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ON THE NON-SPLIT EXTENSION GROUP 26·Sp(6, 2)

A. B. M. BASHEER∗ AND J. MOORI

Communicated by Ali Reza Ashrafi

Abstract. In this paper we first construct the non-split extension
G = 26·Sp(6, 2) as a permutation group acting on 128 points. We
then determine the conjugacy classes using the coset analysis tech-
nique [J. Moori, On the Groups G+ and G of the form 210:M22

and 210:M22, PhD Thesis, University of Birmingham, 1975] and
[J. Moori, On certain groups associated with the smallest Fischer
group, J. London Math. Soc.(2) 23 (1981), no. 1, 61–67.], inertia
factor groups and Fischer matrices, which are required for the com-
putations of the character table of G by means of Clifford-Fischer
Theory. There are two inertia factor groups namely H1 = Sp(6, 2)
and H2 = 25:S6, the Schur multiplier and hence the character table
of the corresponding covering group of H2 were calculated. Using
information on conjugacy classes, Fischer matrices and ordinary
and projective tables of H2, we concluded that we only need to use
the ordinary character table of H2 to construct the character table
of G. The Fischer matrices of G are all listed in this paper. The
character table of G is a 67×67 integral matrix, it has been supplied
in the PhD Thesis [A. B. M. Basheer, Clifford-Fischer Theory Ap-
plied to Certain Groups Associated with Symplectic, Unitary and
Thompson Groups, University of KwaZulu-Natal, Pietermaitzburg,
2012] of the first author, which could be accessed online.

1. Introduction

Let G = Sp(2n, q) be the symplectic group consisting of 2n× 2n ma-
trices over Fq that preserve a non-degenerate alternating bilinear form
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1190 Basheer and Moori

and let V = q2n be a 2n−dimensional vector space over Fq. In [10] Dem-

pwolff proved that a non-split extension of the form Gn = 22n·Sp(2n, 2)
does exist for all n ≥ 2, where Gn/2

2n ∼= Sp(2n, 2) acts faithfully on
22n. Moreover such an extension is unique, up to isomorphism, since
dimF2 H

2(Sp(2n, 2), 22n) = 1 for all n ≥ 2, where H2(K,M) is the sec-
ond cohomology group of a group K with coefficients in M. In the case
n = 2, the non-split extension G2 = 24·Sp(4, 2) ∼= 24·S6 is a maximal
subgroup of the sporadic simple group Higman-Sims HS (see the ATLAS
[8]). This group has been fully investigated by T. Seretlo [26], its Fischer
matrices and the character table were determined. The character table
of G2 is also available in a GAP library (see [14]). The split extension
26:Sp(6, 2) as a maximal subgroup of F22 is fully studied by Mpono and
Mpono and Moori [21, 19], its Fischer matrices and character table were
calculated. The Fischer matrices of our group G = 26·Sp(6, 2) and its
character table are not known. In this paper our main aims are to fully
study this group, to determine its inertia factor groups (and their re-
spective ordinary and projective character tables) and to compute the
Fischer matrices. It will turn out that the character table of G is a
67 × 67 integral matrix and coincides with the character table of the
split extension 26:Sp(6, 2), constructed in Mpono [21] and which is also
available in GAP. If one only interested in the calculation of the charac-
ter table, then it could be computed by using GAP or Magma and the
generators g1 and g2 of G. But Clifford-Fischer Theory provides many
other interesting information on the group and on the character table,
in particular the character table produced by Clifford-Fischer Theory is
in a special format that could not be achieved by direct computations
using GAP or Magma. Also providing various examples for the appli-
cations of Clifford-Fischer Theory to both split and non-split extensions
is making sense, since each group requires individual approach. The
readers (particulary young researchers) will highly benefit from the the-
oretical background required for these computations. GAP and Magma
are computational tools and would not replace good powerful and the-
oretical arguments.

We have built a small subroutine (see Section 9.2 of [4]) in GAP to
construct the group G in terms of permutations of a set of cardinality
128. The following two elements g1 and g2 generate the group G.
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On the group 26·Sp(6, 2) 1191

g1 = (1 12)(2 111 86 50)(3 57 94 69)(4 95 23 121)(5 70 48 58)(6 71 21 59)

(8 72 73 117)(9 108 33 74)(10 118 61 18)(11 119 31 19)(13 102 97 87)(14

100 27 101)(15 85 55 66)(16 115 88 67)(17 79 52 78)(20 93 120 104)(22

28 24 105)(25 106 47 29)(30 44 107 90)(32 45 34 91)(35 92 60 46)(36 65

64 37)(38 126 122 53)(39 42 116 89)(40 43 84 54)(41 63 56 125)(51 83 127

68)(62 96)(76 98)(77 99)(80 81 112 113)(82 114 128 103)(109 123)(110 124),

g2 = (1 104 103 118 93 113 55 52 83 15 98 8 18 17 107)(2 73 12 69

68 91 57 81 89 86 114 42 123 30 45)(3 48 49 32 72 115 34 36

125 94 90 63 77 24 67)(4 53 35 127 102 99 106 47 60 59 112 14

82 6 27)(5 40 20 22 75 61 44 84 10 64 101 120 117 100 110)

(9 50 88 43 79)(11 128 126 124 71 21 31 29 80 41 51 25 56 23

87)(13 105 96 28 97)(16 111 33 78 54)(19 116 74 66 92)(37 76 121)(38

70 62 58 122)(39 119 46 85 108)(65 109 95).

with o(g1) = 4, o(g2) = 15 and o(g1g2) = 9.

Note 1.1. Note that the generators g1 and g2 fix the points 7 and 26.
Thus G acts transitively on a set Ω of 126 points. Hence we have a
permutation character χ(G|Ω) = χ of degree 126. In Table 11.1 of [4]
we listed the values of χ on G−classes and using the character table of
G (Table 11.12 of [4]) we can see that χ = χ1 + χ6 + χ7 + χ31.

Now having the group G constructed in GAP, it is easy to obtain its
normal subgroups. In fact the only non-trivial proper normal subgroup
that G contains is a group of order 64 and thus must be isomorphic
to the elementary abelian group N = 26. The following 6 permutations
n1, n2, · · · , n6 generate the normal subgroup N.

n1 = (6 25)(11 35)(16 43)(19 46)(22 48)(29 59)(32 61)(37 65)(40 67)(49 75)

(53 87)(55 89)(62 96)(68 103)(69 104)(71 106)(73 107)(74 108)(77 110)(79 111)

(81 113)(83 114)(85 116)(90 117)(92 119)(94 120)(95 121)(97 122)(99 124)

(101 125)(102 126)(127 128),

n2 = (5 24)(6 25)(10 34)(11 35)(15 42)(16 43)(18 45)(19 46)(21 47)(22 48)(28

58)(29 59)(31 60)(32 61)(36 64)(37 65)(39 66)(40 67)(54 88)(55 89)(70

105)(71 106)(76 109)(77 110)(80 112)(81 113)(84 115)(85 116)(91 118)(92

119)(98 123),

n3 = (99 124) (4 23)(5 24)(6 25)(9 33)(10 34)(11 35)(14 41)(15 42)(16 43)(18

45)(19 46)(28 58)(29 59)(36 64)(37 65)(44 72)(50 78)(52 86)(54 88)(55 89)

