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AN ITERATIVE METHOD FOR THE
HERMITIAN-GENERALIZED HAMILTONIAN
SOLUTIONS TO THE INVERSE PROBLEM AX =B
WITH A SUBMATRIX CONSTRAINT
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ABSTRACT. In this paper, an iterative method is proposed for solv-
ing the matrix inverse problem AX = B for Hermitian-generalized
Hamiltonian matrices with a submatrix constraint. By this iterative
method, for any initial matrix Ao, a solution A* can be obtained in
finite iteration steps in the absence of roundoff errors, and the solu-
tion with least norm can be obtained by choosing a special kind of
initial matrix. Furthermore, in the solution set of the above prob-
lem, the unique optimal approximation solution to a given matrix
can also be obtained. A numerical example is presented to show
the efficiency of the proposed algorithm.

1. Introduction

Thought/ this paper, we adopt the following notation. Let C"*™(R™*™)
and HC™ ™ denote the set of m x n complex (real) matrices and n x n
Hermitian matrices, respectively. For a matrix A € C™*" we denote
its conjugate transpose, transpose, trace, column space, null space and
Frobenius norm by A AT tr(A), R(A), N(A) and | Al|, respectively.
In space C™*"  we define inner product as: (A, B) = tr(B" A) for all
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A,B € C"™*" and the symbol Re(A, B) and (A, B) stand for its real
part and conjugate number, respectively. Two matrices A and B are or-
thogonal if (4, B) = 0. Let Qs = {a = (a1,a2, - ,a5) : 1 < a1 <ax <
-+ < ag < n} denote the strictly increasing sequences of s elements from
1,2,---,n. For Ae C™", p € Qsm and ¢ € Qp, let Alp|g] stand for
the s x t submatrix of A determined by rows indexed by p and columns
indexed by gq.

Let I,, = (e1, €2, - ,e,) be the n X n unit matrix, where e; denotes its
ith column. Let J, € R™"™ be the orthogonal skew-symmetric matrix,
ie, JI'J, = J,JI =1, and JI' = —J,. A matrix A € C"*".is called
Hermitian-generalized Hamiltonian if A” = A and (AJ,)" = AJ,,. The
set of all n x n Hermitian-generalized Hamiltonian matrices is denoted

by HGH™ ". Particularly, if J,, = < (} 13“ ), thenthe set HGH"*™
—1y

reduces to the well-known set of Hermitian-Hamiltonian matrices, which
have applications in many areas such as linear-quadratic control problem
[?7, ?], Hs optimization [?] and the related problem of solving algebraic
Riccati equations [?].

Recently, there have been several papers considering solving the in-
verse problem AX = B for various matrices by direct methods based
on different matrix decompositions. For instance, Xu and Li [?], Peng
[?] and Zhou et al. [?] discuss its Hermitian reflexive, anti-reflexive so-
lutions and least-square centrosymmetric solutions, respectively. Then
Huang and Yin [?] and Huang et al. [?] generalize the results of the lat-
ter to the more general R-symmetric and R-skew symmetric matrices,
respectively. Li et al. [?] consider the inverse problem for symmetric P-
symmetric matrices with a submatrix constraint. Peng et al. [?, ?] and
Gong et al. [?] consider solving the inverse problem for centrosymmet-
ric, bisymmetric and Hermitian-Hamiltonian matrices, respectively, un-
der the leading prineipal submatrix constraint. Zhao et al. [?] concerns
the inverse problem for bisymmetric matrices under a central principal
submatrix constraint. However, the inverse problem for the Hermitian-
generalized Hamiltonian matrices with general submatrix constraint has
not been studied till now.

Hence, in this paper, we consider solving the following problem and
its associated best approximation problem which occurs frequently in
experimental design ([?, 7, 7, ?]) by iterative methods.
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Problem 1. Given X, B € O™ Ag € HC**', p = (p1,p2, -+ ,ps) €
Qs,n’ and q= (q17q2’ N 7qt) c an, find A S HGHan’ such that

(1.1) AX = B and Alp|q] = As.

