⊆ AR(M).
(3) Let x ∈ Rad(M). Then xR ≪ M and hence xR ≪a M . So

x ∈ KR(M). Therefore Rad(M) ⊆ KR(M). Now let y ∈ ZS(M). Then
ℓS(y) = ℓS(yR) ⊆ess

SS. By Lemma 2.5, yR ≪a M . So y ∈ KR(M).
Therefore ZS(M) ⊆ KR(M). □
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1062 Amouzegar-Kalati and Keskin-Tütüncü

Proposition 3.4. Let MR be a coretractable module. Then Rad(M) =
AR(M) = KR(M). Moreover, if MR is semi-injective, then Rad(M) =
AR(M) = KR(M) = rM (Soc(SS)) = ZS(M).

Proof. By Proposition 2.2, Rad(M) = AR(M) = KR(M). Now sup-
pose that MR is semi-injective. Then by [1, Corollary 4.7], Rad(M) =
AR(M) = KR(M) = rM (Soc(SS)). Now, let x ∈ KR(M). Then
xR ≪a M . By Proposition 2.6, ℓS(xR) ⊆ess

SS. Thus x ∈ ZS(M).
Hence ZS(M) = KR(M) by Proposition 3.3(3). □

Proposition 3.5. Let MR be a module. Consider the following condi-
tions:

(1) If K ≪a M and L ≪a M , then K + L ≪a M .
(2) KR(M) is closed under addition.
(3) AR(M) = KR(M).
(4) AR(M) ≪a M .

Then (1) ⇒ (2) ⇒ (3) and (4) ⇒ (1) hold. If M is cyclic, then (3) ⇒ (4)
holds.

Moreover, if M = mR, where m ∈ M , and one of the above conditions
holds, then we have:

(a) AR(M) is the unique largest a-small submodule of M .
(b) AR(M) = {k ∈ M | ℓS(m− kr) = 0 for all r ∈ R}.
(c) AR(M) =

∩
{U ⊆max M | AR(M) ⊆ U}.

Proof. (1) ⇒ (2) Since (k + l)R ⊆ kR + lR, KR(M) is closed under
addition by Lemma 2.3.

(2) ⇒ (3) It is clear that KR(M) ⊆ AR(M). By (2) and Proposition
3.3(1), AR(M) ⊆ KR(M).

(4) ⇒ (1) Let K ≪a M and L ≪a M . Then K ⊆ AR(M) and
L ⊆ AR(M), so K + L ⊆ AR(M). Thus, by (4) and Lemma 2.3,
K + L ≪a M .

(3) ⇒ (4) Let M = mR for some m ∈ M and AR(M) +X = M for
a submodule X of MR. So KR(M) + X = M by (3). If m = k + x
with k ∈ KR(M) and x ∈ X, then M = kR+X and kR ≪a M . Hence
ℓS(X) = 0, so AR(M) ≪a M .

Finally, (a) is clear by (4), and (b) follows from (3) and Lemma 3.1.
As to (c): If a ̸∈ AR(M), then aR is not a-small by (3), so aR+X = M
for some submodule X of MR with ℓS(X) ̸= 0. As AR(M) ≪a M by
(4), we have AR(M) + X ̸= M . If AR(M) + X ⊆ U ⊆max M , then
a ̸∈ U , this proves (c). □
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Corollary 3.6. Let MR be a cyclic module. If KR(M) is closed under
addition, then Rad(M/AR(M)) = Rad(M/KR(M)) = 0.

Proof. This follows by part (c) of Proposition 3.5. □
Proposition 3.7. Let MR be a finitely generated module. If AR(M) ⊆
Rad(M) + ZS(M), then the sum of any two a-small submodules is a-
small.

Proof. Let K ≪a MR and L ≪a MR. Then K + L ⊆ AR(M). By
Proposition 2.4 and Lemma 2.3, K + L ≪a MR. □
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