CHARACTERISTIC FUNCTION OF A MEROMORPHIC FUNCTION AND ITS DERIVATIVES

J. WU AND Z. WU *

Communicated by Javad Mashreghi

ABSTRACT. In this paper, some results of Singh, Gopalakrishna and Kulkarni (1970s) have been extended to higher order derivatives. It has been shown that, if $\sum_a \Theta(a,f)=2$ holds for a meromorphic function f(z) of finite order, then for any positive integer $k,\ T(r,f)\sim T(r,f^{(k)}), r\to\infty$ if $\Theta(\infty,f)=1$ and $T(r,f^{(k)})\sim (k+1)T(r,f), r\to\infty$ if $\Theta(\infty,f)=0$.

1. Introduction

Let f(z) be a meromorphic function in the complex plane \mathbb{C} . Assume that basic definitions, theorems and standard notations of the Nevanlinna theory for meromorphic function (see [3], [10] or [12]) are known. We use the following notations of frequent use of value distribution (see [3]) with their usual meaning:

$$m(r,f), N(r,a), \overline{N}(r,a), \delta(a,f), \Theta(a,f), \cdots$$

As usual, if $a=\infty$, we write $N(r,\infty)=N(r,f), \overline{N}(r,\infty)=\overline{N}(r,f)$. We denote by S(r,f) any quantity such that

$$S(r, f) = o(T(r, f)), \quad r \to +\infty$$

MSC(2010): Primary: 30D30; Secondary: 30D35.

Keywords: Characteristic function, Nevanlinna's deficiency, maximum deficiency sum.

Received: 20 July 2011, Accepted: 21 February 2012.

*Corresponding author

© 2013 Iranian Mathematical Society.

1117

1118 Wu and Wu

without restriction if f(z) is of finite order and otherwise except possibly for a set of values of r of finite linear measure. The well known Nevanlinna's deficiency relation states that

$$\sum_{a} \delta(a, f) \le \sum_{a} \Theta(a, f) \le 2.$$

If $\sum_{a} \delta(a, f) = 2$, then we say that f(z) has maximum deficiency sum (see [2]).

Let f(z) be a meromorphic scalar valued function in \mathbb{C} . On the characteristic function of derivative of f(z) with maximum deficiency sum has been studied by Shan, Singh, Gopalakrishna, Edrei and Weitsman [1], [4]-[8]. For example, Edrei [1] and Weitsman [8] have proved

Theorem A Let f(z) be a transcendental meromorphic function of finite order and assume $\sum_{a\in\mathbb{C}}\delta(a,f)=\eta\geq 1$ and $\delta(\infty)=2-\eta$. Then

$$a \in \mathbb{C}$$

$$T(r, f') \sim \eta T(r, f), r \to +\infty.$$

If $\sum_a \delta(a,f)=2$ is replaced by $\sum_a \Theta(a,f)=2$, Singh, Gopalakrishna [6] and Singh, Kulkarni [7] have proved

THEOREM B Let f(z) be a transcendental meromorphic scalar valued function of finite order and assume $\sum \Theta(a, f) = 2$. Then

$$\lim_{r \to +\infty} \frac{T(r, f')}{T(r, f)} = 2 - \Theta(\infty).$$

Hence

nce
(1) if
$$\Theta(\infty, f) = 1$$
, $T(r, f) \sim T(r, f')$ as $r \to \infty$;

(2) if
$$\Theta(\infty, f) = 0$$
, $T(r, f') \sim 2T(r, f)$ as $r \to \infty$.

We extend the above result to higher order derivatives as follows:

Theorem 1.1. Suppose that f is a transcendental meromorphic function of finite order and $\sum_{a} \Theta(a, f) = 2$. Then for any positive integer k, we have

(1) if
$$\Theta(\infty, f) = 1$$
, $T(r, f) \sim T(r, f^{(k)})$ as $r \to \infty$;

(2) if
$$\Theta(\infty, f) = 0$$
, $T(r, f^{(k)}) \sim (k+1)T(r, f)$ as $r \to \infty$.

From Theorem 1.1, we can get

Corollary 1.2. [11] Suppose that f is a transcendental meromorphic function of finite order and $\sum_{a} \delta(a, f) = 2$. Then for any positive integer k, we have

(1) if
$$\delta(\infty, f) = 1$$
, $T(r, f) \sim T(r, f^{(k)})$ as $r \to \infty$;

(2) if
$$\delta(\infty, f) = 0$$
, $T(r, f^{(k)}) \sim (k+1)T(r, f)$ as $r \to \infty$.

2. Proof of Theorem 1.1

Proof. (1) We prove Theorem 1.1 (1) by induction. Since $\Theta(\infty, f) = 1$, by Theorem B, we have $T(r, f) \sim T(r, f')$ as $r \to \infty$. Assume that

(2.1)
$$T(r,f) \sim T(r,f^{(k)}), r \to \infty.$$
 Now we prove $T(r,f) \sim T(r,f^{(k+1)})$ as $r \to \infty$.