Problem II. Let SA r denote the set of solutions of Problem I, for
given A € C™"*" find A € Sg, such that

(12) JA— Al = min 14— 4.
€Sk

The rest of this paper is organized as follows. In Section 2, we propose
an iterative algorithm for solving Problem I and present some basic
properties of this algorithm. In Section 3, we consider the iterative
method for solving Problem II. A numerical example is given in Section
4 to show the efficiency of the proposed algorithm: Conclusions will be
put in Section 5.

2. Iterative algorithm for solving Problem I
Firstly, we present several basic properties of Hermitian-generalized

Hamiltonian matrices in the following lemmas.

Lemma 2.1. Consider a matriz Y€ C™". Then Y + Y + J, (Y +
Y1) J, € HGH™".

Proof. The proof is easy, thus is-omitted. O

Lemma 2.2. Suppose a matrizY € C™*™ and a matric D € HGH™ ™.
Then 4Re(Y, D). = (Y + Y¥H + J,(Y + Y)J,, D).

Proof. Since

(YD) = tr(D"Y!) = tr((YD)'") = (Y, D7) = (Y, D),
we have (Y4 YH D) = 2Re(Y, D). Then we get

(J,(Y + Y1) J,, D) = tr(DH J,(Y + Y).J,)
= tr(J, DT J, (Y +YH)) = tr(DH (Y + YH))
= (Y +YH D) =2Re(Y, D).

Hence we have (Y + Y + J,,(Y + Y)J,, D) = 4Re(Y, D). O

Next we propose an iterative algorithm for solving Problem I.
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Algorithm 1. Step 1. Input X, B € C"*™ Ag € HC**',p = (p1, p2,- -+,
Ps) € Qsny 4= (q1,92, 1 qt) € Qi and an arbitrary Ag € HGH™";
Step 2. Compute

Ro :B—AoX;

SO = AS - (epnepza to ’eps)TAO(equeqza e ’eth);
Fo= {%OXH + (Eprs sy s €p,)S0(€qrs €qas 76%)T;
Fy = Z[EO + B+ Jn(Eo + B )l Po = Fo;

k= 0;

Step 8. If Ry, = S = 0 then stop; else, k:=k+1;
Step 4. Compute
_ Bl + 1Sk

a1 = )
T

Ap = Ap1 + a1 BPp_1;
Rk =B - AkX,
Sk =As _h(rem’epza T aeps)TAk(eql’eqzv i eq); .
E = 1RkX + (6p1’6p27 T ,eps)Sk(eql,qu, . o 76‘Zt) ;
Fiy = Bk + B’ + J(Bi + By ) Ju);
,Bk L= tT‘(FkPk_l) .

- | Pe—a][*

Py = Fi — Br—1Pk—1;
Step 5. Go to Step 3.
Remark 2.3. By Lemma 2.1, one can easily see that the matriz se-
quences {Ap},{ Py} and {F}} generated by Algorithm 1 are all the

Hermitian-generalized Hamiltonian matrices. And Algorithm 1 implies
that if Ry = Sy, = 0, then Ay is the solution of Problem I.

We list some basic properties of Algorithm 1 as follows.

Theorem 2.4. Assume that A* is a solution of Problem I. Then the
sequences {Ai}, {P;},{Ri} and {S;} generated by Algorithm 2.1 satisfy
the following equality:

(2.1) (Pi, A" = Aj) = | Ril* + [|S]%, i =0,1,2,---.

Proof. From Remark 2.3, it follows that A* — A, € HGH™", i =
0,1,2,--- . Then according to Lemma 2.2 and Algorithm 1, for i = 0,
we have

1
(Py, A* — Ag) = <Z(E0 + B + J,(Eo + EEYJ,), A* — A)
== R6<E0, A* — A0>
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= Re<R0XH + (epuepzv T 76]?5)50(6%’6(127 T ve!Jt)T> AT — A0>

= Re<(epl>ep2v T 7€ps)50(eq17€Q27 T 7€Qt)T7 A* — A0>
+R€<R0XH, A* — A0>

= Retr((emve(ha T 76Qt)T(A* - AO)(epvean T 76;05)50)
+RetT(XH(A* — A())RQ)

= Retr (R Ry) + Retr(SH Sy) = tr(RE Ry) + tr(SH Sy)

= [|Rol|* + [IS0]I*-

Assume that the conclusion holds for i = k(k > 0), i.e., (P, A* — Ay) =
| Rl + ||Sk||?, then for i = k + 1, we have

<Pk1+17A* — Apy1) = (Fry1, A — App1) — Bi(Pr, A" — A1)

= Z<Ek+1 + B+ Jn(Errr + B ) Jn, AY — Ay

— B (P, A" — Aj, — a Py)

= Re(Eyt1, A* — Agy1) — Bi(Pr, A* — Ag) + BraglPe||?

