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GORENSTEIN PROJECTIVE OBJECTS IN ABELIAN
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H. CHENG∗ AND X. ZHU

Communicated by Amir Daneshgar

Abstract. Let A be an abelian category with enough projective
objects and let X be a full subcategory of A. We define Gorenstein
projective objects with respect to X and YX , respectively, where
YX={Y ∈ Ch(A)|Y is acyclic and ZnY ∈ X}. We point out that
under certain hypotheses, these two Gorensein projective objects
are related in a nice way. In particular, if P(A) ⊆ X , we show that
X ∈ Ch(A) is Gorenstein projective with respect to YX if and only
if Xi is Gorenstein projective with respect to X for each i, when X
is a self-orthogonal class or X is Hom(−,X )-exact. Subsequently,
we consider the relationships of Gorenstein projective dimensions
between them. As an application, if A is of finite left Gorenstein
projective global dimension with respect to X and contains an in-
jective cogenerator, then we find a new model structure on Ch(A)
by Hovey’s results in [14].

1. Introduction

Let A be an abelian category with enough projective objects and X
a full subcategory of A. By P(A) we denote the class of all projective
objects of A. Let R denote a non-trivial associative ring with identity.
All modules are left R-modules which properties are considered with
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1080 Cheng and Zhu

respect to the left structures, unless stated otherwise. By P(R) and
GP(R) we denote the classes of all projective modules and all Gorenstein
projective modules, respectively.

Recently, Gorenstein projective objects have received some author’s
attention in the category of R-modules and its chain complex cate-
gory Ch(R). Enochs, Jenda and Holm ([7], [13]) introduced and stud-
ied the Gorenstein projective R-modules. Subsequently, Enochs and
Garćıa Rozas [4] investigated Gorenstein projective objects (complexes)
of Ch(R). By [4], [6], [7] and [13], there are relationships summarized
as the following diagram

P(R)
[6]←→ P(Ch(R))

[7][13]
xy [4]

xy
GP(R)

[4]←→ GP(Ch(R))

.

Lately, Bennis [3] generalized X -Gorenstein projective modules, where
P(R) ⊆ X . Naturally, we denote YX={Y ∈ Ch(A)|Y is acyclic and
ZnY ∈ X} with respect to X by the structure of projective objects of
Ch(R). In particular, if P(R) ⊆ X , then P(Ch(R)) ⊆ YX by [6] and [12].
Furthermore, we define YX -Gorenstein projective objects of Ch(A) (see
Definition 3.1). In this paper, the main purpose is to show whether there
are similar relationships as the above diagram in an abelian category
with enough projective objects.

In Section 3, we give some characterizations of X -Gorenstein projec-
tive objects. One of the main proposes of this section is to consider the
X -Gorenstein projective dimension. Moreover, if P(A) ⊆ X , there are
similar results with respect to YX -Gorenstein projective objects by [17].

In Section 4, we investigate the relationships between X -Gorenstein
projective objects of A and YX -Gorenstein projective objects of Ch(A)
(e.g., the category of R-modules and its chain complex Ch(R)). Let
X ∈ Ch(A). We prove that if X is Hom(−,X )-exact or X is a self-
orthogonal class, then X is YX -Gorenstein projective if and only if Xi

is X -Gorenstein projective in A for each i ∈ Z. Furthermore, if X is
acyclic, the above is equivalent to that ZiX is X -Gorenstein projective
for each i. As an important example, let X be the class of all Gorenstein
projective R-modules and X an acyclic and Hom(−,X )-exact complex
of projective R-modules, then X is projective in Ch(R). We prove that
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Gorenstein projective objects in abelian categories 1081

if X is a self-orthogonal class, then YX -GPdim(X) ≤ n if and only if X -
Gpd(Xi) ≤ n for each i ∈ Z, i.e., YX -GPdim(X)=Sup{X -Gpd(Xi)|i ∈
Z}.

In Section 5, let A be a bicomplete abelian category with finite left
X -Gorenstein projective global dimension (i.e., l.X -GPD(A) < ∞). If
A admits an injective cogenerator, we show that (Ch(X -GP(A)), Ch(X -
GP(A))⊥) and (Ch(X -GP(A))∩E , (Ch(X -GP(A))∩E)⊥) are complete
hereditary cotorsion pairs, where E is the class of all acyclic complexes
of Ch(A). Furthermore, by the results in [14], these cotorsion pairs
induce a model structure on Ch(A), where the class of cofibrant objects
is Ch(X -GP(A)).

2. Preliminaries

Throughout this paper, A is an abelian category with enough projec-
tive objects and all subcategories are full subcategories of A. We write
P=P(A) for the subcategory of all projective objects of A.

This work contains some general remarks and terminologies, which
will be important for our studies. A sequence of objects of A

· · · → Xn−1 δn−1
X−−−−→ Xn

δn−1
X−−−−→ · · ·

is called a complex if δnXδ
n−1
X = 0 for each n ∈ Z. We write (X, δ) or

X for this complex. A complex X is right (left) bounded if Xn = 0 for
all n > k (n < k) for some k ∈ Z, and X is bounded if it is left and
right bounded. In particular, given an object M , we let Sn(M) denote
the complex with all entries 0 except M in degree n. We let Dn(M)
denote the complex with all entries 0 except in degrees n-1 and n, with
all differentials 0 except δn−1X = 1M .

For a complex X and n ∈ Z, let

ZnX = Ker(δnX), BnX = Im(δn−1X ), CnX = Coker(δn−1X ).

The nth homology object of X is Hn(X) = Ker(δnX)/Im(δn−1X ). In
particular, a complex X is acyclic if Hn(X) = 0 for each n ∈ Z.

