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THE nc-SUPPLEMENTED SUBGROUPS OF FINITE
GROUPS'
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ABSTRACT. A subgroup H is said to be nc-supplemented in a group
G if there exists a subgroup K < G such that HK <1 G and HN
K is contained in Hg, the core of H in G. We characterize the
supersolubility of finite groups G with that every maximal subgroup
of the Sylow subgroups is nc-supplemented in G.

1. Introduction

In this paper the word group always means finite group.

A subgroup H is said to be complemented in G if there exists a
subgroup K such that G = HK and H N K = 1. Hall proved that a
group is soluble if and only if every Sylow subgroup is complemented [7].
Ramadan in [13] proved that if G/H is supersoluble and all maximal
subgroups of the Sylow subgroups of H are normal in G, then G is
supersoluble. A subgroup H is c—normal in G if there exists a normal
subgroup N of G such that HN = G and H N N is contained in Hg,
the core of H in G (see [17]). Obviously c—normality is weaker than
normality. A subgroup His said to be c—supplemented in a group G if
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there exists a subgroup K such that HK = G and H N K is contained
in Hg, the core of H in G (see [3]). The notion of c-supplementation
is a generalization of the notions of complement and c-normality. Li et
al. in [12] defined the following concept: A subgroup H is said to be
nc-supplemented in a group G if there exists a subgroup K < G such
that HK <1 G and H N K is contained in Hg, the core of H in G.

In this note, we give some generalization of supersolubility based on
the concept of nc-supplementation.

We will prove the following theorem:

Theorem 1.1. Suppose that G is a group with a normal subgroup H
such that G/H is supersoluble. If every maximal subgroup of every Sylow
subgroup of H is nc-supplemented in G, then G is supersoluble.

A class of finite group § is said to be a formation if every epimorphic
image of an F-group is an §-group and if G/N1 N Ny belongs to § when-
ever G/Np and G/Ny belong to §. A formation § is said to be saturated
if a finite group G € § whenever G/®(G) € § (see [14, p. 277]). The
class of supersoluble group is a saturated formation (see [14, 9.4.5]). Let
31 denote the class of all supersoluble groups.

Also we prove:

Theorem 1.2. Let § be a saturated formation containing 3. Suppose
that G is a group with a normal subgroup H such that G/H € §. If
every mazimal subgroup of all Sylow subgroups of H is nc-supplemented
in G, then G € §.

Further definitions and notations are standard, please refer to [11]
and [9].

2. Preliminaries

In this section, we give some concepts and some lemmas.

Definition 2.1. ([3]) A subgroup His said to be c—supplemented in
group G if there exists a subgroup K such that HK = G and H N K s
contained in Coreg(H). Then we say that K is a c—supplement of H
n G.

Definition 2.2. ([12]) Let G be a group and H a subgroup of G. Then
H is said to be nc—supplemented in G if there is a subgroup K of G such

that HK <G and HN K < Hg. We say that K is a nc—supplement of
H in G.
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Remark 2.3. If H is a mazimal subgroup of G, then an nc-supplement
of H in G is a c-supplement of H in G.

Proof. If H is nc-supplemented in G, then there exists a subgroup K
such that HK <1G and H N K < Hg. The maximality of H implies that
HK = G or HK = H. In the former case, H is c-supplemented in G.
In the latter case, H < G and so H is also c-supplemented in G. O

Remark 2.4. Being nc-supplement is weaker than c-supplementation
and normality.

nc-supplemented is a generalized c-supplemented. In general, nc-
supplementation does not imply c-supplementation. For example (see
[12, Example 3]), let G = A4 and B = {(1), (12)(34), (13)(24), (14)(23)}.
Let C = {(1),(12)(34)} and H = {(1),(13)(24)}. Then B = CH 4G
and C' is nc—supplemented in G but not c-supplemented in° G since
Cq =1 and G has no subgroup of order 6.

Lemma 2.5. ( [12, Lemma 4]) If H is nc—supplemented in G, then
there exists a subgroup C of G such that HNC = Hg and HC < G.

Lemma 2.6. ([12, Lemma 5]) Let G be a group. Then

(1) If H < M < G and H is nc—supplemented in G, then H is
nc—supplemented in M.

(2) If N <G and N < H, then H is nc—supplemented in G if and
only if H/N is nc—supplemented in G/N.

(3) If N <G and (|N|,|H|) = 1. If H is nc—supplemented in G ,
then HN/N is nc—supplemented in G/N.

Lemma 2.7. ([16, 2.16]) Let § be a formation containing $ and let G
be a group with a-normal subgroup H such that G/H € §. If H is cyclic,
then G € §.