= <Rk‘+1XH + (€p1,€p2, T veps)5k+1(eqlveq27 o 7661t)Ta A* — Ak+1>

Ry, 2 4 Sk 2
~auhml? + sl + IS e
= [| R 1l + 1Sl
This completes the proof by the principle of induction. O

Remark 2.5. Theorem 2.4 implies that if Problem I is consistent, then
| Rill? + ||S:||> # 0 implies-that P; # 0. On the other hand, if there
exists a positive numberk such that ||Rg||> +||Sk||* # 0 but Py = 0, then
Problem I must be inconsistent.

Lemma 2.6. Forthe sequences {R;}, {Si}, {P;} and {F;} generated by

, A R; A Si
Algorithm 1, let R; = < RH ) and S; = si

(2

. Then it follows that

(2:2) Rip1 Ry) + (Siv1, ) = (Ri, Ry) + (85, 5)) — 204 (Fj, P).
Proof. By Algorithm 1, Remark 2.3 and Lemma 2.2, we have

<RZ‘+1, Rﬁ + <S’i+1, SJ> = tT(RjHRi+1+RjRﬁ1)+ tT(SfISZ‘+1 + SjSﬂl)
= t'r(RfI(R,; -0 P X)+ Rj(R; — aiPZ-X)H) + tr(SJH(Si — ai(€p,, €pys
’ aeps)TPi(eChveqz? T 76(1t)) + SJ(Sl - ai(eq17eQ2v t >eqt)T

B(ep17€p27 e 7eps)))
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= tr(R R; + RjR[") + tr(S['S; + 8;S[") — citr (R P, X + R;(P,X)"

+Sj (eplvem?"' eps)TPi(echaefIz"" 7eqt)+5j(etI17eQ2v"' >€Qz)TPi
o1y Cpa; " 2 Cps)),
B ) + (5 S;) — au(Ei + Ef!, P)
= (R, R;) + (Si, S”)——(E + B + I, (E; + EXJ,, P
= (Ri, Rj) + (S, >_2O‘1<F17Pz>

0

Theorem 2.7. For the sequences {R;}, {S;} and {P;} generated by
Algorithm 1, if there exists a positive number k such that R; # 0 for all
1=0,1,2,...,k, then we have

Proof. Since (R;, R;) = (R;, R;) and (S;,S;) = (S}, 5;), we only need to
prove that (2.3) holds for all 0 < j < i < k.
For k =1, it follows from Lemma 2.6 that

<R1,R0> + <S1, §0> = <Ro, Ro) + <So, §0> — 200(Fp, Po)

e (RH H oI Boll® + 1Sl
Ry 2—1— Sol|?
= 2(| ol + 5o]”) — 2L Pl SEI 2 - g
|| Foll
and
tr(F1P
(P, Bo)= (Fy— H(PIHQO)PO,P@ =0,
Assume that (R, Bj) + (Sm,S;) = 0 and <Pm,P) = 0 hold for all
0<j<m,0<m< k. Weshall show that (R 1, R;) + (Smy1,5;) = 0
and (P41, P)) =0hold forall 0 <j<m+1,0<m+1<k.