A complex X is called Hom(−,X )-exact if the complex Hom(X,N)
is acyclic for each object N ∈ X . Dually, it is Hom(X ,−)-exact if the
complex Hom(M,X) is acyclic for each object M ∈ X .

For convenience, we denote the category of all complexes by Ch(A).
In particular, if A is the category of all R-modules, we denote Ch(A)
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1082 Cheng and Zhu

by Ch(R). Obviously, the category Ch(A) is an abelian category with
enough projective objects by [12, Proposition 3.2].

Definition 2.1. Let X and Y be complexes. The Hom(X,Y ) denotes
the complex with Hom(X,Y )n =

∏
i∈ZHomA(Xi, Y n+i) and with dif-

ferential given by δnHom(X,Y )(f) = (∂i+nY f i − (−1)nf i+1∂iX) for f =

(f i)i∈Z ∈ Hom(X,Y )n. A morphism f : X→Y is an element of Ker(
∂0Hom(X,Y )), and a morphism f is null-homotopic if it is in Im(∂0Hom(X,Y )).

It is easy to check that a complex X is Hom(−,X )-exact if and only
if the complex Hom(X,S0(M)) is exact for each M ∈ X .

Throughout this paper, Hom(X,Y ) denotes the set of all morphisms
of complexes fromX to Y in the category of complexes, and Exti(X,Y )’s
are computed by using the classical injective resolutions of Y or the
classical projective resolutions of X, but these extension functors are
not the same as those defined in [2].

Definition 2.2. [10, Definition 3.2.1] A complex D is called Gorenstein
projective if there is an exact sequence of complexes

· · · → P−1 → P 0 → P 1 → P 2 → · · ·
such that

(1) P i is a projective complex for each i;
(2) Ker(P 0 → P 1) = D;
(3) the sequence remains exact when Hom(−, P ) is applied to it for

any projective complex P .

Definition 2.3. If F is a class of objects of A, ⊥F will denote the
class of objects M ∈ A such that Ext1A(M,F ) = 0 for all F ∈ F and

F⊥ will denote the class of objects N ∈ A such that Ext1A(F,N) = 0
for all F ∈ F . In particular, we call the class F self-orthogonal if
Ext≥1A (M,N) = 0 for all M,N ∈ F .

Definition 2.4. [1, 3.11] Let F be a class of objects of A. We call F
projective resolving if the following conditions are satisfied:

(1) P(A) ⊆ F ;
(2) Let 0 → X ′ → X → X ′′ → 0 be an exact sequence in A and

X ′′ ∈ F . Then X ∈ F if and only if X ′ ∈ F .

Definition 2.5. [10] Let F be a class of objects of A and X ∈ A.
We say that a morphism φ : X → F is an F-preenvelope if for any
morphism ψ : X → F ′ with F ′ ∈ F there is a morphism τ : F → F ′
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Gorenstein projective objects in abelian categories 1083

such that τφ = ψ. Moreover, if any f : F → F such that φ = fφ is an
automorphism of F , then φ : X → F is called an F-envelope.

Dually, we have the concepts of F-precover and F-cover.

By [11, Lemma 3.1] and [12, Lemma 4.2], there are a few common
and useful connection relationships between an abelian category A and
its chain complex category Ch(A) as follow:

Lemma 2.6. Let A be an abelian category. For any object A ∈ A and
chain complex X ∈ Ch(A), we have monomorphisms and isomorphisms

Ext1A(A,ZnX) ↪→ Ext1(Sn(A), X), Ext1A(A,Xn) ∼= Ext1(Dn(A), X);

Ext1A(Xn/BnX,A) ↪→ Ext1(X,Sn(A)), Ext1A(Xn, A) ∼= Ext1(X,Dn(A)).

In particular, if X is acyclic, then these monomorphisms are actually
isomorphic for each n ∈ Z.

3. Gorenstein projective objects in abelian categories

In this section, let A be an abelian category with enough projec-
tive objects and let X be a full subcategory of A. We give a detailed
treatment of Gorenstein projective objects with respect to X . As an
important example in Ch(A), we can get similar conclusions of Goren-
stein projective objects with respect to a class of objects of Ch(A), when
this class contains all projective objects of its chain complex category
Ch(A).

Recall that a complex P is a projective object of Ch(A) if the functor
Hom(P,−) is exact. It is also equivalent to that: (1) P is contractible;
(2) P i is projective in A for each i ∈ Z. According to [8], we can say
P is projective if and only if P is acyclic and ZnP is projective in A
for each n ∈ Z. As this point, we denote YX={Y ∈ Ch(A)|Y is acyclic
and ZnY ∈ X}. Obviously, YX contains all projective objects of Ch(A)
provided that P(A) ⊆ X . Hence, we can uniformly define the Gorenstein
projective objects with respect to a subcategory of A (e.g., subcategory
X of A and subcategory YX of Ch(A)). For convenience, we only simply
deal with the case of X -Gorenstein projective objects of A.

Now, we give the definition of the X -Gorenstein projective object in
an abelian category A, where A has enough projective objects, as follow:

Definition 3.1. Let X be a full subcategory of an abelian category A.
An object M is called X -Gorenstein projective if there exists an exact
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1084 Cheng and Zhu

sequence of projective objects

P : · · · → P−1 → P 0 → P 1 → P 2 → · · ·

such that M ∼= Ker(P 0 → P 1) and P is Hom(−,X )-exact.
The sequence P is called a complete projective resolution of M . In

particular, we denote by X -GP(A) the class of all X -Gorenstein projec-
tive objects.