3. Main results and their applications

In this section, we give the proofs of the main theorems.
The proof of Theorem 1.1

Proof. Suppose that G is a counter-example of minimal order. We have:
Step 1. Every proper subgroup M of G containing H is supersoluble
and G is soluble.
Since H < M, it follows that M/H is a proper subgroup of G/H.
Since G/H is supersoluble, it follows that M /H is supersoluble. Thus
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M satisfies the hypotheses of the theorem, and by the minimality of G,
M is supersoluble. In particular, H is supersoluble and so G is soluble
by [4].

Step 2. ®(G) < H and (G) = 1.

Since the class of supersoluble group is a saturated formation by [14,
9.4.5], it is easy to get the result.

In the following, let L be a minimal normal subgroup of G contained
in H. Then, by Step 1 and [10, Lemma 8. 6, p. 102] L is an elementary
abelian p-group for some prime divisor p of |G|.

Step 3. G/L is supersoluble and L is the unique minimal normal
subgroup of G which is contained in H.

First, we check that (G/L,H/L) satisfies the hypothesis as (&, H).
Let Q = QL/L be a Sylow g-subgroup of H/L = H. Then G = G/L.
Hence we assume that @ is a Sylow g-subgroup of H.

Case a. If p = ¢, we assume that L < P, then P = Q > L. Let P,
be a maximal subgroup of P. By hypothesis P is nc-supplemented in
G, and by Lemma 2.6, P; is nc-supplemented in'G. The minimality of
G implies that G is supersoluble.

Case b. Assume that p # ¢. Let Qi be a maximal subgroup of a
Sylow g-subgroup @ of H. Without loss of generality, we assume that
Q1 = Q1L/L. Since Q1 is nc-supplemented in G, it follows, by Lemma
2.6, that Q is nc-supplemented in G. The minimality of G implies that
G is supersoluble.

Now, let R be another minimal normal subgroup of GG contained in
H. Then G/R is supersoluble by Step 3. Since G/RNL < G/Rx G/L,
it follows, from [1, Theorem 3] that, G/R N L is supersoluble. On the
other hand, RNL < L, and so RNL =1or RNL = L by the minimality
of L. In the former case, G/1 = G is supersoluble, a contradiction. In
the latter, L is unique.

Step 4. L= F(H)=Cy(L).

Since L is an elementary abelian normal subgroup of G, L < H. So
by [11, 6.5.4], F(H), the Fitting subgroup of H contains every minimal
normal subgroup of H. By [6, Theorem 1.9.17] and Step 2, F'(H) is the
direct product of minimal normal subgroups of G contained in H. Then
L = F(H) by Step 3. Since G is soluble by Step 1, F(H) < Cy(L) =
Cy(F(H)) < F(H) by [19, Lemma 2.3].

Step 5. L is a Sylow subgroup of H.
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Let ¢ be the largest prime divisor of |H| and let @ be a Sylow g¢-
subgroup of H. Since H/L is supersoluble, it follows, by [9, VI-9.1(c)],
that LQ/L is characteristic in G/L and so LQ < G. Thus we have:

Case a. If p=¢, then L < P = Q <G. Therefore, by Step 1 and [4,
Hilfssatz C|, L = @ is a Sylow subgroup of H.

Case b. If p < g, then L < P and PQ = PLQ is a subgroup of
G. Since every maximal subgroup of all Sylow subgroups of PQ is nc-
supplemented in PQ by Lemma 2.2(1), PQ satisfies the hypothesis of
the theorem. Then we have:

Subcase a. If PQ < G, then, by Step 1, PQ is supersoluble and so
Q < PQ by [9, VI-9.1]. Hence LQ = L x @ and so Q < Cg(L) < L by
[19, Lemma 2.3|, a contradiction.