For 0.< j <m, by Lemma 2.6, we have

(Rm-&:la Rg> =+ <‘§f"+1l§j> = <RM7 R]> + (Sma S]) - 20‘m<Fja Pm)
= <Rm’ Rj> + <Sm’ Sj> - O‘m<PJ + ﬁjflpjflvpm>
= —an(P;, Pn) =0,

and

(Pm+1,P> = <Fm+1 > Bm<Pm7P> <Fm+17Pj>

1] 15 N .
_ (R, Rin1) + (S5 Smet) + (Ryer, Rener) + (Sjr, Smn) _ 0
2011 '
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For j = m, it follows from Lemma 2.6 and the hypothesis that

<Rm+1v Rm) + <‘§m+1a Sm> = <Rma Rm> + <*§ma Sm> —2a5(Fm, Pp)
= 2([|RmnI* + 11SmI*) — 20s(Pu + Bm—1Prm—1, Prm)

R, |12 + ||, |12
= ([ B2+ |5 2) — 2l ISl p
1B
and
tr(F, P
(Povtt. Pr)={Foni1=Bn P P} =(Frps, Py = i) B — 0
m

Hence (Ryi1, R;) + (Smi1,5;) = 0 and (P41, P;) = 0 hold for all
0<j<m+1,0<m+1<LEk.
This completes the proof by the principle of induction. O

Remark 2.8. Based on Theorem 2.7, we can further demonstrate the

finite termination property of Algorithm 1. Let Zj, = ( ]S?k ) Theorem

k
2.7 implies that the matriz sequences Zy, Z1,- -+ are orthogonal to each

other in the finite dimension matrix subspace. Hence there exists a pos-
itive integer to such that Zy, = 0. Then we have Ry, = Sy, = 0. Thus
the iteration will be terminated in finite steps in the absence of roundoff
errors.

Next we consider the least Frobenius norm solution of Problem I.

Lemma 2.9. [?] Suppose that the consistent system of linear equations
Az = b has a solution x* € R(AM), then x* is the unique least norm
solution of the system of linear equations.

Theorem 2.10. Suppose that Problem [ is consistent. If we choose the
initial bisymmetric matriz as follows:

(2.4)

Ag = X+ XY+ (VX + XY T+ (epy, epys o s ep,)Yo
(eCIUEQm e ae(h)T + (ethaet]za T 7etIt)Y2H(ep1?eP27' o 7eps)T
+Jn((ep17€p27 e veps)YQ(equeqw e 7e<Iz)T + (eq17eq2> e ’€Qt)Y2H
(epl’epzv"‘ ’eps)T)Jnv

where Y1, Yo are arbitrary n x n complex matrices, or more especially, if
Ag = 0, then the solution obtained by Algorithm 1 is the least Frobenius
norm solution.
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Proof. Consider the matrix equations as follows:

AX =B,
XHA=BH,
(emae;l)za"' 7eps);A(€q1aeq2a"' 7eq15) :A%7
(2.5) (€qir€qos 1 €q,)" Alepysepy, o ep,) = Ag,
) JnAJ, X = B,
Xt J,AJ, =BH,
(€p1,6p2,--- 7ep.s);JnAJn(e¢I1vetI2v"' 76%) = A%
\ (6q1,6q2,~- 76%) JnAJn(epuepzv'” ’eps) = AS'

If A is a solution of Problem I, then it must be a solution of (2.5).
A+ A" + (A + AT,
B 4 ’
then it is easy to verify that A is a solution of Problem L. Therefore, the
consistency of Problem I is equivalent to that of (2.5).

By using Kronecker products, (2.5) can be equivalently written as
(2.6)

Conversely, if (2.5) has a solution A, let A =

XT®A B

(ethvecp"" ’6%)77:@ (€p1,€p2,"' 76}75); Af{
(eplvem"" veps) ® (e!I17eQ2v"' 7€Qz) _ AS
XTJT & 7, vec(A) = vec B

JT @ xH BH

(€Q1a€lI27"' 76!1t>7;J7’7L;® (eplvema"' 76}75);‘]71 A}g
(eplvepzv"' 761?5) Iy ® (efh?eqy”' 76%) In AS

Let the initial matrix Ay be of the form (2.4), then by Algorithm 1
and Remark 2.5,/ we can obtain the solution A* of Problem I within finite
iteration steps, which can be represented in the same form. Hence we
have

XT®A a
ITo X"
Eeql,eqz,'-- ,eqt))T® ((epl,em,... 7€p5>
€p1yCpos 1 Epy)T D (€g,€g5, 1 €
vec(A*) € R pro b 7§(TJ17;®:1]: e
JT o XH],
(elh?efm"" ’etIt)TJg@ (€p1,€p2,"' veps)TJn
(epnepzv'” 76P5)T<]g® (efhveﬁmf" 76Qt)TJn
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According to Lemma 2.9, vec(A*) is the least norm solution of (2.6),
i.e., A* is the least norm solution of the (2.5). Since the solution set of
Problem I is a subset of that of (2.5), A* also is the least norm solution
of Problem I.