(57 93)(63 100)(69 104)(74 108)(80 112)(81 113)(83 114)(90 117)(95 121)(97

122)(102 126)(127 128),
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1192 Basheer and Moori

n4 = (3 20)(5 24)(6 25)(8 30)(10 34)(11 35)(13 38)(15 42)(16 43)(21 47)(22

48)(31 60)(32 61)(39 66)(40 67)(44 72)(50 78)(51 82)(54 88)(55 89)(57 93)

(63 100)(69 104)(73 107)(79 111)(84 115)(85 116)(90 117)(94 120)(97 122)

(101 125)(127 128),

n5 = (2 17)(3 20)(4 23)(5 24)(8 30)(9 33)(10 34)(16 43)(19 46)(22 48)(27 56)

(29 59)(32 61)(36 64)(39 66)(49 75)(50 78)(55 89)(62 96)(63 100)(69 104)

(70 105)(77 110)(79 111)(80 112)(83 114)(84 115)(90 117)(91 118)(99 124)

(101 125)(102 126),

n6 = (1 12)(5 24)(6 25)(8 30)(9 33)(15 42)(16 43)(18 45)(19 46)(21 47)(22 48)

(27 56)(36 64)(37 65)(39 66)(40 67)(50 78)(51 82)(52 86)(53 87)(57 93)(62

96)(70 105)(71 106)(79 111)(83 114)(90 117)(94 120)(95 121)(98 123)(99 124)

(127 128).

In Magma or GAP one can easily check for the complements of the
normal subgroup N = 〈n1, n2, · · · , n6〉 in G = 〈g1, g2〉 , which in our
case will return an empty list of complements. This shows that the
group G constructed using the generators g1 and g2 is indeed a non-
split extension of the elementary abelian group N = 26 by the symplectic
group Sp(6, 2).

Section 2 is devoted to review the conjugacy classes of group exten-
sions in general and the conjugacy classes of G. In Section 3 we review
the fundamentals of Clifford-Fischer Theory. In Section 4 we determine
the inertia factors H1 = Sp(6, 2) and H2 = 25:S6 and the fusion of H2 in
Sp(6, 2) as well as the ordinary and projective character tables of H2. In
Section 5 we calculate the Fischer matrices of G and we see that these
matrices are integral valued matrices and their sizes range between one
and four. Finally in Section 6 we show how to construct the table of G.
The character table of G is given as Table 11.12 of Basheer [4]. It could
be accessed online via
“http://researchspace.ukzn.ac.za/xmlui/handle/10413/6674?show=full”.

Throughout this paper,

• all the mentioned groups are finite,
• an ordinary or projective character will always mean a character

over C,
• 1G means the neutral element of a finite group G, while 1G

(bolded) means the trivial character of G,
• if H ≤ G, then χ↑GH and χ↓GH will denote the induction and

restriction of a character χ from H to G and from G to H re-
spectively.
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On the group 26·Sp(6, 2) 1193

• inf(χ) denotes the inflation (lift) of a character χ of a quotient
group G/K to G, where K is any normal subgroup of G.

We would like to remark that most of the results mentioned in this paper
follow [4] and [5].

2. Conjugacy classes of group extensions and of G = 26·Sp(6, 2)

In this section we use the method of the coset analysis to calculate the
conjugacy classes of G = 26·Sp(6, 2). This technique has been developed
by the second author of this paper in his PhD Thesis [17] and also in
[18]. The coset analysis can be used for any extension (spilt or non-
split) G = N ·G, where N C G and also whether the kernel N of the
extension is abelian or not. It has been used by various authors such
as Barraclough [3] and in particular by several MSc and PhD students,
such as Mpono [19], Rodrigues [24], Whitely [27] and in [5] and [6] by the
authors of this paper. In the following we give a shortened description
on how the coset analysis can be used to determine the conjugacy classes
of any group extension.

For each g ∈ G let g ∈ G map to g under the natural epimorphism π :
G −→ G and let g1 = Ng1, g2 = Ng2, · · · , gr = Ngr be representatives
for the conjugacy classes of G ∼= G/N. Therefore gi ∈ G, ∀i, and by
convention we take g1 = 1G. The method of the coset analysis constructs
for each conjugacy class [gi]G, 1 ≤ i ≤ r, a number of conjugacy classes of
G. That is each conjugacy class of G corresponds uniquely to a conjugacy
class of G. This method can be described briefly in the following steps:

• For fixed i ∈ {1, 2, · · · , r}, act N (by conjugation) on the coset
Ngi and let the resulting orbits be Qi1, Qi2, · · · , Qiki . If N is
abelian (regardless to whether the extension is split or not), then

|Qi1| = |Qi2| = · · · = |Qiki | =
|N |
ki
.

• Act G on Qi1, Qi2, · · · , Qiki and suppose fij orbits fuse together
to form a new orbit ∆ij and let the total number of the new re-
sulting orbits in this action be c(gi) (that is 1 ≤ j ≤ c(gi)). Then
G has a conjugacy class [gij ]G that contains ∆ij and |[gij ]G| =
|[gi]G| × |∆ij |.
• Repeat the above two steps, for all i ∈ {1, 2, · · · , r}.
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1194 Basheer and Moori

Lemma 2.1. ∀ i ∈ {1, 2, · · · , r}, write gi = Ngi =

c(gi)⋃
j=1

(
Ngi

⋂
[gij ]G

)
=

c(gi)⋃
j=1

∆ij . Then {gi1, gi2, · · · , gic(gi)} is a complete set of representatives

for the conjugacy classes of G that correspond (under the natural epi-
morphism) to [gi]G.

Proof. One can refer to Barraclough [3] with slight difference in nota-
tions. �

Thus each [gi]G affords c(gi) conjugacy classes in G.

Remark 2.2. For fixed i ∈ {1, 2, · · · , r}, the conjugacy class [gij ]G is
partitioned into |[gi]G| equal size subsets ∆ij1,∆ij2, · · · ,∆ij|[gi]G|, where
|∆iju| = |∆ij |, for each 1 ≤ u ≤ |[gi]G| (we can take ∆ij1 = ∆ij).

Moreover, for fixed i and s ∈ {1, 2, · · · , |[gi]G|}, the relation

c(gi)∑
j=1

|∆ijs| =

|N | holds. If the extension splits, then ∆i1s is the intersection of [gij ]G
with an element of [gi]G, for all 1 ≤ s ≤ |[gi]G|.

Therefore information about every conjugacy class of G can be ob-
tained by examining one coset Ngi = gi ∈ G for each conjugacy class of
G. The following two propositions relate the orders of the elements of G
with those of G.

Proposition 2.3. Let G = N :G, where N is an abelian group. Also let
G 3 g = ng, for some n ∈ N and g ∈ G. Then o(g)|o(g).

