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THE nc-SUPPLEMENTED SUBGROUPS OF FINITE

GROUPS†

S. GUO, S. LIU∗ AND W. SHI

Communicated by Jamshid Moori

Abstract. A subgroup H is said to be nc-supplemented in a group
G if there exists a subgroup K ≤ G such that HK � G and H ∩
K is contained in HG, the core of H in G. We characterize the
supersolubility of finite groups G with that every maximal subgroup
of the Sylow subgroups is nc-supplemented in G.

1. Introduction

In this paper the word group always means finite group.
A subgroup H is said to be complemented in G if there exists a

subgroup K such that G = HK and H ∩ K = 1. Hall proved that a
group is soluble if and only if every Sylow subgroup is complemented [7].
Ramadan in [13] proved that if G/H is supersoluble and all maximal
subgroups of the Sylow subgroups of H are normal in G, then G is
supersoluble. A subgroup H is c−normal in G if there exists a normal
subgroup N of G such that HN = G and H ∩ N is contained in HG,
the core of H in G (see [17]). Obviously c−normality is weaker than
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1214 Guo, Liu and Shi

there exists a subgroup K such that HK = G and H ∩K is contained
in HG, the core of H in G (see [3]). The notion of c-supplementation
is a generalization of the notions of complement and c-normality. Li et
al. in [12] defined the following concept: A subgroup H is said to be
nc-supplemented in a group G if there exists a subgroup K ≤ G such
that HK �G and H ∩K is contained in HG, the core of H in G.

In this note, we give some generalization of supersolubility based on
the concept of nc-supplementation.

We will prove the following theorem:

Theorem 1.1. Suppose that G is a group with a normal subgroup H
such that G/H is supersoluble. If every maximal subgroup of every Sylow
subgroup of H is nc-supplemented in G, then G is supersoluble.

A class of finite group F is said to be a formation if every epimorphic
image of an F-group is an F-group and if G/N1 ∩N2 belongs to F when-
ever G/N1 and G/N2 belong to F. A formation F is said to be saturated
if a finite group G ∈ F whenever G/Φ(G) ∈ F (see [14, p. 277]). The
class of supersoluble group is a saturated formation (see [14, 9.4.5]). Let
U denote the class of all supersoluble groups.

Also we prove:

Theorem 1.2. Let F be a saturated formation containing U. Suppose
that G is a group with a normal subgroup H such that G/H ∈ F. If
every maximal subgroup of all Sylow subgroups of H is nc-supplemented
in G, then G ∈ F.

Further definitions and notations are standard, please refer to [11]
and [9].

2. Preliminaries

In this section, we give some concepts and some lemmas.

Definition 2.1. ([3]) A subgroup His said to be c−supplemented in
group G if there exists a subgroup K such that HK = G and H ∩K is
contained in CoreG(H). Then we say that K is a c−supplement of H
in G.

Definition 2.2. ([12]) Let G be a group and H a subgroup of G. Then
H is said to be nc−supplemented in G if there is a subgroup K of G such
that HK �G and H ∩K ≤ HG. We say that K is a nc−supplement of
H in G.
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Remark 2.3. If H is a maximal subgroup of G, then an nc-supplement
of H in G is a c-supplement of H in G.

Proof. If H is nc-supplemented in G, then there exists a subgroup K
such that HK�G and H ∩K ≤ HG. The maximality of H implies that
HK = G or HK = H. In the former case, H is c-supplemented in G.
In the latter case, H �G and so H is also c-supplemented in G. �
Remark 2.4. Being nc-supplement is weaker than c-supplementation
and normality.

nc-supplemented is a generalized c-supplemented. In general, nc-
supplementation does not imply c-supplementation. For example (see
[12, Example 3]), letG = A4 andB = {(1), (12)(34), (13)(24), (14)(23)}.
Let C = {(1), (12)(34)} and H = {(1), (13)(24)}. Then B = CH � G
and C is nc−supplemented in G but not c-supplemented in G since
CG = 1 and G has no subgroup of order 6.