Proposition 3.2. If C is a X -Gorenstein projective object, then Exti(C,
X) = 0 for each X ∈ X and i ≥ 1.

Proof. It is trivial by Definition 3.1. �

Remark 3.3. (1) Obviously, P(A) ⊆ X -GP(A).
(2) Let A be the category of R-modules and X=P(R). We have that

the X -Gorenstein projective objects coincide with Gorenstein projective
modules and the YX -Gorenstein projective complexes are Gorenstein pro-
jective complexes.

(3) If P(A) ⊆ X , we have the following relations:
{projective objects} ⊆ {X -Gorenstein projective objects} ⊆ {Goren-

stein projective objects}.
(4) If P is a complete projective resolution of M , then kernels and im-

ages of all differentials of P are X -Gorenstein projective by Proposition
3.2.

(5) By Definition 3.1, if X ∈ A, then X is X -Gorenstein projective if
and only if Dn(X) is YX -Gorenstein projective for each n. However, if
X is X -Gorenstein projective, Sn(X) is not necessarily YX -Gorenstein
projective for any n. Next, we show that there exists a Gorenstein pro-
jective object which is not X -Gorenstein projective, that is, GP(A) & X -
GP(A).

Example 3.4. Consider the quasi-Frobenius local ring R = k[X]/(X2)
where k is a field, and denote by X the residue class in R of X. Let X
be the class of R-modules. Then (X) is Gorenstein projective which is
not X -Gorenstein projective. Similarly, so is Dn((X)) for each n.

Proof. It is trivial by [16, Example 3.7], Lemma 2.6 and Remark 3.3(5).
�

In the following, let P(A) ⊆ X (see 1087, line 3). We set out to
investigate X -Gorenstein projective objects in an abelian category A.
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Gorenstein projective objects in abelian categories 1085

Theorem 3.5. The class of all X -Gorenstein projective objects is pro-
jective resolving. Furthermore, it is closed under arbitrary direct sums
and under direct summands.

Proof. The proof is similar to the proof of [13, Theorem 2.5]. �

Lemma 3.6. [17, Lemma 1.1] Let B be a projective resolving class (not
necessarily closed under direct summands) of A. For any object C ∈ A,
if

0→ Kn → Gn−1 → · · · → G1 → G0 → C → 0

and
0→ Tn → Tn−1 → · · · → T 1 → T 0 → C → 0

are exact, where G0, · · · , Gn−1 and T 0, · · · , Tn−1 are in B, then Kn is
in B if and only if Tn is in B.

As this point, we introduce the X -Gorenstein projective dimension as
follows:

Definition 3.7. We say that an object X has a X -Gorenstein projective
dimension less than or equal to n, denoted by X -GPdim(X) ≤ n, if there
exists an exact sequence

0→ Gn → Gn−1 → · · · → G1 → G0 → X → 0,

where Gi is X -Gorenstein projective for each i = 0, 1, · · · , n. If no such
finite sequence exists, define X -GPdim(X) =∞. Otherwise, if n is the
least such integer, define X -GPdim(X)=n.

Obviously, if P(A) ⊆ X , then GPdim(X) ≤ X -GPdim(X) ≤ pd(X)
for each object X of A.

Similarly, we can define X -pd(X). We also find X -pd(X) ≤ pd(X).

Lemma 3.8. Let X be a X -Gorenstein projective object, then Exti(X,
F ) = 0 for all i ≥ 1 and X -pd(F ) <∞.

Proof. Suppose X -pd(F ) ≤ n for some n ∈ N. We have the exact
sequence 0 → Fn → Fn−1 → · · · → F 1 → F 0 → F → 0, where
F i ∈ X for each i = 0, 1, · · ·n. Applying the functor Hom(X,−) to the
above sequence, we get Exti(X,F ) ∼= Exti+n(X,Fn) = 0 by dimension
shifting and Proposition 3.2 for all i, n ≥ 1. �

Proposition 3.9. Let X be a full subcategory of A with P(A) ⊆ X .
If X is an object with X -GPdim(X) ≤ n, then X admits a surjective
X -Gorenstein projective precover, where the projective dimension of its
kernels is less than or equal to n-1.
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1086 Cheng and Zhu

Proof. By analogy with the proof of [13, Theorem 2.10]. �

Theorem 3.10. Let X be a full subcategory of A with P(A) ⊆ X , X
an object with finite X -Gorenstein projective dimension and n a positive
integer. Then the following conditions are equivalent:

(1) X -GPdim(X) ≤ n.
(2) Exti(X,F ) = 0 for all i > n, and all F with X -pd(F ) <∞.
(3) Exti(X,F ) = 0 for all i > n, and all F ∈ X .
(4) For every exact sequence 0 → Kn → Gn−1 → · · · → G1 → G0 →

X → 0 with Gi being X -Gorenstein projective for all i = 0, 1, · · · , n− 1,
we have that Kn is X -Gorenstein projective.

Consequently, the X -Gorenstein projective dimension of X is deter-
mined by the formulas: X -GPdim(X)=Sup{i | ∃F ∈ X : Exti(X,F ) 6=
0}.

Proof. By Theorem 3.5 and [17, Theorem 3.1]. �

Proposition 3.11. Let X be a full subcategory of A with P(A) ⊆ X
and X an object of A with finite projective dimension. Then GPdim(X)
=X -GPdim(X) = pd(X).