This completes the proof. O

3. Iterative algorithm for solving Problem II

In this section, we consider iterative algorithm for solving Problem II.
For given A € C™*™ and arbitrary A € Sg, we have
la-ap
= |4 - A 4 | A=a 2
AL AH AL A AL AH AL AH -
=|A- A+A +Jn4(A+A )Jn||2 + ||A+A Jn4(A+A )JnHQ + ||A—2AH ||2

which implies that min ||A — A|| is equivalent to
A€eSE
A+ AR 4 Jn(AJrAH)JnH
A€eSE 4 ’
When Problem I is consistent, for A € Sg, it follows that

i

{ (A A+AH+Jn(A+AH)Jn)X S p_ (A+AH 47, (A+ A7) J) X

o TH T, iH A 7H4 A+AH
(A— A+ A +Jn4(A+A )Jn)[p’q] :AS_ (A+A +Jn4(A+A )Jn)[p’(ﬂ

Hence Problem II is equivalent to finding the least norm Hermitian-
generalized Hamiltonian solution of the following problem:

AX = B, fl[p|q] = 1215,

~ Ao AH AL AH ~ AL AH AL AH
where A — A & A+AT T (A+A )J”,B —B_ (A+A +Jn(4A+A )Jn)X

and

4
~ A AH A AH
Ag = Ag (AT ATAT Iy ).

Once the unique least norm solution A* of the above problem is ob-
tained by applying Algorithm 1 with the initial matrix Ay having the
representation assumed in Theorem 2.10, the unique solution A of Prob-

lem II' can then be obtained, where A=A+ A+AH+J"4(A+AH)J”.

4. A numerical example

In this section, we give a numerical example to illustrate the efficiency
of the proposed iterative algorithm. All the tests are performed by
MATLAB 7.4 with machine precision around 10716, Let zeros(n) denote
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the n x n matrix whose all elements are zero. Because of the influence
of the error of calculation, we shall regard a matrix X as zero matrix if
| X < 1.0e — 010.

Example 4.1. Given matrices X and B as follows:

0 2 -1 1 4 25 4 4 -5 -1
-1 2 1 -1 1 19 -25 12 -2 -10
4 -2 5 -6 0 7 25 0 4 —11
X = 2 6 -1 0 -3 B = -3 4 5 —10 -6
-1 2 0 0 -4 21 21 22 —-33 =29
3 -1 1 1 2 4 —6 20 -21 23
Let p=(1,3,5),¢ = (1,2,6) € Q36 and

1 -4 2

Ag = 2 1 3

-1 1 -1

Consider the least Frobenius norm Hermitian-generalized Hamilton-
ian solution of the following inverse problem with submatrix constraint:

(4.1) AX = B and A[l,3,5|1,2,6] = As.

If we choose the initial matrix Ag-= zeros(6), then by Algorithm 1
and iterating 11 steps, we obtain the least Frobenius norm solution of
the problem (4.1) as follows:

1.0000 —4.0000 2.0000  3.0000 —1.0000 2.0000
—4.0000 -3.0000.. 1.0000 —1.0000 1.0000  5.0000
2.0000 “ 1.0000. =0.0000 2.0000  5.0000  3.0000

A= 3.0000 _—1.0000 » 2.0000 —1.0000 4.0000 —2.0000
—1.0000 1.0000 5.0000 4.0000 3.0000 —1.0000
2.0000 5.0000 3.0000 —2.0000 —1.0000 0.0000
with

| Ri1 | + ||S11]|> = 5.8839¢ — 012.

5. Conclusions

In this paper, we construct an iterative method to solve the inverse
problem AX = B of the Hermitian-generalized Hamiltonian matrices
with general submatrix constraint. In the solution set of the matrix
equations, the optimal approximation solution to a given matrix can
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also be found by this iterative method. The given numerical example
show that the proposed iterative method is quite efficient.