Without loss of generality we can assume that $q \geq 2$. Put

$$F(z) = \sum_{i=1}^{q} \frac{1}{f(z) - a_i}, \quad a_i \in \mathbb{C}.$$

Then (See [6])

$$\sum_{i=1}^{q} m(r, a_i) \le m(r, F) + O(1).$$

$$F(z) = \sum_{i=1}^{q} \frac{1}{f(z) - a_i}, \quad a_i \in \mathbb{C}.$$
en (See [6])
$$\sum_{i=1}^{q} m(r, a_i) \le m(r, F) + O(1).$$

$$\sum_{i=1}^{q} m(r, a_i) \le m(r, F) + O(1)$$

$$= m\left(r, \frac{1}{f(k+1)}Ff^{(k+1)}\right) + O(1)$$

$$\le m\left(r, \frac{1}{f(k+1)}\right) + m\left(r, \sum_{i=1}^{q} \frac{f^{(k+1)}}{f(z) - a_i}\right) + O(1)$$

$$= m\left(r, \frac{1}{f^{(k+1)}}\right) + S(r, f).$$

1120 Wu and Wu

Hence

$$qT(r,f) \leq \sum_{i=1}^{q} N(r,a_i) + m\left(r, \frac{1}{f^{(k+1)}}\right) + S(r,f)$$

$$= \sum_{i=1}^{q} N(r,a_i) + T\left(r, f^{(k+1)}\right) - N\left(r, \frac{1}{f^{(k+1)}}\right) + S(r,f)$$

$$\leq \sum_{i=1}^{q} N(r,a_i) + T\left(r, f^{(k+1)}\right) - N\left(r, \frac{1}{f'}\right) + S(r,f)$$

$$= T\left(r, f^{(k+1)}\right) + \sum_{i=1}^{q} \overline{N}(r,a_i) - N_0\left(r, \frac{1}{f'}\right) + S(r,f).$$

where $N_0\left(r,\frac{1}{f'}\right)$ is formed with the zeros of f' which are not zeros of any of the $f-a_i, i=1,2,\cdots,q$. Since $N_0\left(r,\frac{1}{f'}\right)\geq 0$, we have

$$qT(r,f) \le T\left(r,f^{(k+1)}\right) + \sum_{i=1}^{q} \overline{N}(r,a_i) + S(r,f).$$

Thus

$$\sum_{i=1}^{q} \left(1 - \frac{\overline{N}(r, a_i)}{T(r, f)} \right) \leq \frac{T\left(r, f^{(k+1)}\right)}{T(r, f)} + \frac{S(r, f)}{T(r, f)}.$$

So

$$\sum_{i=1}^{q} \Theta(a_i, f) \leq \liminf_{r \to \infty} \frac{T(r, f^{(k+1)})}{T(r, f)},$$

holds for any $q \geq 2$. Letting $q \to \infty$, we obtain

(2.2)
$$1 = \sum_{a \neq \infty} \Theta(a, f) \leq \liminf_{r \to \infty} \frac{T(r, f^{(k+1)})}{T(r, f)}$$

Combining (2.1) and (2.2) we have

$$(2.3) 1 \leq \liminf_{r \to \infty} \frac{T\left(r, f^{(k+1)}\right)}{T(r, f^{(k)})} \leq \limsup_{r \to \infty} \frac{T\left(r, f^{(k+1)}\right)}{T(r, f^{(k)})}.$$

On the other hand, since $\overline{N}(r, f^{(k)}) = \overline{N}(r, f), \Theta(\infty, f) = 1$ and (2.1), we have

$$\limsup_{r\to\infty}\frac{\overline{N}\left(r,f^{(k)}\right)}{T\left(r,f^{(k)}\right)}\leq \limsup_{r\to\infty}\frac{\overline{N}(r,f)}{T(r,f)}=0.$$

So

$$\Theta\left(\infty, f^{(k)}\right) = 1.$$

Thus

$$\begin{split} T\left(r,f^{(k+1)}\right) &= \quad m\left(r,f^{(k+1)}\right) + N\left(r,f^{(k+1)}\right) \\ &\leq m\left(r,f^{(k)}\right) + m\left(r,\frac{f^{(k+1)}}{f^{(k)}}\right) + N\left(r,f^{(k)}\right) + \overline{N}\left(r,f^{(k)}\right) \\ &= \quad T\left(r,f^{(k)}\right) + \overline{N}\left(r,f^{(k)}\right) + S(r,f). \end{split}$$

Hence

$$= T\left(r, f^{(k)}\right) + \overline{N}\left(r, f^{(k)}\right) + S(r, f).$$
Hence
$$\lim_{r \to \infty} \frac{T\left(r, f^{(k+1)}\right)}{T\left(r, f^{(k)}\right)} \le 2 - \Theta(\infty, f^{(k)}) = 1.$$

(2.1) and (2.3)-(2.4) together imply $T(r, f) \sim T\left(r, f^{(k+1)}\right)$ as $r \to \infty$.