Proof. Let o(g) and o(g) be k and m respectively. We have 1G = gk =

(ng)k = nngng
2
ng

3 · · ·ngk−1
gk. SinceG acts onN, we have n, ng, ng

2
, ng

3
,

· · · , ngk−1 ∈ N and therefore nngng
2
ng

3 · · ·ngk−1 ∈ N.Now sinceN
⋂
G =

{1G} and nngng
2
ng

3 · · ·ngk−1
gk = 1G, we must have nngng

2
ng

3 · · ·ngk−1

and gk equal to 1N and 1G respectively. Hence m|k. �

Proposition 2.4. With the settings of Proposition 2.3 and its proof,
assume further that N is an elementary abelian p−group. Then k ∈
{m, pm}.

Proof. See Mpono [21]. �
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On the group 26·Sp(6, 2) 1195

Further results on the conjugacy classes of G = N ·G, when N is
abelian or the extension splits, can be found in many sources such as
Ali [1], Barraclough [3], Moori [17], [18], Mpono [21], Rodrigues [24] or
Whitely [27].

In Table 1 we list the conjugacy classes of G = 26·Sp(6, 2), where in
this table, the values of

• ki’s represent the number of fixed points of gi on its action on
N = 〈n1, n2, · · · , n6〉 ,
• fij ’s represent the number of orbits (of the action of N on Ngi)

fused together under the action of G = 〈g1, g2〉 ,
• mij ’s are weights (attached to each class of G) that will be used

later in computing the Fischer matrices of G. These weights are
computed through the formula

(2.1) mij = [NG(Ngi) : CG(gij)] = |N | |CG(gi)|
|CG(gij)|

.

Table 1. The conjugacy classes of G = 26·Sp(6, 2)

[gi]G ki fij mij [gij ]G o(gij) |[gij ]G)| |CG(gij)|
g1 = 1A k1 = 64 f11 = 1 m11 = 1 g11 1 1 92897280

f12 = 63 m12 = 63 g12 2 63 1474560

f21 = 13 m21 = 2 g21 4 126 737280
g2 = 2A k2 = 32 f22 = 15 m22 = 30 g22 4 1890 49152

f23 = 16 m23 = 32 g23 2 2016 46080

f31 = 1 m31 = 4 g31 2 1260 73728
g3 = 2B k3 = 16 f32 = 3 m32 = 12 g32 2 3780 24576

f33 = 12 m33 = 48 g33 4 15120 6144

f41 = 1 m41 = 4 g41 4 3780 24576
g4 = 2C k4 = 16 f42 = 3 m42 = 12 g42 4 11340 8192

f43 = 4 m43 = 16 g43 2 15120 6144
f44 = 8 m44 = 32 g44 4 30240 3072

f51 = 1 m51 = 8 g51 4 30240 3072
g5 = 2D k5 = 8 f52 = 1 m52 = 8 g52 2 30240 3072

f53 = 3 m53 = 24 g53 4 90720 1024
f54 = 3 m54 = 24 g54 4 90720 1024

g6 = 3A k6 = 16 f61 = 1 m61 = 4 g61 3 2688 34560
f62 = 15 m62 = 60 g62 6 40320 2304

g7 = 3B k7 = 1 f71 = 1 m71 = 64 g71 3 143360 648

Continued on next page
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1196 Basheer and Moori

[gi]G ki fij mij [gij ]G o(gij) |[gij ]G)| |CG(gij)|
g8 = 3C k8 = 4 f81 = 1 m81 = 16 g81 3 215040 432

f82 = 3 m82 = 48 g82 6 645120 144

g9 = 4A k9 = 4 f91 = 1 m91 = 16 g91 4 60480 1536
f92 = 3 m92 = 48 g92 4 181440 512

f10,1 = 1 m10,1 = 8 g10,1 8 60480 1536
g10 = 4B k10 = 8 f10,2 = 3 m10,2 = 24 g10,2 8 181440 512

f10,3 = 4 m10,3 = 32 g10,3 4 241920 384

f11,1 = 1 m11,1 = 8 g11,1 8 60480 1536
g11 = 4C k11 = 8 f11,2 = 3 m11,2 = 24 g11,2 8 181440 512

f11,3 = 4 m11,3 = 32 g11,3 4 241920 384

f12,1 = 1 m12,1 = 16 g12,1 4 181440 512
g12 = 4D k12 = 4 f12,2 = 1 m12,2 = 16 g12,2 4 181440 512

f12,3 = 2 m12,3 = 32 g12,3 4 362880 256

f13,1 = 1 m13,1 = 16 g13,1 8 725760 128
g13 = 4E k13 = 4 f13,2 = 1 m13,2 = 16 g13,2 4 725760 128

f13,3 = 1 m13,3 = 16 g13,3 8 725760 128
f13,4 = 1 m13,4 = 16 g13,4 4 725760 128

g14 = 5A k14 = 4 f14,1 = 3 m14,1 = 48 g14,1 10 2322432 40
f14,2 = 1 m14,2 = 16 g14,2 5 774144 120

f15,1 = 1 m15,1 = 8 g15,1 12 80640 1152
g15 = 6A k15 = 8 f15,2 = 3 m15,2 = 24 g15,2 12 241920 384

f15,3 = 4 m15,3 = 32 g15,3 6 322560 288
g16 = 6B k16 = 4 f16,1 = 1 m16,1 = 16 g16,1 6 161280 576

f16,2 = 3 m16,2 = 48 g16,2 12 483840 192

g17 = 6C k17 = 1 f17,1 = 1 m17,1 = 64 g17,1 6 1290240 72

f18,1 = 1 m18,1 = 16 g18,1 12 483840 192
g18 = 6D k18 = 4 f18,2 = 1 m18,2 = 16 g18,2 6 483840 192

f18,3 = 2 m18,3 = 32 g18,3 12 967680 96

g19 = 6E k19 = 2 f19,1 = 1 m19,1 = 32 g19,1 12 1290240 72
f19,2 = 1 m19,2 = 32 g19,2 6 1290240 72

g20 = 6F k20 = 4 f20,1 = 1 m20,1 = 16 g20,1 6 645120 144
f20,2 = 3 m20,2 = 48 g20,2 6 1935360 48

g21 = 6G k21 = 2 f21,1 = 1 m21,1 = 32 g21,1 12 3870720 24
f21,2 = 1 m21,2 = 32 g21,2 6 3870720 24

g22 = 7A k22 = 1 f22,1 = 1 m22,1 = 64 g22,1 7 13271040 7

g23 = 8A k23 = 2 f23,1 = 1 m23,1 = 32 g23,1 8 2903040 32
f23,2 = 1 m23,2 = 32 g23,2 8 2903040 32

g24 = 8B k24 = 2 f24,1 = 1 m24,1 = 32 g24,1 8 2903040 32
f24,2 = 1 m24,2 = 32 g24,2 8 2903040 32

g25 = 9A k25 = 1 f25,1 = 1 m25,1 = 64 g25,1 9 10321920 9

g26 = 10A k26 = 2 f26,1 = 1 m26,1 = 32 g26,1 20 4644864 20
f26,2 = 1 m26,2 = 32 g26,2 10 4644864 20

g27 = 12A k27 = 2 f27,1 = 1 m27,1 = 32 g27,1 24 1935360 48
f27,2 = 1 m27,2 = 32 g27,2 12 1935360 48

g28 = 12B k28 = 2 f28,1 = 1 m28,1 = 32 g28,1 24 1935360 48
f28,2 = 1 m28,2 = 32 g28,2 12 1935360 48

g29 = 12C k29 = 1 f29,1 = 1 m29,1 = 64 g29,1 12 7741440 12

g30 = 15A k30 = 1 f30,1 = 1 m30,1 = 64 g30,1 15 6193152 15
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On the group 26·Sp(6, 2) 1197