Subcase b. Assume that PQ = H = G and L < P in the case
Q 4 G. Since LN Ng(Q) = 1 and LQ is characteristic in H = PQ = G,
it follows that G = [L]N¢(Q). Let P; be a Sylow p-subgroup of N¢(Q).
Then LP, is a Sylow p-subgroup of G. Choose a maximal subgroup P;
of LP, with P, < P;. Obviously, L £ P; and Pig = 1. Otherwise,
L = Pyg, which contradicts that L N Ng(Q) = 1. By hypotheses, P
is nc-supplemented in G, then there exists a subgroup K such that
PIK <G and so PLNK < Pig = 1. Hence if K is a ¢g-subgroup of
a Sylow g-subgroup @ of GG, then P; K is supersoluble by Step 1 and
K is characteristic in P; K which'is normal in G. Then LK = L x K
and so, by [19, Lemma 2.3], K < Cg(L) < L, a contradiction. Thus
we assume that K is not a g-group. Since |K|, = |G : Pi|, = p, it
follows that K has a normal p-complement QQ*. Obviously, PQ* is
a subgroup of G. By Step 1, PiQ* is supersoluble. And so, by [9,
VI-9.1], Q* < PQ*. Thus LQ* = L x Q* and Q* < Cpg+(L) < L
by [19, Lemma 2.3], a contradiction. So we have PiK = G. Now
|K|, = |G : P1|, = p implies that K has a normal p-complement Q;
which is also a Sylow g-subgroup of G. By [8, Theorem 4.2.2], there
exists a g € LPy = P such that @ = Q. Since P; < P, we have G =
PK = (P,K)?= P K9 and PN K9 = 1. Since K9 = K has a normal
p-complement and Qf = Q < K7, it follows that K9 < Ng(Q). Since
P=LP =PLP =PLP NG = PéLP NK9),if P{(LP,NKY) < Py,
then LP22 < F;lPQ < P21, a Contradiction. “So P, (LP, N K9) £ P, and
P, must be a proper subgroup of P3 = (Ps, LP, N K9), where Ps is
a subgroup of a Sylow p-subgroup P. Thus P, and K9 are contained
in Ng(Q) and so P3 is a p-subgroup of G containing a proper Sylow
p-subgroup P, of N¢(Q), a contradiction.
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Thus L is a Sylow subgroup of H.

Step 6. |L| = p.

Let L be a maximal subgroup of L. Then, by hypothesis, Lq is nc-
supplemented in G and so, by Lemma 2.5, there exists a subgroup K
of G such that L1 K <G and L1 N K < L1g. By Step 3, WK > L,
and so L = LN (L1K) = L1(L N K). It follows that LN K = L or
LN K < L. In the first case, it is easy to get LN K <1G . In the second
case, LiINK < Ly < L,andso LiINK =1 NKNK < LNK < L. Since
LiNK <G and L <G, it follows that L(L1NK)<G. As L(L1 N K) =
(LLi)NK = LNK, we have LN K <G and so LN K > L by the
minimality and uniqueness of L. Then LN K = L and so L < K. Hence
LinK<LNK=Landso LiNK =1. Thus L1 =1 and |L| = p.

Step 7. The final contradiction.

By Step 3, G/L is supersoluble. By Step 6, L is a cyclic subgroup of
prime order. Then by Lemma 2.7, GG is supersoluble, a contradiction.

The final contradiction completes the proof. ([l

Remark 3.1. The condition of Theorem 1.1 “ G/H 1s supersoluble ”
cannot be replaced by “ G/H is soluble ”. Let G = A4 x Cs, where Ay
is the alternating group of degree 4 and Cs is a cyclic group of order 5.
Then G/C5 = Ay is soluble. Obviously, Cs satisfies the hypotheses, but
G is not supersoluble.

Corollary 3.2. ([3, Theorem 3.3]) Let G be a finite group and let N be
a normal subgroup of G such that G /N is supersoluble. If every mazimal
subgroup of every Sylow subgroup of N is c-supplemented in G, then G
s supersoluble.

Corollary 3.3. ([17, Theorem 1.1]) Let G be a finite group. Suppose Py
is c-normal in G for every Sylow subgroup P of G and every mazximal
subgroup Py of P. Then G is supersoluble.

Corollary 3.4. (|2, Theorem 3.2]) Let G be a finite solvable group. Then
G is supersoluble if and only if G/H is supersoluble and all mazimal
subgroups-of every Sylow subgroup of F(H) are normal in G.

Corollary 3.5. ([15, Theorem 1]) Let G be a finite group such that
all mazimal subgroups of Sylow subgroups are normal in G. Then G is
supersoluble.

Corollary 3.6. ([13, Theorem 3.5]) Assume that G/H is supersolvable
and all maximal subgroups of the Sylow subgroups of H are normal in
G. Then G is supersolvable.
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The proof of the theorem 1.2

Proof. Assume that the theorem is false. And suppose that G is a
counter-example of minimal order. By Lemma 2.6, we have that ev-
ery maximal subgroup of the Sylow subgroups of H is nc-supplemented
in H and so G is soluble. Then by [12, Theorem 11|, H is soluble. We
consider the following two cases:

Case 1. H is a p-group for some prime number p.