Proof. We only to show that GPdim(X)=pd(X) by Definition 3.7.
Suppose pd(X) = n. Then GPdim(X) ≤ pd(X) = n.
Next, we only show that GPdim(X) = n. Assume GPdim(X) = m <

n. There are exact sequences

0→ P−n → P−n+1 → · · · → P−1 → P 0 → X → 0

and

0→ G−m → G−m+1 → · · · → G−1 → G0 → X → 0,

where P−i is projective and G−j is X -Gorenstein projective for i =
0, 1, · · · , n; j = 0, 1, · · · ,m. Let K−i = Ker(P−i+1 → P−i+2). Then
K−m is Gorenstein projective by Lemma 3.6 and Ext1(K−m−1,K−m) =
0, since X -pd(K−m−1) ≤ pd(K−m−1) < ∞. So K−m is a direct sum-
mand of P−i, i.e., K−m is projective. Thus this is contradiction to the
assumption. �

Remark 3.12. Through the above analysis, we can obtain similar prop-
erties of YX -Gorenstein projective objects of Ch(A), since there are
enough projective objects in Ch(A). In particular, if P(A) ⊆ X , then
YX contains all projective objects of Ch(A).

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


Gorenstein projective objects in abelian categories 1087

4. The relationships between Gorenstein projective objects of
A and those of Ch(A)

Let P(A) ⊆ X . In this section, we consider the relationships between
X -Gorenstein projective objects of A and YX -Gorenstein projective ob-
jects (complexes) of Ch(A). Furthermore, given an object X ∈ Ch(A),
we provide relationships between YX -GPdim(X) and X -GPdim(Xi) for
each i ∈ Z.

To begin this section, first, we recall that a continuous chain of sub-
complexes (resp., submodules) of a given complex (resp., module) C is
a set of subcomplexes (resp., submodules) of C, {Cα| α < λ} (for some
ordinal number λ), such that Cα is a subcomplex (resp., submodule) of
Cβ for all α ≤ β < λ, and that Cγ =

∑
α<γ Cα whenever γ < λ is a

limit ordinal.
Next, we need the following two important lemmas:

Lemma 4.1. [9, Lemma 1] Suppose that A = Aµ is the union of a
continuous chain of submodules A =

⋃
α<µAα, such that Ext(A0, C) = 0

and Ext(Aα+1/Aα, C) = 0 for all α+ 1 < µ. Then Ext(A,C) = 0.

Lemma 4.2. [9, Lemma 17] Let (Aα | α + 1 ≤ µ) be a sequence of
R-modules and (fαβ | α ≤ β ≤ µ) a sequence of monomorphisms such
that {(Aα, fαβ) | α ≤ β ≤ µ} is a direct system which is continuous.
Let C be an R-module such that Ext(Aα+1/fα,α+1(Aα), C) = 0 for all
α+ 1 ≤ µ. Then Ext(Aµ, C) = 0.

Notations (1) By the proofs of [9, Lemma 1] and [9, Lemma 17],
there are similar results in abelian categories with enough projective
objects.

(2) The dual of Lemma 4.2 also holds.

Lemma 4.3. Let X be a right bounded complex with Xi ∈ ⊥X for all
i ∈ Z. Then Ext1(X,F ) = 0 for all F ∈ YX .

Proof. Without loss of generality, we may assume that

X : · · · → X−n → X−n+1 → · · · → X−1 → 0.

For each n ∈ N, let

X(n) : 0→ X−n → X−n+1 → · · · → X−1 → 0.

There is an exact sequence of complexes 0 → X(n) → X(n + 1) →
S−n−1(X−n−1)→ 0, where X(n)→ X(n+1) is a natural inclusion mor-
phism which we denote by fn,n+1. Setting fi,j = fj,j−1fj−1,j−2 · · · fi+1,i
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1088 Cheng and Zhu

for all 0 < i ≤ j, we conclude that {(X(n), fi,j) | i ≤ j} is a direct
system which is continuous and X = lim−→X(n).

Let F ∈ YX . Then ZnF ∈ X for each n ∈ Z. By Lemma 2.6, we have

Ext1(S−n−1(X−n−1), F ) ∼= Ext1(X−n−1, Z−n−1F ) = 0,

since X−n−1 ∈ ⊥X . Then Ext1(X,F ) = 0 by Lemma 4.2. �

Proposition 4.4. Let X be a complex of X -Gorenstein projective ob-
jects. If X is Hom(−,X )-exact, then Ext1(X,F ) = 0 for all F ∈ YX .

Proof. Let X : · · · → X−2 → X−1 → X0 → X1 → · · · be a complex and
F ∈ YX , where Xi is X -Gorenstein projective for each i. So Xi ∈ ⊥X .
For each n ∈ N, consider

X(n) : · · · → X−1 → X0 → · · · → Xn → Bn+1X → 0.

We have X(n) ⊆ X(n + 1) and X(n + 1)/X(n) : · · · → 0 → Cn+1X →
Bn+2X → 0→ · · · . SinceX isHom(−,X )-exact andXi is X -Gorenstein
projective for each i, we have CiX ∈ ⊥X . Note that the sequence
0 → BiX → Xi → CiX → 0 is exact for each i and ⊥X is projective
resolving, then BiX ∈ ⊥X . Thus, we have Ext1(X(n+1)/X(n), F ) = 0
by Lemma 4.3 for each n ∈ N. Furthermore, X(0) is a right bounded
complex with Xi ∈ ⊥X for all i ∈ Z, so Ext1(X(0), F ) = 0 by Lemma
4.3.
Obviously, X is the union of the continuous chain of complexes (X(n))n∈N.
So we conclude Ext1(X,F ) = 0 for all F ∈ YX by Lemma 4.1. �

Proposition 4.5. Let X be a complex of X -Gorenstein projective ob-
jects. If X is Hom(−,X )-exact, then X admits a YX -preenvelope. In
this case, there is an exact sequence 0→ X → G→ T → 0 such that G
is projective and T is a complex of X -Gorenstein projective objects with
Hom(−,X )-exact.