Remark 2.5. Note that from Table 1, the group G = 26·Sp(6, 2) con-
tains 6 conjugacy classes of involutions, while from Table 6.1 of Mpono
[21], the split extension T = 26:Sp(6, 2) contains 8 conjugacy classes of
involutions. This confirms that the group G constructed using the gen-
erators g1 and g2 is different from the group T but later it will be shown
that the character tables of the two groups will be the same.

3. The theory of Clifford-Fischer matrices

Let G = N ·G, where N C G and G/N ∼= G, be a group extension.
To construct the character table of G we need to have

• the character tables (ordinary or projective) of the inertia factor
groups,
• the fusions of classes of the inertia factors into classes of G,
• the Fischer matrices of the extension G = N ·G.

The theory of Clifford-Fischer matrices, which is based on Clifford
Theory (see Clifford [9]), was developed by B. Fischer ([11], [12] and
[13]). This technique has also been discussed and applied to both split
and non-split extension in several publications, for example see Ali and
Moori [2], Barraclough [3], Fischer [13], Moori [17], Moori and Basheer
[5] and [6], Moori and Mpono [19], Moori and Zimba [20], Pahlings [22],
Rodrigues [24], Whitely [27], Zimba [29] and in a recent book by K. Lux
and H. Pahlings [23].

Let H E G and let φ ∈ Irr(H). For g ∈ G, define φg by φg(h) =
φ(ghg−1), ∀ h ∈ H. It follows that G acts on Irr(H) by conjugation and
we define the inertia group of φ in G by Hφ = {g ∈ G| φg = φ}. Also
for a finite group K, we let IrrProj(K, α−1) denotes the set of irreducible
projective characters of K with factor set α−1.

Theorem 3.1 (Clifford Theorem). Let χ ∈ Irr(G) and let θ1, θ2, · · · , θt
be representatives of orbits of G on Irr(N). For k ∈ {1, 2, · · · , t}, let

θGk = {θk = θk1, θk2, · · · , θksk} and let Hk be the inertia group in G of
θk. Then

χ↓GN =

t∑
k=1

ek

sk∑
u=1

θku, where ek =
〈
χ↓GN , θk

〉
.
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1198 Basheer and Moori

Moreover, for fixed k

Irr(Hk, θk) :=
{
ψk ∈ Irr(Hk)|

〈
ψk↓Hk

N , θk

〉
6= 0
}

←→
{
χ ∈ Irr(G)|

〈
χ↓GN , θk

〉
6= 0
}

:= Irr(G, θk)

under the map ψk 7−→ ψk↑GHk
.

Proof. See Theorems 4.1.5 and 4.1.7 of Ali [1] with the difference in
notations. �

Theorem 3.2. Further to the settings of Theorem 3.1, assume that for
k ∈ {1, 2, · · · , t}, there exists ψk ∈ Irr(Hk, θk). Then

(3.1) Irr(G) =
ṫ⋃

k=1

{
(ψk inf(ζ))↑G

Hk
| ζ ∈ Irr(Hk/N)

}
.

Proof. See Ali [1] or Whitley [27]. �

Remark 3.3. It is by no means necessarily the case that there exists an
extension ψk of θk to the inertia group (that is the case Irr(Hk, θk) =
∅, the empty set, is feasible). However, there is always a projective

extension ψ̃k ∈ IrrProj(Hk, α
−1
k ) for some factor set αk of the Schur

multiplier of Hk. Thus the more proper formula for Equation (3.1) is
(see Remark 4.2.7 of Ali [1])

Irr(G) =
ṫ⋃

k=1

{
(ψ̃k inf(ζ))↑G

Hk
| ψ̃k ∈ IrrProj(Hk, α

−1
k ),

ζ ∈ IrrProj(Hk/N, α
−1
k )
}
,(3.2)

where the factor set αk is obtained from αk as described in Corollary
7.3.3 of Whitely [27]. Hence the character table of G is partitioned into
t blocks K1,K2, · · · ,Kt, where each block Kk of characters (ordinary or
projective) is produced from the inertia subgroup Hk.

Note 3.4. Observe that if αk ∼ [1] in Equation (3.2), then we get
Equation (3.1). That is IrrProj(Hk, 1) = Irr(Hk) and IrrProj(Hk, 1) =
Irr(Hk).

By convention we take θ1 = 1N , the trivial character of N. Thus
Hθ1 = H1 = G and thus H1/N ∼= G. Since {1G} ⊆ Irr(G,1N ) and

such that 1G↓
G
N = 1N , the block K1 will consists only of the ordinary

irreducible characters of G.
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On the group 26·Sp(6, 2) 1199

We now fix some notations for the conjugacy classes.
• With π being the natural epimorphism from G onto G, we use

the notation U = π(U) for any subset U ⊆ G. We have seen

from Section 2 that π−1([gi]G) =

c(gi)⋃
j=1

[gij ]G for any 1 ≤ i ≤ r.

Let us assume that π(gij) = gi and by convention we may take

g11 = 1G. Note that c(g1) is the number of G−conjugacy classes
obtained from N.

• [gij ]G
⋂
Hk =

c(gijk)⋃
n=1

[gijkn]Hk
, where gijkn ∈ Hk and by c(gijk) we

mean the number of Hk−conjugacy classes that form a partition
for [gij ]G. Since g11 = 1G, we have g11k1 = 1G and thus c(g11k1) =
1 for all 1 ≤ k ≤ t.

• [gi]G
⋂
Hk =

c(gik)⋃
m=1

[gikm]Hk
, where gikm ∈ Hk and by c(gik) we

mean the number of Hk−conjugacy classes that form a partition
for [gi]G. Since g1 = 1G, we have g1k1 = 1G and thus c(g1k1) = 1
for all 1 ≤ k ≤ t. Also π(gijkn) = gikm for some m = f(j, n).

Proposition 3.5. With the notations of Theorem 3.2 and the above
settings, we have

(ψ̃k inf(ζ))↑G
Hk

(gij) =

c(gik)∑
m=1

ζ(gikm)

c(gijk)∑
n=1

|CG(gij)|
|CHk

(gijkn)|
ψ̃k(gijkn).