Step 1. Let N be the §-residual subgroup of G. Then N = Cy(N) =

Let M be a nontrivial normal subgroup of G and let B be a maximal
subgroup of M H with M < B. Then B= M(HNB). Since p = |MH :
B|=|MH : M(HNB)| = |H : HNBY, it follows that HN B is a maximal
subgroup of H. By hypothesis, H N B is nc-supplemented in G and so
is B. Thus B/M is nc-supplemented in G/M by Lemma 2.6(2). The
minimal choice of G implies that G/M € §. Since N is the F-residual
subgroup of G, it follows that ®(G) = 1 and N is an elementary abelian
subgroup of G since § is a saturated formation. Obviously N < H.
Let F(H) be the Fitting subgroup of H. Then N = F(H) since § is
a saturated formation. Then F(H) < Cy(N) <.V since H is solvable.
Thus N = Cy(N) = F(H) is a minimal normal nontrivial p-subgroup
of G.

Step 2. H is a Sylow p-subgroup of G.

Suppose that H is not a Sylow p-subgroup of G and G is soluble. It
follows, from [5, Theorem 3.5, p. 229], that there exists a Hall {p, ¢}-
subgroup of G, where ¢ is a prime which is not equal to p, and that
HQ is a subgroup of G since H is normal in the Sylow p-subgroup of
G and H < G. Since G/H is supersoluble, HQ/H is supersoluble . If
HQ < G, then H(Q is supersoluble and so is N@. Then NNQ =1, and
NQ@ = N x@Qsince N<NQ and NQ is supersoluble. By [5, Theorem 1.3,
p. 218}, @ < Cg(N) < N, a contradiction. So H is a Sylow p-subgroup
of G.

Step 3. |N| =p.

Let H;, be a maximal subgroup of H. Then N < H;. Otherwise,
N = H; < G, it follows, from [17, Theorem 1.1], that G € §. H; is nc-
supplemented in G by hypothesis and so there exists a subgroup K of G
such that H1 K <G and H1NK < Hyig. Thus we have that HHNK =1
or Hi N K = N. If the former, H1K > H or HHK = Hy andso K > H
or H; > K, which contradicts H1 N K = 1.
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Hence N < K and N is a Sylow p-subgroup of K. If N is not a
Sylow p-subgroup of K, then there is a Sylow p-subgroup Px of G with
N < Pg,andso Hi Pk = H or Hi Pk = Hy. In the former case, Px = H
and so H1NK = HiNH = Hy <G. Tt follows, from [13, Theorem 3.5],
that G is supersoluble, a contradiction. In the latter, N < Px < H;
and so N = HHNK = Hi N Px = Pxg > N, another contradiction.
Thus N is a normal Sylow p-subgroup of K. By Step 2, K < GG and so
HK < G. Since HK/H is supersoluble and every maximal subgroup of
H is nc-supplemented in H K, it follows, from the minimal choice of G
that, HK is supersoluble and so K is supersoluble. Let @) be a Sylow
g-subgroup of K, where ¢ is the largest prime of |K|. Thus @ is normal
in K, and NQ = N x Q. This means @ < Cg(N) < N, a contradiction.
Hence there does not exist non-trivial maximal subgroup of H, that is,
H is a Sylow p-subgroup of G of order p. Namely, |H| = |N| = p.

Step 4. The final contradiction.

By Step 3, H is a cyclic subgroup. By Lemma 2.7, G € §, a contra-
diction.

Case 2. H is not of prime power order.

Let P be a Sylow p-subgroup of H. Then by hypothesis and Lemma
2.6(1), the maximal subgroups of every Sylow subgroup of H are nc-
supplemented in H. Then by Theorem 1.1, H is‘supersoluble, and so
by [4, Hillssatz C] H has a normal Sylow subgroup P

Since P is characteristic in H and H < G, it follows that P <1 G.
Clearly, (G/P)/(H/P) =G /H < §. By the minimality of G, G/P € §.
But now G € § by Case 1, a contradiction.

So the minimal counter-example does not exist.

This completes the proof. O

Remark 3.7. The condition of Theorem 1.2, “$ 7 cannot be replaced
by “ M7, where I is the class of all nilpotent groups. Let G = Sy
the symmetric group of degree 3. Then G is supersoluble, but G not
nilpotent.

Corollary 3.8. ([18, Theorem 1]) Let § be a saturated formation con-
taining $1. Suppose that G is a group with a soluble normal subgroup H
such that G/H € §. If all mazimal subgroups of all Sylow subgroups of
F(H) are c-normal in G, then G € §.

Corollary 3.9. ([19, Theorem 3.1]) Let § be a saturated formation con-
taining Y. Suppose that G is a group with a normal subgroup H such
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that G/H € §. If all mazimal subgroups of all Sylow subgroups of F*(H)
are c-normal in G, then G € §.

Corollary 3.10. ([20, Theorem 1.2]) Let § be a saturated formation
containing M. Suppose that G is a group G with a normal subgroup H
such that G/H € §. If all mazimal subgroups of all Sylow subgroups of
F*(H) are c-supplemented in G, then G € §.
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