Proof. Let X : · · · → X−2 → X−1 → X0 → X1 → · · · be a complex
with Xi being X -Gorenstein projective for each i. By Definition 3.1, Xi

admits an X -preenvelope. Assume that f i : Xi → P i is a X -preenvelope
of Xi, where f i is a monomorphism and P i is projective for each i.
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Gorenstein projective objects in abelian categories 1089

Consider the complex G : · · · → P i−1 ⊕ P i → P i ⊕ P i+1 → P i+1 ⊕
P i+2 → · · · . It induces a morphism g = (gi)i∈Z from X to G as follows:

· · · −−−−→ Xi−1 di−1
X−−−−→ Xi di

X−−−−→ Xi+1 −−−−→ · · ·

gi−1

y gi

y gi+1

y
· · · −−−−→ P i−1 ⊕ P i

di−1
G−−−−→ P i ⊕ P i+1 di

G−−−−→ P i+1 ⊕ P i+2 −−−−→ · · ·

,

where gi = (f i, f i+1diX) and diP (x, y) = (y, 0) for (x, y) ∈ P i ⊕ P i+1. It
is not hard to check that g is a monomorphism, gi : Xi → P i ⊕ P i+1 is
a X -preenvelope of Xi for each i and G ∈ YX .

In the following, we conclude that g : X → G is a YX -preenvelope of
X. Setting T = Cokerg, we have that T i ∈ ⊥X and X -GPdim(T i) ≤ 1
for each i ∈ Z, since gi : Xi → P i ⊕ P i+1 is a X -preenvelope of Xi. So
there is a split sequence 0 → P → M → T i → 0, where P is projective
and M is X -Gorenstein projective. Thus, T i is X -Gorenstein projective
by Theorem 3.5. Furthermore, we have Ext1(T i, F ) = 0 for any F ∈ X
by Proposition 3.2. If we apply the functor Hom(−, F ) to the sequence
0 → X → G → T → 0, we have an exact sequence of complexes 0 →
Hom(T, S0(F )) → Hom(G,S0(F )) → Hom(X,S0(F )) → 0 by Defini-
tion 3.1, since Hom is a bifunctor. By hypothesis, Hom(X,S0(F )) and
Hom(G,S0(F )) are exact, so isHom(T, S0(F )) (that is, T isHom(−,X )-
exact). Then we have Ext1(T,C) = 0 for all C ∈ YX by Proposition
4.4. Thus, g : X → G is a YX -preenvelope of X. By the above proof, we
have that there is an exact sequence 0 → X → G → T → 0 such that
G is projective and T is a complex of X -Gorenstein projective objects
with Hom(−,X )-exact. �

Corollary 4.6. Let X be a complex of X -Gorenstein projective objects.
If X is Hom(−,X )-exact, then X admits an exact sequence of com-
plexes 0 → X → P 0 → P 1 → · · · → Pn → Kn+1 → 0, where P i

is projective and Kn+1 is a complex of X -Gorenstein projective objects
with Hom(−,X )-exact for each n ≥ 0.

Proof. By Proposition 4.5. �

Theorem 4.7. Let X be a complex of Ch(A) which is Hom(−,X )-
exact. Then the following conditions are equivalent:

(1) X is a YX -Gorenstein projective complex.
(2) There is an exact sequence 0 → X → P 0 → C0 → 0, where P 0

is a projective complex and C0 is a complex of X -Gorenstein projective
objects which is Hom(−,X )-exact.
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1090 Cheng and Zhu

(3) Xi is X -Gorenstein projective for each i ∈ Z.
Furthermore, if X is acyclic, then each of the above statements is

equivalent to the following:
(4) ZiX is X -Gorenstein projective for each i ∈ Z.

Proof. (3)⇒(2) is trivial by Corollary 4.6.
(1)⇒(3) Let X be YX -Gorenstein projective. Then there is an exact

sequence of projective complexes

P : · · · → P1 → P0 → P−1 → P−2 → · · ·
such that X ∼= Ker(P0 → P−1) and Hom(P, Y ) is exact whenever
Y ∈ YX . For each n ∈ Z, we have an exact sequence

Pn : · · · → P1
n → P0

n → P−1
n → P−2

n → · · ·
such that Xn ∼= Ker(P0

n → P−1
n), where Pni denotes the object in

the nth row and the ith column of P. Furthermore, if N ∈ X , then
Dn(N) ∈ YX . So we have Ext1(Xi, N) ∼= Ext1(X,Di(N)) = 0 for each
i ∈ Z. Thus the complex Hom(Pn, N) is exact. So Xn is X -Gorenstein
projective for each n ∈ Z.