Proof. See Ali [1] or Barraclough [3]. �

We proceed to define the Fischer matrix Fi corresponds to the con-
jugacy class [gi]G. We label the columns of Fi by the representatives of
[gij ]G, 1 ≤ j ≤ c(gi) obtained by the coset analysis and below each gij
we put |CG(gij)|. Thus there are c(gi) columns. To label the rows of Fi
we define the set J i to be (this equivalent to the notation R(g) used by
Ali [1] (page 49), where g is a representative for a conjugacy class of G)

J i = {(k, gikm)| 1 ≤ k ≤ t, 1 ≤ m ≤ c(gik), gikm is α−1
k − regular class},

or for more brevity we let

Ji = {(k,m)| 1 ≤ k ≤ t, 1 ≤ m ≤ c(gik),
gikm is α−1

k − regular class
}
.(3.3)
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1200 Basheer and Moori

Then each row of Fi is indexed by a pair (k, gikm) ∈ J i or (k,m) ∈
Ji. For fixed 1 ≤ k ≤ t, we let Fik be a sub-matrix of Fi with rows
correspond to the pairs (k, gik1), (k, gik2), · · · , (k, gikrik) or for brevity
(k, 1), (k, 2), · · · , (k, rk). Now let

a
(k,m)
ij :=

c(gijk)∑
n=1

|CG(gij)|
|CHk

(gijkn)|
ψ̃k(gijkn)(3.4)

(for which π(gijkn) = gikm). For each i, corresponding to the conjugacy

class [gi]G, we define the Fischer matrix Fi =
(
a

(k,m)
ij

)
, where 1 ≤ k ≤

t, 1 ≤ m ≤ c(gik), 1 ≤ j ≤ c(gi). The Fischer matrix Fi,

Fi =
(
a

(k,m)
ij

)
=


Fi1
Fi2

...
Fit


together with additional information required for their definition are
presented as follows:

Fi

gi gi1 gi2 · · · gic(gi)

|CG(gij)| |CG(gi1)| |CG(gi2)| · · · |CG(gic(gi))|
(k,m) |CHk

(gikm)|

(1, 1) |CG(gi)| a
(1,1)
i1 a

(1,1)
i2 · · · a

(1,1)

ic(gi)

(2, 1) |CH2
(gi21)| a

(2,1)
i1 a

(2,1)
i2 · · · a

(2,1)

ic(gi)

(2, 2) |CH2
(gi22)| a

(2,2)
i1 a

(2,2)
i2 · · · a

(2,2)

ic(gi)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

(2, r2) |CH2
(gi2ri2 )| a

(2,r2)
i1 a

(2,r2)
i2 · · · a

(2,r2)

ic(gi)

(u, 1) |CHu (giu1)| a
(u,1)
i1 a

(u,1)
i2 · · · a

(u,1)

ic(gi)

(u, 2) |CHu (giu2)| a
(u,2)
i1 a

(u,2)
i2 · · · a

(u,2)

ic(gi)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

(u, ru) |CHu (giuriu
)| a

(u,ru)
i1 a

(u,ru)
i2 · · · a

(u,ru)

ic(gi)

(t, 1) |CHt (git1)| a
(t,1)
i1 a

(t,1)
i2 · · · a

(t,1)

ic(gi)

(t, 2) |CHt (git2)| a
(t,2)
i1 a

(t,2)
i2 · · · a

(t,2)

ic(gi)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

(t, rt) |CHt (gitrit )| a
(t,rt)
i1 a

(t,rt)
i2 · · · a

(t,rt)

ic(gi)

mij mi1 mi2 · · · mic(gi)

In the above the last entries give the weights mij as defined by Equa-
tion (2.1). These weights are required for computing the entries of Fi
(see Proposition 3.6).
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On the group 26·Sp(6, 2) 1201

Fischer matrices satisfy some interesting properties, which help in
computations of their entries. We gather these properties in the follow-
ing Proposition.

Proposition 3.6. (i)
t∑

k=1

c(gik) = c(gi),

(ii) Fi is non-singular for each i,

(iii) a
(1,1)
ij = 1, ∀ 1 ≤ j ≤ c(gi),

(iv) If Ngi is a split coset, then a
(k,m)
i1 = |CG(gi)|

|CHk
(gikm)| , ∀i ∈ {1, 2, · · · , r}.

In particular for the identity coset we have a
(k,m)
11 =[G : Hk]θk(1N ),

∀ (k,m) ∈ J1,

(v) If Ngi is a split coset, then |a(k,m)
ij | ≤ |a(k,m)

i1 | for all 1 ≤ j ≤
c(gi). Moreover if |N | = pα, for some prime p, then a

(k,m)
ij ≡

a
(k,m)
i1 (mod p),

(vi) For each 1 ≤ i ≤ r, the weights mij satisfy the relation

c(gi)∑
j=1

mij =

|N |,
(vii) Column Orthogonality Relation:∑

(k,m)∈Ji

|CHk
(gikm)|a(k,m)

ij a
(k,m)

ij′
= δjj′ |CG(gij)|,

(viii) Row Orthogonality Relation:

c(gi)∑
j=1

mija
(k,m)
ij a

(k′ ,m′ )
ij = δ(k,m)(k′ ,m′ )a

(k,m)
i1 |N |.

Proof. Proofs for many assertions of Proposition 3.6 can be founded in
Moori’s students theses, for example see Ali [1] or Mpono [21] and some
other assertions are provided in Schiffer [25]. �

3.1. Character Table of G. For fixed 1 ≤ k ≤ t and 1 ≤ i ≤ r,
let Kik be the fragment of the projective character table of Hk, with
factor set α−1

k , consisting of columns correspond to the conjugacy classes

gik1, gik2, · · · , gikrik of Hk (those are the α−1
k −regular classes of Hk that

fuse to [gi]G and thus rik = c(gik)). Then the characters of G on the
classes [gij ]G, 1 ≤ j ≤ c(gi), is given by the matrix KikFik, where
Fik is the sub-matrix of Fi defined previously with rows correspond to
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1202 Basheer and Moori

the pairs (k, gik1), (k, gik2), · · · , (k, gikrik). Note that the size of Kik is

|IrrProj(Hk, α
−1
k )| × rik and the size of Fik is rik × c(gi). Therefore the

character table of G will have the form
g1 g2 · · · gr

g11 · · · g1c(g1) g21 · · · g2c(g2) · · · gr1 · · · grc(gr)

K1 K11F11 K12F12 · · · K1rF1r

K2 K21F21 K22F22 · · · K2rF2r

.

.

.
.
.
.

.

.

.
. . .

.

.

.
Kt Kt1Ft1 Kt2Ft2 · · · KtrFtr

Note 3.7. Observe that characters of G consisted in K1 are just Irr(G)
and therefore the size of K1iF1i, for each 1 ≤ i ≤ r, is |Irr(G)|×c(gi). In
particular, columns of K11F11 are the degrees of irreducible characters of
G repeated themselves c(g1) times, where we know that c(g1) is number
of G−conjugacy classes obtained from the normal subgroup N.