Lemma 2.5. ( [12, Lemma 4]) If H is nc−supplemented in G, then
there exists a subgroup C of G such that H ∩ C = HG and HC �G.

Lemma 2.6. ( [12, Lemma 5]) Let G be a group. Then
(1) If H ≤ M ≤ G and H is nc−supplemented in G, then H is

nc−supplemented in M .
(2) If N � G and N ≤ H, then H is nc−supplemented in G if and

only if H/N is nc−supplemented in G/N .
(3) If N � G and (|N |, |H|) = 1. If H is nc−supplemented in G ,

then HN/N is nc−supplemented in G/N .

Lemma 2.7. ([16, 2.16]) Let F be a formation containing U and let G
be a group with a normal subgroup H such that G/H ∈ F. If H is cyclic,
then G ∈ F.

3. Main results and their applications

In this section, we give the proofs of the main theorems.
The proof of Theorem 1.1

Proof. Suppose that G is a counter-example of minimal order. We have:
Step 1. Every proper subgroup M of G containing H is supersoluble

and G is soluble.
Since H ≤ M , it follows that M/H is a proper subgroup of G/H.

Since G/H is supersoluble, it follows that M/H is supersoluble. Thus
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M satisfies the hypotheses of the theorem, and by the minimality of G,
M is supersoluble. In particular, H is supersoluble and so G is soluble
by [4].

Step 2. Φ(G) < H and Φ(G) = 1.
Since the class of supersoluble group is a saturated formation by [14,

9.4.5], it is easy to get the result.
In the following, let L be a minimal normal subgroup of G contained

in H. Then, by Step 1 and [10, Lemma 8. 6, p. 102] L is an elementary
abelian p-group for some prime divisor p of |G|.

Step 3. G/L is supersoluble and L is the unique minimal normal
subgroup of G which is contained in H.

First, we check that (G/L,H/L) satisfies the hypothesis as (G,H).
Let Q = QL/L be a Sylow q-subgroup of H/L = H. Then G = G/L.
Hence we assume that Q is a Sylow q-subgroup of H.

Case a. If p = q, we assume that L < P , then P = Q > L. Let P1

be a maximal subgroup of P . By hypothesis P1 is nc-supplemented in
G, 1

Case b. Assume that p �= q. Let Q1 be a maximal subgroup of a

Q1 = Q1L/L. Since Q1 is nc-supplemented in G, it follows, by Lemma
2.6, that Q1 is nc-supplemented in G. The minimality of G implies that
G is supersoluble.

Now, let R be another minimal normal subgroup of G contained in
H. Then G/R is supersoluble by Step 3. Since G/R∩L ≤ G/R×G/L,
it follows, from [1, Theorem 3] that, G/R ∩ L is supersoluble. On the
other hand, R∩L ≤ L and so R∩L = 1 or R∩L = L by the minimality
of L. In the former case, G/1 ∼= G is supersoluble, a contradiction. In
the latter, L is unique.

Step 4. L = F (H) = CH(L).
Since L is an elementary abelian normal subgroup of G, L ≤ H. So

by [11, 6.5.4], F (H), the Fitting subgroup of H contains every minimal
normal subgroup of H. By [6, Theorem 1.9.17] and Step 2, F (H) is the

L = F (H) by Step 3. Since G is soluble by Step 1, F (H) ≤ CH(L) =
CH(F (H)) ≤ F (H) by [19, Lemma 2.3].

Step 5. L is a Sylow subgroup of H.

and by Lemma 2.6, P is nc-supplemented in G. The minimality of
G implies that G is supersoluble.

Sylow q-subgroup Q of H. Without loss of generality, we assume that

direct product of minimal normal subgroups of G contained in H. ThenArch
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Let q be the largest prime divisor of |H| and let Q be a Sylow q-
subgroup of H. Since H/L is supersoluble, it follows, by [9, VI-9.1(c)],
that LQ/L is characteristic in G/L and so LQ�G. Thus we have:

Case a. If p = q, then L ≤ P = Q�G. Therefore, by Step 1 and [4,
Hilfssatz C], L = Q is a Sylow subgroup of H.