(2)⇒(1) Let F ∈ YX . Applying the functor Hom(−, F ) to the se-
quence 0 → X → P 0 → C0 → 0, we conclude that P 0 is a YX -
preenvelope of X, since Ext1(C0, F ) = 0 by Proposition 4.4. More-
over, we get the exact sequence 0 → Cn → Pn+1 → Cn+1 → 0, where
Pn+1 is a projective YX -preenvelope of Cn and Cn+1 is a complex of X -
Gorenstein projective objects with Hom(−,X )-exact by Propositions
4.4 and 4.5 for each n ∈ N. Assembling these sequences, we have the
long exact sequence Q : 0→ X → P 0 → P 1 → · · · , where each Pn+1 is
a YX -preenvelope of Cn. So Hom(Q,YX ) is exact. However, the class
X -GP(A) is projective resolving by Theorem 3.5. So each term of X
is X -Gorenstein projective by the sequence 0 → X → P 0 → C0 → 0,
where each term of P 0 and each term of C0 are X -Gorenstein projective.
Note that X is Hom(−,X )-exact, since P 0 and C0 are Hom(−,X )-
exact. Then Ext1(X,F ) = 0 by Proposition 4.4. Furthermore, the
category Ch(A) has enough projective objects, there is an exact se-
quence 0 → K−1 → P−1 → X → 0 with P−1 being a projective com-
plex. Similar to the discussion of X, we know that K−1 is a complex
of X -Gorenstein projective objects. Moreover, since P−1 and X are
Hom(−,X )-exact, K−1 is also Hom(−,X )-exact. By applying Propo-
sition 4.4 to K−1, we have Ext1(K−1, F ) = 0. If we continue in this
manner, we have exact sequences 0 → K−i−1 → P−i−1 → K−i → 0
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such that each P−i is projective and each K−i is a complex of X -
Gorenstein projective objects with Ext1(K−i, F ) = 0 for all i > 0. Con-
necting these short exact sequences, we can obtain the exact sequence
· · · → P−2 → P−1 → X → 0 which is Hom(−,YX )-exact. Hence, X is
YX -Gorenstein projective.

(4)⇒(3) Is obvious.
(1)⇒(4) Let X be a YX -Gorenstein projective complex. Then there is

an exact sequence of projective complexes · · · → P−1 → P 0 → P 1 → · · ·
such that X ∼= Ker(P 0 → P 1). So Ker(Pn → Pn+1) is acyclic and
Hom(−,X )-exact for each n, since X is acyclic and Xi is X -Gorenstein
projective for each i. Thus there is an exact sequence of projective
objects for each i

· · · → ZiP
−1 → ZiP

0 → ZiP
1 → · · ·

such that ZiX ∼= Ker(ZiP
0 → ZiP

1). However, X is Hom(−,X )-
exact, Ext1(ZiX,M)=0 for all M ∈ X . Similarly, we can show that
Ext1(Ker(ZiP

n → ZiP
n+1),M)=0. Hence, the above sequence isHom(

−,X )-exact, i.e., ZiX is X -Gorenstein projective for each i ∈ Z. �

Example 4.8. Let X be the class of all Gorenstein projective R-modules.
By Definition 3.1, every X -Gorenstein projective R-module is projective.
Let X be a complex of R-modules with Hom(−,X )-exact. Then the
following conditions are equivalent:

(1) X is a YX -Gorenstein projective complex.
(2) X is a complex of projective R-modules.
In particular, if X is acyclic, then each of the above statements is

equivalent to the following:
(3) X is a projective complex.

Remark 4.9. (1) If we remove the condition ′′Hom(−,X )-exact′′ in
Theorem 4.7, (1)⇒(3) always holds.

(2) Let X be the class of all projective objects. Then (1), (2) and
(3) are equivalent in Theorem 4.7 without the condition ′′Hom(−,X )-
exact′′. Since every Y ∈ YX is a direct sum (product) of complexes of
the form {Dn(P )|P ∈ P(A)}.

In order to formalize the above property, we have the following results:

Lemma 4.10. Let X be a self-orthogonal class of objects of A. Then
every complex F ∈ YX is a direct sum (product) of complexes of the
form Dn(X) with X ∈ X and n ∈ Z.
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1092 Cheng and Zhu

Proof. Let F ∈ YX . Then there is an exact sequence 0 → ZnF →
Fn → Zn+1F → 0 for each n ∈ Z, where ZnF,Zn+1F ∈ X . So the
sequence splits by hypothesis, that is, Fn ∼= ZnF ⊕ Zn+1F . Hence,
F ∼= ⊕Dn(Zn(F )), as desired. �

Lemma 4.11. Let X be a self-orthogonal class of objects of A and X a
complex in Ch(A). Then the following conditions are equivalent:

(1) X is YX -Gorenstein projective.
(2) Xi is X -Gorenstein projective for each i ∈ Z.
In particular, if X is acyclic and Hom(−,X )-exact, then each of the

above statements is equivalent to the following:
(3) ZiX is X -Gorenstein projective for each i.

Proof. Since X is a self-orthogonal class of objects of A, by Lemma 4.10,
we have Ext1(X,F ) = Ext1(X,

∏
Dn(ZnF )) ∼=

∏
Ext1(X,Dn(ZnF )) ∼=∏

Ext1(Xn, ZnF ) for any F ∈ YX . In particular, if we remove the con-
dition ′′Hom(−,X )-exact′′, then Lemma 4.3, Propositions 4.4 and 4.5
are still true by Lemma 2.6. Thus (1) and (2) are equivalent. Fur-
thermore, when X is acyclic and Hom(−,X )-exact, then (1)⇔(3) by
Theorem 4.7. �

Example 4.12. Let X=P(R). Obviously, X is a self-orthogonal class
and YX is the class of all projective complexes. By Lemma 4.11, the
following conditions are equivalent:

(1) X is a Gorenstein projective complex.
(2) Xi is a Gorenstein projective R-module for each i ∈ Z.
Furthermore, if X is acyclic with Hom(−,X )-exact, then each of the

above statements are equivalent to the following:
(3) ZiX is a Gorenstein projective R-module for each i.

Next, we consider the relationships between YX -Gorenstein homolog-
ical dimension of complexes of Ch(A) and X -Gorenstein homological
dimension of objects of A.

Theorem 4.13. Let X be a self-orthogonal class of objects of A and
X a complex of Ch(A) with finite YX -Gorenstein projective dimension.
Then the following conditions are equivalent for n ≥ 0:

(1) X -Gpd(Xi) ≤ n for all i ∈ Z.