4. Inertia factor groups of G = 26·Sp(6, 2)

We have seen in Section 2 that the action of G on N yielded two orbits
of lengths 1 and 63, where the first orbit consists of the identity element
1N while the other orbit consists of all the involutions of N. By Brauer
Theorem (for example see Lemma 4.5.2 of Gorenstein [15] or Theorem
5.1.5 of Mpono [21]), it follows that the action of G on Irr(N) will also
produce two orbits. These two orbits must necessarily have lengths 1
and 63 and the first orbit consists of the identity character 1N while
the other orbit consists of the other non-trivial linear characters of N.
Thus the corresponding inertia factor groups H1 and H2 have indices 1
and 63 respectively in Sp(6, 2). By looking at the maximal subgroups
of Sp(6, 2) (see ATLAS), it is readily verified that H1 = Sp(6, 2) and
H2 = 25:S6.

The character table of H1 = Sp(6, 2) is available in the ATLAS, the
electronic ATLAS of Wilson or can be obtained from Magma or GAP.
The fusion of the conjugacy classes of H2 = 25:S6 into classes of Sp(6, 2)
and the character table of H2 can be found in many sources such as Ali
[1], Magma, GAP or Mpono [21]. For the convenience of the reader, we
supply the fusion of H2 into G in Table 2. Also the character table of
H2 appears as Table 11.11 of Basheer [4].

Note that from Table 1, the number of the conjugacy classes of G is
67. Thus |Irr(G)| = 67. Since |Irr(H1)| = |Irr(Sp(6, 2))| = 30, the other
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On the group 26·Sp(6, 2) 1203

Table 2. The fusion of classes of H2 = 25:S6 into classes
of Sp(6, 2)

Inertia Factor Class of Class of Class of Class of
↪→ ↪→

Group H2 H2 Sp(6, 2) H2 Sp(6, 2)

1a = g121 1A 4g = g13,22 4E
2a = g221 2A 4h = g11,22 4C
2b = g421 2C 4i = g10,22 4B
2c = g321 2B 4j = g13,23 4E
2d = g222 2A 5a = g14,21 5A
2e = g422 2C 6a = g16,21 6B
2f = g521 2D 6b = g18,21 6D
2g = g522 2D 6c = g15,21 6A
2h = g423 2C 6d = g15,22 6A

H2 = 25:S6 2i = g523 2D 6e = g18,22 6D
2j = g322 2B 6f = g19,21 6E
3a = g621 3A 6g = g21,21 6G
3b = g821 3C 6h = g20,21 6F
4a = g11,21 4C 8a = g23,21 8A
4b = g10,21 4B 8b = g24,21 8B
4c = g12,21 4D 10a = g26,21 10A
4d = g921 4A 12a = g27,21 12A
4e = g13,21 4E 12b = g28,21 12B
4f = g12,22 4D

inertia factor group H2 = 25:S6 must contribute with 37 characters in
order to construct the ordinary character table of G. Although we know
that |Irr(H2)| = |Irr(25:S6)| = 37, which suggests to consider the set
Irr(25:S6), there is no reason, at this stage, allowing us to use the set
Irr(25:S6) as the group G does not split and consequently we do not know
whether we will use the ordinary or a projective character table of H2. To
determine the type of the character table (ordinary or a projective) we
have to calculate the Schur multiplier of H2, consider all the projective
character tables and we may need to test all possible choices, and one is
successful if all but one lead to a contradiction. The following sequence
of Magma commands reveals the Schur multiplier of H2 and also the
ordinary character table of the full covering group of H2.
> H2:= PermutationGroup< 62 | (1,2)(3,5)(4,7)(6,10)(12,16)(13,18)(14,20)(15,21)

(19,23)(24,28)(29,31)(30,32),(1,3,6,11)(2,4,8,13,

19,10,15,22,18,25,29,32)(5,9,14,21,16,23,27,20,

26,30,31,28)(7,12,17,24)>;

> Order(H2);

23040

> pMultiplicator(H2,2);

[ 2, 2 ]

> pMultiplicator(H2,3);

[ 1 ]

> pMultiplicator(H2,5);

[ 1 ]

> F := FPGroup(H2);
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1204 Basheer and Moori

> F2 := pCover(H2, F, 2);

> Order(F2);

92160

> p, K:= CosetAction(F2, sub<F2|>);

> s:= SylowSubgroup(K, 3);

> p2, K1:= CosetAction(K, s);

> Order(K1);

92160

> ct:= CharacterTable(K1);

> ct;

From the above we can see that the Schur multiplier M(H2) is iso-
morphic to Z2 × Z2 × Z1 × Z1

∼= Z2 × Z2
∼= 22. Also the covering

group M(H2)·H2
1 (central extension of M(H2) by H2) is isomorphic to

22·(25:S6). The command “ct:= CharacterTable(K1);” will display the
character table of 22·(25:S6), where we get 70 irreducible characters for
this group, in which 37 of these are the ordinary characters of H2 (see
Table 11.11 of Basheer [4]) for the ordinary characters of H2). Thus we
deduce that |IrrProj(H2, α

−1)| ≤ 33, for any non-trivial factor set α of
M(H2) = 22. Therefore if we use a projective character table of H2, with
non-trivial factor set α, to construct the character table of G, we obtain

|Irr(H1)|+ |IrrProj(H2, α
−1)| ≤ 30 + 33 = 63 < 67 = |Irr(G)|.

This shows that we should use the set Irr(25:S6) to construct the ordi-
nary character table of G. This leads to the following corollary.

Corollary 4.1. The second inertia group H2 has a character ψ of degree

63 such that ψ↓H2
N =

64∑
i=2

θi, where θ2, θ3, · · · , θ64 are the non-trivial

linear characters of N.

5. Fischer matrices of G = 26·Sp(6, 2)

We recall that we label the top and bottom of the columns of the
Fischer matrix Fi, corresponding to gi, by the sizes of the centralizers
of gij , 1 ≤ j ≤ c(gi) in G and mij respectively. In Table 1 we supplied
|CG(gij)| and mij , 1 ≤ i ≤ 30, 1 ≤ j ≤ c(gi). Also having obtained
the fusions of the inertia factor group H2 into Sp(6, 2), we are able to
label the rows of the Fischer matrices as described in Section 3. Since
the size of the Fischer matrix Fi is c(gi), it follows from Table 1 that
the sizes of the Fischer matrices of G = 26·Sp(6, 2) range between 1 and

1some authors refer to this group as the representation group.
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On the group 26·Sp(6, 2) 1205

4 for every i ∈ {1, 2, · · · , 30}. We have used the arithmetical properties
of Fischer matrices, given in Proposition 3.6, to calculate some of the
entries of the Fischer matrices and also to build an algebraic system of
equations. With the help of the symbolic mathematical package Max-
ima [16], we were able to solve these systems of equations and hence
we have computed all the Fischer matrices of G, which we list below.