Case b. If p < q, then L ≤ P and PQ = PLQ is a subgroup of
G. Since every maximal subgroup of all Sylow subgroups of PQ is nc-
supplemented in PQ by Lemma 2.2(1), PQ satisfies the hypothesis of
the theorem. Then we have:

Subcase a. If PQ < G, then, by Step 1, PQ is supersoluble and so
Q � PQ by [9, VI-9.1]. Hence LQ = L ×Q and so Q ≤ CG(L) ≤ L by
[19, Lemma 2.3], a contradiction.

Subcase b. Assume that PQ = H = G and L < P in the case
Q � G. Since L∩NG(Q) = 1 and LQ is characteristic in H = PQ = G,
it follows that G = [L]NG(Q). Let P2 be a Sylow p-subgroup of NG(Q).
Then LP is a Sylow p-subgroup of G. Choose a maximal subgroup P

2 2 1 1 1G

L = P , which contradicts that L ∩ N (Q) = 1. By hypotheses, P1

1 1 1G

a Sylow q-subgroup Q of G, then P1K is supersoluble by Step 1 and
K is characteristic in P1K which is normal in G. Then LK = L × K
and so, by [ G

we assume that K is not a q-group. Since |K| = |G : P | = p, it
follows that K has a normal p-complement Q . Obviously, P1Q is

1
∗

∗
1

∗ ∗ ∗ ∗
P1Q∗

1

|K|p = |G : P1|p = p implies that K has a normal p-complement Q1

which is also a Sylow q-subgroup of G. By [8, Theorem 4.2.2], there

2
g
1 1

P K = (P K)g = P Kg and P ∩Kg = 1. Since Kg ∼= K has a normal
g
1

g g
G

P = LP = P LP = P LP ∩G = P (LP ∩Kg), if P1(LP2∩Kg) ≤ P2,
g

P2 must be a proper subgroup of P3 = 〈P2, LP2 ∩ Kg〉, where P3 is
a subgroup of a Sylow p-subgroup P . Thus P2 and Kg are contained
in NG(Q) and so P3 is a p-subgroup of G containing a proper Sylow
p-subgroup P2 of NG(Q), a contradiction.

2 1

of LP with P ≤ P . Obviously, L � P and P = 1. Otherwise,

1G G

P K � G and so P ∩ K ≤ P = 1. Hence if K is a q-subgroup of
is nc-supplemented in G, then there exists a subgroup K such that

p 1 p

19, Lemma 2.3], K ≤ C (L) ≤ L, a contradiction. Thus

a subgroup of G. By Step 1, P Q is supersoluble. And so, by [9,

∗ ∗

exists a g ∈ LP = P such that Q = Q. Since P � P , we have G =

by [19, Lemma 2.3], a contradiction. So we have P K = G. Now
VI-9.1], Q � P Q . Thus LQ = L × Q and Q ≤ C (L) ≤ L

1 1 1 1

2 1 2 2 1 2 2
2 1 2 1 2 1 2

then LP ≤ P P ≤ P , a contradiction. So P (LP ∩ K ) � P and

p-complement and Q = Q ≤ K , it follows that K ≤ N (Q). SinceArch
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Thus L is a Sylow subgroup of H.
Step 6. |L| = p.
Let L1 be a maximal subgroup of L. Then, by hypothesis, L1 is nc-

supplemented in G and so, by Lemma 2.5, there exists a subgroup K
of G such that L1K � G and L1 ∩ K ≤ L1G. By Step 3, L1K ≥ L,
and so L = L ∩ (L1K) = L1(L ∩ K). It follows that L ∩ K = L or
L∩K < L. In the first case, it is easy to get L∩K �G . In the second

1 1 1 1

L ∩K �G and L�G, it follows that L(L ∩K)�G. As L(L ∩K) =
(LL1) ∩ K = L ∩ K, we have L ∩ K � G and so L ∩ K ≥ L by the
minimality and uniqueness of L. Then L∩K = L and so L ≤ K. Hence
L1 ∩K ≤ L ∩K = L and so L1 ∩K = 1. Thus L1 = 1 and |L| = p.