(2) ExtjA(Xi, G) = 0 for all i ∈ Z, j > n and G with X -pd(G) <∞.

(3) ExtjA(Xi, F ) = 0 for all i ∈ Z, j > n and F ∈ X .
(4) YX -GPdim(X) ≤ n.
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(5) For each exact sequence · · · → Gj → Gj−1 → · · · → G0 → X → 0,
where Gj is YX -Gorenstein projective for each j ∈ N, we have that
Ker(Gj → Gj−1) is YX -Gorenstein projective for each j ≥ n− 1.

(6) Extj(X, Ĝ) = 0 for all j > n, and all Ĝ with YX -pd(Ĝ) <∞.

(7) Extj(X, F̂ ) = 0 for all j > n, and all F̂ ∈ YX .
(8) X admits a surjective YX -Gorenstein projective precover ϕ: C →

X with K = Ker(ϕ) satisfying YX -pd(K) ≤ n− 1.
In particular, YX -GPdim(X)=Sup{X -Gpd(Xi)|i ∈ Z}.

Proof. (1)⇔(2)⇔(3) by Theorem 3.10.
(1)⇒(4) Fix an exact sequence

0→ K → Gn−1 → · · · → G1 → G0 → X → 0

of complexes, where each Gi is a YX -Gorenstein projective complex for
i = 0, 1, · · · , n− 1. The sequence always exists as every projective com-
plex is YX -Gorenstein projective. Then there is an exact sequences

0→ Ki → Gin−1 → · · · → Gi1 → Gi0 → Xi → 0

of objects in A for each i. Since X -GPdim(Xi) ≤ n, Ki is X -Gorenstein
projective. Thus K is Y-Gorenstein projective complex by Lemma 4.11.

(4)⇒(1) Let YX -GPdim(X) ≤ n. By Theorem 3.10, there is an exact
sequence

0→ Gn → Gn−1 → · · · → G1 → G0 → X → 0,

where Gi is a YX -Gorenstein projective complex for each i = 0, 1, · · · , n.
So it induces an exact sequence

0→ Gin → Gin−1 → · · · → Gi1 → Gi0 → Xi → 0

of objects ofA for each i. By Theorem 4.7, Gij is X -Gorenstein projective

for each j and i. Hence, X -Gpd(Xi) ≤ n.
(4)⇔(5)⇔(6)⇔(7)⇔(8) are true by [17, Theorem 3.1]. Since the class

of all YX -Gorenstein projective objects is projective resolving by The-
orem 3.5 and Lemma 4.11, YX is closed under direct summands and
Ext≥1(T,H) = 0 for all H ∈ YX and T ∈ YX -GP(Ch(A)) by Proposi-
tion 3.2. �

Remark 4.14. Let A be the category of R-modules. If X = P(R), then
YX=P(Ch(R)). By [10], [13] and Theorem 4.13, there are also relation-
ships between the objects with finite Gorenstein projective dimension in
the category of R-modules and those objects in its chain complex category
Ch(R) as above.
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5. Cotorsion pairs in Ch(A)

In this section, let A be a bicomplete abelian category with enough

projective objects and P(A) ⊆ X . For convenience, we denote by X̂ -
pd(A) the class of all objects with finite X -projective dimension and by
l.X -GPD(A) the left X -Gorenstein projective global dimension of A.

Suppose that C and F are two classes of complexes of Ch(A) and W
is a thick subcategory of Ch(A), where W is thick provided it is closed
under direct summands, and if two out of three of terms in a short
exact sequence are in W, so is the third. In [14], Hovey proved that two
complete cotorsion pairs (C,F ∩W) and (C ∩W,F) give rise to a model
structure on Ch(A) such that C is the class of all cofibrant objects, F
is the class of all fibrant objects and W is the class of all trivial objects.
In view of this, we discuss cotorsion pairs in Ch(A) with respect to the
class X -GP(A).

Lemma 5.1. If l.X -GPD(A) < ∞, then (X -GP(A), X̂ -pd(A)) is a
complete hereditary cotorsion pair which is cogenerated by X -GP(A).

Proof. By analogy with the proofs of [5, Corollary 11.5.3] and [5, Propo-
sition 11.5.9], we can prove that (X -GP(A), X -GP(A)⊥ ) is a complete
hereditary cotorsion pair.

In the following, we only prove X -GP(A)⊥=X̂ -pd(A).

Clearly, X̂ -pd(A) ⊆ X -GP(A)⊥. Next, we will prove that X -GP(A)⊥

⊆ X̂ -pd(A). That is, we shall show that X -pd(M) <∞ for each M ∈ X -
GP(A)⊥.

Firstly, we will show the following result: if 0→ X → X ′ → X ′′ → 0
is an exact sequence with X ′, X ′′ ∈ X -GP(A)⊥, then X ∈ X -GP(A)⊥.
In fact, for each G ∈ X -GP(A), we have the exact sequence

0 = Ext1(G′, X ′′)→ Ext2(G′, X)→ Ext2(G′, X ′)→ · · · . (1)

By the Definition 3.1, there is an exact sequence 0→ G→ P → G′ → 0
with P ∈ P(A) and G′ ∈ X -GP(A). From this sequence, we get other
exact sequences

0 = Ext1(G,X ′)→ Ext2(G′, X ′)→ Ext2(P,X ′) = 0 (2)

and

0 = Ext1(P,X)→ Ext1(G,X)→ Ext2(G′, X)→ Ext2(P,X) = 0. (3)