Acknowledgments

Research supported by National Natural Science Foundation of China
(No.11071079), Natural Science Foundation of Zhejiang Province
(No.Y6110043) and The University Natural Science Research key Project
of Anhui Province (No. KJ2013A204)

(1]
2]

3]

[4]

[5]

REFERENCES

A. Ben-Israel and T. N. E. Greville, Generalized Inverse: Theory and Applica-
tions, Second Ed., John Wiley & Sons, New York, 2002.

L. S. Gong, X. Y. Hu and L. Zhang, An inverse problem  for Hermitian-
Hamiltonian matrices with a submatrix constraint, Acta Math. Sci. Ser. A Chin.
Ed. 28 (2008), no. 4, 694-700.

N. J. Higham, Computing a nearest symmetric positive semidefinite matrix, Lin-
ear Algebra Appl. 103 (1988) 103-118.

G. X. Huang and F. Yin, Matrix inverse problem and its optimal approximation
problem for R-symmetric matrices, Appl. Math. Comput. 189 (2007), no. 1, 482—
489.

G. X. Huang, F. Yin, H. F. Chen, L. Chen and K. Guo, Matrix inverse problem
and its optimal approximation problem for R-skew symmetric matrices, Appl.
Math. Comput. 216 (2010), no. 12, 3515-3521.

M. Jamshidi, An overview on the solutions of the algebra matrix Riccati equation
and related problems, Large Scale Systems: Theory and Appl. 1 (1980), no. 3,
167-192.

Z. Jiang and- Q. Lu, On optimal approximation of a matrix under a spectral
restriction, Math. Numer. Sinica 8 (1986), no. 1, 47-52.

J. F. LiyX. Y. Hu and L. Zhang, Inverse problem for symmetric P-symmetric
matrices with a submatrix constraint, Bull. Belg. Math. Soc. Simon Stevin 17
(2010), no. 4, 661-674.

V. L. Mehrmann, The Autonomous Linear Quadratic Control Problem, Theory
and Numerical Solution, Springer-Verlag, Berlin, 1991.

Z.Y. Peng, The inverse eigenvalue problem for Hermitian anti-reflexive matrices
and its approximation, Appl. Math. Comput. 162 (2005), no. 3, 1377-1389.

Z. Y. Peng, X. Y. Hu and L. Zhang, The inverse problem of centrosymmetric
matrices with a submatrix constraint, J. Comput. Math. 22 (2004), no. 4, 535—
544.

Z.Y.Peng, X. Y. Hu and L. Zhang, The inverse problem of bisymmetric matrices
with a submatrix constraint, Numer. Linear Algebra Appl. 11 (2004), no. 1, 59—
73.


www.sid.ir

1260 Cai

[13] R. Penrose, On best approximation solutions of linear matrix equations, Proc.
Cambridge Philos. Soc. 52 (1956) 17-19.

[14] A. J. Pritchard and D. Salamon, The linear quadratic control problem for re-
tarded systems with delays in control and observation, IMA J. Math. Control
Information 2 (1985) 335-362.

[15] W. W. Xu and W. Li, The Hermitian reflexive solutions to the matrix inverse
problem AX = B, Appl. Math. Comput. 211 (2009), no. 1, 142-147.

[16] Y. X. Yuan, Two classes of best approximation problems of matrices, Math.
Numer. Sin. 23 (2001), no. 4, 429-436.

[17] L. J. Zhao, X. Y. Hu and L. Zhang, Least squares solutions to AX = B for
bisymmetric matrices under a central principal submatrix constraint and the
optimal approximation, Linear Algebra Appl. 428 (2008), no. 4, 871-<880.

[18] K. M. Zhou, J. Doyle and K. Glover, Robust and Optimal Control, Prentice Hall,
Upper Saddle River, New Jersey, 1995.

[19] F. Z. Zhou, L. Zhang and X. Y. Hu, Least-square solutions for inverse problems
of centrosymmetric matrices, Comput. Math. Appl. 45 (2003), no. 10-11, 1581—
1589.

J. Cai
School of Science, Huzhou Teachers College, Huzhou; P.R. China

Email: caijing@hutc.zj.cn


www.sid.ir