F1

g1 g11 g12
o(g1j) 1 2
|CG(g1j)| 92897280 1474560
(k,m) |CHk

(g1km)|
(1, 1) 1451520 1 1
(2, 1) 23040 63 −1
m1j 1 63

F2

g2 g21 g22 g23
o(g2j) 4 4 2
|CG(g2j)| 737280 49152 46080
(k,m) |CHk

(g2km)|
(1, 1) 23040 1 1 1
(2, 1) 23040 1 1 −1
(2, 2) 768 30 −2 0
m2j 2 30 32

F3

g3 g31 g32 g33
o(g3j) 2 2 4
|CG(g3j)| 73728 24576 6144
(k,m) |CHk

(g3km)|
(1, 1) 4608 1 1 1
(2, 1) 1536 3 3 −1
(2, 2) 384 12 −4 0
m3j 4 12 48

F4

g4 g41 g42 g43 g44
o(g4j) 4 4 2 4
|CG(g4j)| 24576 8192 6144 3072
(k,m) |CHk

(g4km)|
(1, 1) 1536 1 1 1 1
(2, 1) 1536 1 1 1 −1
(2, 2) 768 2 2 −2 0
(2, 3) 128 12 −4 0 0
m4j 4 12 16 32

F5

g5 g51 g52 g53 g54
o(g5j) 4 2 4 4
|CG(g5j)| 3072 3072 1024 1024
(k,m) |CHk

(g5km)|
(1, 1) 384 1 1 1 1
(2, 1) 128 3 3 −1 −1
(2, 2) 128 3 −3 −1 1
(2, 3) 384 1 −1 1 −1
m5j 8 8 24 24
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1206 Basheer and Moori

F6

g6 g61 g62
o(g6j) 3 6
|CG(g6j)| 34560 2304
(k,m) |CHk

(g6km)|
(1, 1) 2160 1 1
(2, 1) 144 15 −1
m6j 4 60

F7

g7 g71
o(g7j) 3
|CG(g7j)| 648
(k,m) |CHk

(g7km)|
(1, 1) 648 1
m7j 64

F8

g8 g81 g82
o(g8j) 3 6
|CG(g8j)| 432 144
(k,m) |CHk

(g8km)|
(1, 1) 108 1 1
(2, 1) 36 3 −1
m8j 16 48

F9

g9 g91 g92
o(g9j) 4 4
|CG(g9j)| 1536 512
(k,m) |CHk

(g9km)|
(1, 1) 384 1 1
(2, 1) 128 3 −1
m9j 16 48

F10

g10 g10,1 g10,2 g10,3
o(g10j) 8 8 4
|CG(g10j)| 1536 512 384

(k,m) |CHk
(g10km)|

(1, 1) 192 1 1 1
(2, 1) 192 1 1 −1
(2, 2) 32 6 −2 0
m10j 8 24 32

F11

g11 g11,1 g11,2 g11,3
o(g11j) 8 8 4
|CG(g11j)| 1536 512 384

(k,m) |CHk
(g11km)|

(1, 1) 192 1 1 1
(2, 1) 192 1 1 −1
(2, 2) 32 6 −2 0
m11j 8 24 32

F12

g12 g12,1 g12,2 g12,3
o(g12j) 4 4 4
|CG(g12j)| 512 512 256

(k,m) |CHk
(g12km)|

(1, 1) 128 1 1 1
(2, 1) 128 1 1 −1
(2, 2) 64 2 −2 0
m12j 16 16 32

F13

g13 g13,1 g13,2 g13,3 g13,4
o(g13j) 8 4 8 4
|CG(g13j)| 128 128 128 128

(k,m) |CHk
(g13km)|

(1, 1) 32 1 1 1 1
(2, 1) 32 1 1 −1 −1
(2, 2) 32 1 −1 −1 1
(2, 3) 32 1 −1 1 −1
m13j 16 16 16 16
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F14

g14 g14,1 g14,2
o(g14j) 10 5
|CG(g14j)| 40 120

(k,m) |CHk
(g14km)|

(1, 1) 30 1 1
(2, 1) 10 3 −1
m14j 16 48

F15

g15 g15,1 g15,2 g15,3
o(g15j) 12 12 6
|CG(g15j)| 1152 384 288

(k,m) |CHk
(g15km)|

(1, 1) 144 1 1 1
(2, 1) 144 1 1 −1
(2, 2) 24 6 −2 0
m15j 8 24 32

F16

g16 g16,1 g16,2
o(g16j) 6 12
|CG(g16j)| 576 192

(k,m) |CHk
(g16km)|

(1, 1) 144 1 1
(2, 1) 48 3 −1
m16j 16 48

F17

g17 g17,1
o(g17j) 6
|CG(g17j)| 72

(k,m) |CHk
(g17km)|

(1, 1) 72 1
m17j 64

F18

g18 g18,1 g18,2 g18,3
o(g18j) 12 6 12
|CG(g18j)| 192 192 96

(k,m) |CHk
(g18km)|

(1, 1) 48 1 1 1
(2, 1) 48 1 1 −1
(2, 2) 24 2 −2 0
m18j 16 16 32

F19

g19 g19,1 g19,2
o(g19j) 12 6
|CG(g19j)| 72 72

(k,m) |CHk
(g19km)|

(1, 1) 36 1 1
(2, 1) 36 1 −1
m19j 32 32

F20

g20 g20,1 g20,2
o(g20j) 6 6
|CG(g20j)| 144 48

(k,m) |CHk
(g20km)|

(1, 1) 36 1 1
(2, 1) 12 3 −1
m20j 16 48

F21

g21 g21,1 g21,2
o(g21j) 12 6
|CG(g21j)| 24 24

(k,m) |CHk
(g21km)|

(1, 1) 12 1 1
(2, 1) 12 1 −1
m21j 32 32

F22

g22 g22,1
o(g22j) 7
|CG(g22j)| 7

(k,m) |CHk
(g22km)|

(1, 1) 7 1
m22j 64
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F23

g23 g23,1 g23,2
o(g23j) 8 8
|CG(g23j)| 32 32

(k,m) |CHk
(g23km)|

(1, 1) 16 1 1
(2, 1) 16 1 −1
m23j 32 32

F24

g24 g24,1 g24,2
o(g24j) 8 8
|CG(g24j)| 32 32

(k,m) |CHk
(g24km)|

(1, 1) 16 1 1
(2, 1) 16 1 −1
m24j 32 32

F25

g25 g25,1
o(g25j) 9
|CG(g25j)| 9

(k,m) |CHk
(g25km)|

(1, 1) 9 1
m25j 64

F26

g26 g26,1 g26,2
o(g26j) 20 10
|CG(g26j)| 20 20

(k,m) |CHk
(g26km)|

(1, 1) 10 1 1
(2, 1) 10 1 −1
m26j 32 32

F27

g27 g27,1 g27,2
o(g27j) 24 12
|CG(g27j)| 48 48

(k,m) |CHk
(g27km)|

(1, 1) 24 1 1
(2, 1) 24 1 −1
m27j 32 32

F28

g28 g28,1 g28,2
o(g28j) 24 12
|CG(g28j)| 48 48

(k,m) |CHk
(g28km)|

(1, 1) 24 1 1
(2, 1) 24 1 −1
m28j 32 32

F29

g29 g29,1
o(g29j) 12
|CG(g29j)| 12

(k,m) |CHk
(g29km)|

(1, 1) 12 1
m29j 64

F30

g30 g30,1
o(g30j) 15
|CG(g30j)| 15

(k,m) |CHk
(g30km)|

(1, 1) 15 1
m30j 64

Remark 5.1. We note that the Fischer matrix Fi, 1 ≤ i ≤ 30, cor-
responds to class [gi]Sp(6,2), of G = 26·Sp(6, 2) coincides with Fischer

matrix corresponds to class [gi]Sp(6,2) of 26:Sp(6, 2) (see Mpono [21]),
except for the classes 6A and 6B of Sp(6, 2), where the Fischer matrices
correspond to these two classes are interchanged.