By (1),(2) and (3), we can obtain Ext1(G,X) = 0, i.e., X ∈ X -GP(A)⊥.
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Secondly, we will show that for each M ∈ X -GP(A)⊥, X -pd(M) <∞.
In fact, since l.X -GPD(A) < ∞, there is a nonnegative integer n such
that X -GPdim(M) = n. Then there is an exact sequence

0→ Kn → Qn−1 → · · · → Q1 → Q0 →M → 0, (4)

where Kn is X -Gorenstein projective and Qi is projective for each i. Let
Ki = Ker(Qi−1 → Qi−2) for 1 ≤ i ≤ n − 1, where Q−1 = M . Note
that M,Qi ∈ X -GP(A)⊥, then Ki ∈ X -GP(A)⊥ by the result of the
first step. For Kn, there is an exact sequence 0→ Kn → P → Kn

′ → 0,
where P is projective and Kn

′ is X -Gorenstein projective. Thus the
sequence splits since Kn ∈ X -GP(A)⊥. That is, Kn is projective. From

the sequence (4), we obtain pd(M) ≤ n, i.e., X̂ -pd(M) ≤ n. Hence,

X -GP(A)⊥ ⊆ X̂ -pd(A). �

Theorem 5.2. Let A be an abelian category containing an injective co-
generator. If l.X -GPD(A) <∞, then (Ch(X -GP(A)), Ch(X -GP(A))⊥)
and (Ch(X -GP(A))∩E, (Ch(X -GP(A))∩E)⊥) are cotorsion pairs, where
E is the class of all acyclic complexes of Ch(A).

Proof. First, we prove that (Ch(X -GP(A)), Ch(X -GP(A))⊥) is a cotor-
sion pair.

Let S = Ch(X -GP(A)). Clearly, S ⊆ ⊥(S⊥). Now, we only need to
prove ⊥(S⊥) ⊆ S. Given X ∈ ⊥(S⊥), we have Ext1(X,Dn(B)) = 0

for each B ∈ X̂ -pd(A). In fact, Ext1(G,Dn(B)) ∼= Ext1(Gn, B) = 0
by Lemma 2.6 for all n and G ∈ S, as Gn is X -Gorenstein projective.
So Dn(B) ∈ S⊥. But 0 = Ext1(X,Dn(B)) ∼= Ext1(Xn, B), we have

Xn ∈⊥ X̂ -pd(A). Thus, Xn is X -Gorenstein projective for each n by
Lemma 5.1, that is, X ∈ S. So we have S =⊥ (S⊥).

Next, we consider the pair (S ∩ E , (S ∩ E)⊥). Similarly, we only need
to show S ∩ E=⊥((S ∩ E)⊥). Clearly, S ∩ E ⊆⊥ ((S ∩ E)⊥). Conversely,
if we assume X ∈⊥ ((S ∩ E)⊥), then we have X ∈ S by the proof of
the above. In the following, we show that X ∈ E . Let Y ∈ S ∩ E , then
Ext1(Y, Sn(E)) ∼= Ext1(Y n/BnY,E) = 0 for an injective cogenerator
E. So Sn(E) ∈ (S ∩ E)⊥. Thus Ext1(X,Sn(E))=0. Applying the
functor Hom(X,−) to the exact sequence of complexes 0→ Sn+1(E)→
Dn+1(E)→ Sn(E)→ 0, we have the exact sequence

0→ Hom(X,Sn+1(E))→ Hom(X,Dn+1(E))→ Hom(X,Sn(E))→ 0

of complexes. That is, the complex

0→ Hom(Xn+1/Bn+1X,E)→ Hom(Xn+1, E)→ Hom(Xn/BnX,E)→ 0
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is exact. So the sequence 0→ Xn/BnX → Xn+1 → Xn+1/Bn+1X → 0
is exact. Thus X is exact, i.e., X ∈ S ∩ E . �

Corollary 5.3. Suppose that A is a bicomplete abelian category con-
taining an injective cogenerator. If l.X -GPD(A) < ∞, then we have
a model structure on Ch(A), where the cofibrant objects is in Ch(X -
GP(A)).

Proof. By [14, Theorem 2.2], we take W=E , where E is the class of all
acyclic complexes of Ch(A), C=Ch(X -GP(A)) and F=(Ch(X -GP(A))∩
E)⊥. Then W is a thick subcategory of Ch(A). Now, we only need to
show that (Ch(X -GP(A)) ∩ E)⊥ ∩ E=Ch(X -GP(A))⊥. Let S = Ch(X -
GP(A)). If X ∈ S⊥, then X ∈ (S ∩ E)⊥. However, by the proof of
Theorem 5.2, X is acyclic as there is an injective cogenerator in A.
That is, S ⊆ (S ∩ E)⊥ ∩ E .

Conversely, let X ∈ (S ∩ E)⊥ ∩ E , then X ∈ S⊥.
Indeed, let Y ∈ S, there is, an exact sequence 0→ Y → A→ B → 0,

where Y → A is an E-preenvelope and B is a dg-projective complex
(i.e., B is a complex of projective objects of A and Hom(B,X) is exact
for each exact complex X ∈ Ch(A)) by [8] or [15]. So B ∈ S. Since
S is closed under extensions, we have A ∈ S ∩ E . Applying the functor
Hom(−, X) to this, we have the exact sequence

· · · → Ext1(A,X)→ Ext1(Y,X)→ Ext2(B,X)→ · · · .

It induces Ext1(A,X)=0 and Ext2(B,X)=0, since A ∈ S ∩ E and B is
dg-projective. Thus Ext1(Y,X)=0, i.e., X ∈ S⊥. �
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