Step 7. The final contradiction.
By Step 3, G/L is supersoluble. By Step 6, L is a cyclic subgroup of

prime order. Then by Lemma 2.7, G is supersoluble, a contradiction.
The final contradiction completes the proof. �

Remark 3.1. The condition of Theorem 1.1 “ G/H is supersoluble ”
cannot be replaced by “ G/H is soluble ”. Let G = A4 × C5, where A4

is the alternating group of degree 4 and C5 is a cyclic group of order 5.
Then G/C5

∼= A4 is soluble. Obviously, C5 satisfies the hypotheses, but
G is not supersoluble.

Corollary 3.2. ([3, Theorem 3.3]) Let G be a finite group and let N be
a normal subgroup of G such that G/N is supersoluble. If every maximal
subgroup of every Sylow subgroup of N is c-supplemented in G, then G
is supersoluble.

Corollary 3.3. ([17, Theorem 1.1]) Let G be a finite group. Suppose P1

is c-normal in G for every Sylow subgroup P of G and every maximal
subgroup P1 of P . Then G is supersoluble.

Corollary 3.4. ([2, Theorem 3.2]) Let G be a finite solvable group. Then
G is supersoluble if and only if G/H is supersoluble and all maximal
subgroups of every Sylow subgroup of F (H) are normal in G.

Corollary 3.5. ([15, Theorem 1]) Let G be a finite group such that
all maximal subgroups of Sylow subgroups are normal in G. Then G is
supersoluble.

Corollary 3.6. ([13, Theorem 3.5]) Assume that G/H is supersolvable
and all maximal subgroups of the Sylow subgroups of H are normal in
G. Then G is supersolvable.

case, L ∩K < L < L, and so L ∩K = L ∩K∩K < L∩K < L. Since

1 1 1
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The proof of the theorem 1.2

Proof. Assume that the theorem is false. And suppose that G is a
counter-example of minimal order. By Lemma 2.6, we have that ev-
ery maximal subgroup of the Sylow subgroups of H is nc-supplemented
in H and so G is soluble. Then by [12, Theorem 11], H is soluble. We
consider the following two cases:

Case 1. H is a p-group for some prime number p.
Step 1. Let N be the F-residual subgroup of G. Then N = CH(N) =

F (H).
Let M be a nontrivial normal subgroup of G and let B be a maximal

subgroup of MH with M ≤ B. Then B = M(H ∩B). Since p = |MH :
B| = |MH : M(H∩B)| = |H : H∩B|, it follows thatH∩B is a maximal
subgroup of H. By hypothesis, H ∩ B is nc-supplemented in G and so
is B. Thus B/M is nc-supplemented in G/M by Lemma 2.6(2). The
minimal choice of G implies that G/M ∈ F. Since N is the F-residual
subgroup of G, it follows that Φ(G) = 1 and N is an elementary abelian
subgroup of G since F is a saturated formation. Obviously N ≤ H.
Let F (H) be the Fitting subgroup of H. Then N = F (H) since F is
a saturated formation. Then F (H) ≤ CH(N) ≤ N since H is solvable.
Thus N = CH(N) = F (H) is a minimal normal nontrivial p-subgroup
of G.

Step 2. H is a Sylow p-subgroup of G.
Suppose that H is not a Sylow p-subgroup of G and G is soluble. It

follows, from [5, Theorem 3.5, p. 229], that there exists a Hall {p, q}-
subgroup of G, where q is a prime which is not equal to p, and that
HQ is a subgroup of G since H is normal in the Sylow p-subgroup of
G and H � G. Since G/H is supersoluble, HQ/H is supersoluble . If
HQ < G, then HQ is supersoluble and so is NQ. Then N ∩Q = 1, and
NQ = N×Q since N�NQ and NQ is supersoluble. By [5, Theorem 1.3,
p. 218], Q ≤ CG(N) ≤ N , a contradiction. So H is a Sylow p-subgroup
of G.