6. Character table of G = 26·Sp(6, 2)

From Sections 2, 4 and 5 we have
• the conjugacy classes of G = 26·Sp(6, 2) (Table 1),
• the fusion of H2 into Sp(6, 2) (Table 2),
• the character table of H2 (Table 11.11 of Basheer [4]),
• the Fischer matrices of G (see Section 5).

By Section 3, it follows that the full character table of G can be con-
structed easily. We give an example on how to construct the character
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table of G, which is partitioned into 60 parts corresponding to the 30
cosets and the two inertia factor groups. As an example we construct
the parts K21F21 and K22F22 of the character table of G (this means
that we are listing the values of all the irreducible characters of G on
the classes g21, g22, and g23 of G, which correspond to the conjugacy
class 2A of Sp(6, 2)). The two parts K21F21 and K22F22 can be derived
as follows: From Table 2 we can see that there are two classes, namely
2a = g221 and 2d = g222 of H2 that fuse into the class g2 = [2A]Sp(6,2).
To construct the part K21F21, we multiply the column of the character
table of H1 = Sp(6, 2) corresponds to the class 2A of Sp(6, 2) (see the
ATLAS), by the first row of F2, namely (1 1 1) and thus the part
K21F21 of size 30 × 3, consists of the column of the character table of
Sp(6, 2) corresponds to the class 2A repeated 3 times. To construct the
part K22F22, select the two columns of the character table of H2 = 25:S6,
correspond to the classes 2a and 2d of H2 (see Table 11.11 of Basheer
[4]) and multiply these two columns by the two rows of F2 correspond
to the pair (2, 1) and (2, 2). Thus we get a part in the character table of
G of size 37× 3. The above two parts have the following form:

K21F21 =



1
−5
−5
9

−11
15
−5
15
−24
−10

4
−35
25
5

40
40
21
−51
−39
50
10
−24
−40
40
−45
−16
−30
45
20
0



(
1 1 1

)
=



g21 g22 g23

1 1 1
−5 −5 −5
−5 −5 −5
9 9 9
−11 −11 −11
15 15 15
−5 −5 −5
15 15 15
−24 −24 −24
−10 −10 −10
4 4 4
−35 −35 −35
25 25 25
5 5 5
40 40 40
40 40 40
21 21 21
−51 −51 −51
−39 −39 −39
50 50 50
10 10 10
−24 −24 −24
−40 −40 −40
40 40 40
−45 −45 −45
−16 −16 −16
−30 −30 −30
45 45 45
20 20 20
0 0 0



,
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K22F22 =



1 1
1 −1
5 −3
5 3
5 −1
5 1
−6 −4
−6 4
9 −3
9 3

−10 −4
−10 −4
10 −2
−10 4
−10 4
10 2
15 7
15 −5
15 −7
15 5
16 0
−20 0
−24 8
−24 −8
−30 −4
30 −2
30 2
−30 4
−36 0
−40 8
−40 −8
−40 0
−40 0
45 −9
45 9
45 3
45 −3



(
1 1 −1

30 −2 0

)
=



g21 g22 g23

31 −1 −1
−29 3 −1
−85 11 −5
95 −1 −5
−25 7 −5
35 3 −5
−126 2 6
114 −14 6
−81 15 −9
99 3 −9
−130 −2 10
−130 −2 10
−50 14 −10
110 −18 10
110 −18 10
70 6 −10
225 1 −15
−135 25 −15
−195 29 −15
165 5 −15
16 16 −16
−20 −20 20
216 −40 24
−264 −8 24
−150 −22 30
−30 34 −30
90 −38 30
90 26 −30
−36 −36 36
200 −56 40
−280 −24 40
−40 −40 40
−40 −40 40
−225 63 −45
315 27 −45
135 39 −45
−45 51 −45



.

Similarly one can obtain all the other 58 parts KikFik, 1 ≤ i ≤ 30, i 6=
2, 1 ≤ k ≤ 2 and hence the full character table of G, which is a 67 ×
67 Z−valued matrix. The full character table of G appears in Basheer
[4] as Table 11.12. By referring to Table 6.15 of Mpono [21], one can see
that the entries of the character table of 26:Sp(6, 2) coincide with the
entries of the character table of 26·Sp(6, 2) constructed in this paper.

Acknowledgments

The first author would like to thank his supervisor (second author) for
his advice and support. We also would like to thank the referees for
their constructive comments and suggestions and Professor D. Holt for
his assistance in Magama. The financial support from the NRF, Uni-
versities of Khartoum and KwaZulu-Natal are also acknowledged.

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


On the group 26·Sp(6, 2) 1211

References

[1] F. Ali, Fischer-Clifford Theory For Split and Non-Split Group Extensions, PhD
Thesis, University of Natal, Pietermaritzburg, 2001.

[2] F. Ali and J. Moori, The Fischer-Clifford matrices of a maximal subgroup of

Fi
′
24, Represent. Theory 7 (2003), 300–321.

[3] R. W. Barraclough, Some Calculations Related To The Monster Group, PhD
Thesis, University of Birmingham, Birmingham, 2005.

[4] A. B. M. Basheer, Clifford-Fischer Theory Applied to Certain Groups Associated
with Symplectic, Unitary and Thompson Groups, PhD Thesis, University of
KwaZulu-Natal, Pietermaitzburg, 2012.

[5] A. B. M. Basheer and J. Moori, Fischer matrices of Dempwolff group 25·GL(5, 2),
Int. J. Group Theory 1 (2012), no. 4, 43–63.

[6] A. B. M. Basheer and J. Moori, Fischer matrices and the character table of a
group of the form 37:Sp(6, 2), submitted, 2012.

[7] W. Bosma and J. J. Cannon, Handbook of Magma Functions, Department of
Mathematics, University of Sydeny, Sydney, 1994.

[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas
of Finite Groups, Clarendon Press, Oxford, 1985.

[9] A. H. Clifford, Representations induced in an invariant subgroup, Ann. of Math.
(2) 38 (1937), no. 3, 533–550.

[10] U. Dempwolff, Extensions of elementary abelian groups of order 22n by S2n(2)
and the degree 2−cohomology of S2n(2), Illinois J. Math. 18 (1974) 451–468.

[11] B. Fischer, Clifford matrizen, manuscript (1982).
[12] B. Fischer, Unpublished manuscript (1985).
[13] B. Fischer, Clifford Matrices, 1–16, Representation Theory of Finite Groups and

Finite-Dimensional Lie Algebras, 95, Birkhäuser, Basel, 1991.
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