We can prove (2) of Theorem 1.1 by using the same method as that in [11]. As [11] may not be abundantly available, we give the following proof. From Nevanlinna's second fundamental theorem, we have

$$(q-1)T(r,f) \le T(r,f) + \sum_{i=1}^{q} \overline{N}(r,a_i) + \overline{N}(r,f) + S(r,f).$$

Thus

$$(q-1)T(r,f) \leq T(r,f) + \sum_{i=1}^{q} \overline{N}(r,a_i) + \overline{N}(r,f) + S(r,f).$$

$$\sum_{i=1}^{q} \Theta(a_i,f) \leq 1 + \liminf_{r \to \infty} \frac{\overline{N}(r,f)}{T(r,f)} \leq 1 + \limsup_{r \to \infty} \frac{\overline{N}(r,f)}{T(r,f)} \leq 2.$$

Letting $q \to \infty$, we obtain

$$2 = \sum_{a \neq \infty} \Theta(a, f) \leq 1 + \liminf_{r \to \infty} \frac{\overline{N}(r, f)}{T(r, f)} \leq 1 + \limsup_{r \to \infty} \frac{\overline{N}(r, f)}{T(r, f)} \leq 2$$

So

(2.5)
$$T(r,f) \sim N(r,f) \sim \overline{N}(r,f), r \to \infty.$$

1122 Wu and Wu

Since

$$\begin{split} (k+1)\overline{N}(r,f) & \leq & N(r,f) + k\overline{N}(r,f) = N\left(r,f^{(k)}\right) \\ & \leq & T\left(r,f^{(k)}\right) \\ & \leq & m(r,f) + m\left(r,\frac{f^{(k)}}{f}\right) + N\left(r,f^{(k)}\right) \\ & = & T(r,f) + k\overline{N}(r,f) + S(r,f). \end{split}$$

From this and (2.5), we get $T(r, f^{(k)}) \sim (k+1)T(r, f)$ as $r \to \infty$.

3. Proof of Corollary 1.2

Proof. Since $\delta(a,f) \leq \Theta(a,f)$ for every $a \in \mathbb{C} \cup \{\infty\}$, if $\sum_{a} \delta(a,f) = 2$, then $\sum_{a} \Theta(a,f) = 2$ and $\delta(a,f) = \Theta(a,f)$ for every $a \in \mathbb{C} \cup \{\infty\}$. Hence Corollary 1.2 follows by Theorem 1.1.

Acknowledgments

This research was partially supported by the NNSF of China (Grant No. 11201395) and by NSF of Educational Department of the Hubei Province (Grant No. Q20132801, D20132804).

REFERENCES

- [1] A. Edrei, Sums of deficiencies of meromorphic functions II, *J. Analyse Math.* **19** (1967) 53–74.
- [2] M. L. Fang, A note on a result of Singh and Kulkarni, Int. J. Math. Math. Sci. 23 (2000) 285–288.
- [3] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
- [4] S. M. Shah and S. K. Singh, Borel's theorem on a-points and exceptional values of entire and meromorphic functions, *Math. Z.* **59** (1953) 88–93.
- [5] S. M. Shah and S. K. Singh, On the derivative of a meromorphic function with maximum defect, *Math. Z.* **65** (1956) 171–174.
- [6] S. K. Singh and H. S. Gopalakrishna, Exceptional values of entire and meromorphic functions, Math. Ann. 191 (1971) 121–142.
- [7] S. K. Singh and V. N. Kulkarni, Characteristic function of a meromorphic function and its derivative, Ann. Polon. Math. 28 (1973) 123–133.

- [8] A. Weitsman, Meromorphic functions with maximal deficiency sum and a conjecture of F. Nevanlinna, *Acta Math.* **123** (1969) 115–139.
- [9] H. Wittich, Neuere Untersuchungen Über eindeutige Analytische Funktionen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955.
- [10] L. Yang, Value Distribution Theory and its New Research, Science Press Beijing, Beijing, 1993.
- [11] L. Z. Yang, Sum of deficiencies of meromorphic function and its characteristic function, J. Shandong Univ. Nat. Sci. 24 (1989) 7–11.
- [12] J. H. Zheng, Value Distribution of Meromorphic Functions, Tsinghua University Press Beijing, Beijing; Springer, Heidelberg, 2010.

Jia Wu

Xianning Vocational and Technical College, P.O. Box 437100, Xianning, P. R. China Email: 44976882@qq.com

Zhaojun Wu

School of Mathematics and Statistics, Hubei University of Science and Technology, P.O. Box 437100, Xianning, P. R. China

Email: wuzj52@hotmail.com