Step 3. |N | = p.
Let H1 be a maximal subgroup of H. Then N < H1. Otherwise,

N = H1 �G, it follows, from [17, Theorem 1.1], that G ∈ F. H1 is nc-
supplemented in G by hypothesis and so there exists a subgroup K of G
such that H1K �G and H1 ∩K ≤ H1G. Thus we have that H1 ∩K = 1
or H1 ∩K = N . If the former, H1K ≥ H or H1K = H1 and so K ≥ H
or H1 ≥ K, which contradicts H1 ∩K = 1.
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Hence N ≤ K and N is a Sylow p-subgroup of K. If N is not a
Sylow p-subgroup of K, then there is a Sylow p-subgroup PK of G with
N < PK , and soH1PK = H orH1PK = H1. In the former case, PK = H
and so H1 ∩K = H1 ∩H = H1 �G. It follows, from [13, Theorem 3.5],
that G is supersoluble, a contradiction. In the latter, N < PK ≤ H1

and so N = H1 ∩ K = H1 ∩ PK = PK > N , another contradiction.
Thus N is a normal Sylow p-subgroup of K. By Step 2, K < G and so
HK < G. Since HK/H is supersoluble and every maximal subgroup of
H is nc-supplemented in HK, it follows, from the minimal choice of G
that, HK is supersoluble and so K is supersoluble. Let Q be a Sylow
q-subgroup of K, where q is the largest prime of |K|. Thus Q is normal
in K, and NQ = N ×Q. This means Q ≤ CK(N) ≤ N , a contradiction.
Hence there does not exist non-trivial maximal subgroup of H, that is,
H is a Sylow p-subgroup of G of order p. Namely, |H| = |N | = p.

Step 4. The final contradiction.
By Step 3, H is a cyclic subgroup. By Lemma 2.7, G ∈ F, a contra-

diction.
Case 2. H is not of prime power order.
Let P be a Sylow p-subgroup of H. Then by hypothesis and Lemma

2.6(1), the maximal subgroups of every Sylow subgroup of H are nc-
supplemented in H. Then by Theorem 1.1, H is supersoluble, and so
by [4, Hillssatz C] H has a normal Sylow subgroup P

Since P is characteristic in H and H � G, it follows that P � G.
Clearly, (G/P )/(H/P ) ∼= G/H ∈ F. By the minimality of G, G/P ∈ F.
But now G ∈ F by Case 1, a contradiction.

So the minimal counter-example does not exist.
This completes the proof. �

Remark 3.7. The condition of Theorem 1.2, “ U ” cannot be replaced
by “ N”, where N is the class of all nilpotent groups. Let G = S3

the symmetric group of degree 3. Then G is supersoluble, but G not
nilpotent.

Corollary 3.8. ([18, Theorem 1]) Let F be a saturated formation con-
taining U. Suppose that G is a group with a soluble normal subgroup H
such that G/H ∈ F. If all maximal subgroups of all Sylow subgroups of
F (H) are c-normal in G, then G ∈ F.

Corollary 3.9. ([19, Theorem 3.1]) Let F be a saturated formation con-
taining U. Suppose that G is a group with a normal subgroup H such
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that G/H ∈ F. If all maximal subgroups of all Sylow subgroups of F ∗(H)
are c-normal in G, then G ∈ F.

Corollary 3.10. ([20, Theorem 1.2]) Let F be a saturated formation
containing U. Suppose that G is a group G with a normal subgroup H
such that G/H ∈ F. If all maximal subgroups of all Sylow subgroups of
F ∗(H) are c-supplemented in G, then G ∈ F.
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