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AN ITERATIVE METHOD FOR THE

HERMITIAN-GENERALIZED HAMILTONIAN

SOLUTIONS TO THE INVERSE PROBLEM AX = B

WITH A SUBMATRIX CONSTRAINT

J. CAI

Communicated by Mohammad Asadzadeh

Abstract. In this paper, an iterative method is proposed for solv-
ing the matrix inverse problem AX = B for Hermitian-generalized
Hamiltonian matrices with a submatrix constraint. By this iterative
method, for any initial matrix A0, a solution A∗ can be obtained in
finite iteration steps in the absence of roundoff errors, and the solu-
tion with least norm can be obtained by choosing a special kind of
initial matrix. Furthermore, in the solution set of the above prob-
lem, the unique optimal approximation solution to a given matrix
can also be obtained. A numerical example is presented to show
the efficiency of the proposed algorithm.

1. Introduction

Thought this paper, we adopt the following notation. Let Cm×n(Rm×n)
and HCn×n denote the set of m× n complex (real) matrices and n× n
Hermitian matrices, respectively. For a matrix A ∈ Cm×n, we denote
its conjugate transpose, transpose, trace, column space, null space and
Frobenius norm by AH , AT , tr(A), R(A), N(A) and ‖A‖, respectively.
In space Cm×n, we define inner product as: 〈A,B〉 = tr(BHA) for all
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1250 Cai

A,B ∈ Cm×n, and the symbol Re〈A,B〉 and 〈A,B〉 stand for its real
part and conjugate number, respectively. Two matrices A and B are or-
thogonal if 〈A,B〉 = 0. Let Qs,n = {a = (a1, a2, · · · , as) : 1 ≤ a1 < a2 <
· · · < as ≤ n} denote the strictly increasing sequences of s elements from
1, 2, · · · , n. For A ∈ Cm×n, p ∈ Qs,m and q ∈ Qt,n, let A[p|q] stand for
the s× t submatrix of A determined by rows indexed by p and columns
indexed by q.

Let In = (e1, e2, · · · , en) be the n×n unit matrix, where ei denotes its
ith column. Let Jn ∈ Rn×n be the orthogonal skew-symmetric matrix,
i.e., JT

n Jn = JnJ
T
n = In and JT

n = −Jn. A matrix A ∈ Cn×n is called
Hermitian-generalized Hamiltonian if AH = A and (AJn)H = AJn. The
set of all n × n Hermitian-generalized Hamiltonian matrices is denoted

by HGHn×n. Particularly, if Jn =

(
0 Ik
−Ik 0

)
, then the set HGHn×n

reduces to the well-known set of Hermitian-Hamiltonian matrices, which
have applications in many areas such as linear-quadratic control problem
[?, ?], H∞ optimization [?] and the related problem of solving algebraic
Riccati equations [?].

Recently, there have been several papers considering solving the in-
verse problem AX = B for various matrices by direct methods based
on different matrix decompositions. For instance, Xu and Li [?], Peng
[?] and Zhou et al. [?] discuss its Hermitian reflexive, anti-reflexive so-
lutions and least-square centrosymmetric solutions, respectively. Then
Huang and Yin [?] and Huang et al. [?] generalize the results of the lat-
ter to the more general R-symmetric and R-skew symmetric matrices,
respectively. Li et al. [?] consider the inverse problem for symmetric P-
symmetric matrices with a submatrix constraint. Peng et al. [?, ?] and
Gong et al. [?] consider solving the inverse problem for centrosymmet-
ric, bisymmetric and Hermitian-Hamiltonian matrices, respectively, un-
der the leading principal submatrix constraint. Zhao et al. [?] concerns
the inverse problem for bisymmetric matrices under a central principal
submatrix constraint. However, the inverse problem for the Hermitian-
generalized Hamiltonian matrices with general submatrix constraint has
not been studied till now.

Hence, in this paper, we consider solving the following problem and
its associated best approximation problem which occurs frequently in
experimental design ([?, ?, ?, ?]) by iterative methods.
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Iterative Hermitian-generalized Hamiltonian solutions 1251

Problem I. Given X,B ∈ Cn×m, AS ∈ HCs×t, p = (p1, p2, · · · , ps) ∈
Qs,n, and q = (q1, q2, · · · , qt) ∈ Qt,n, find A ∈ HGHn×n, such that

(1.1) AX = B and A[p|q] = AS .

Problem II. Let SE denote the set of solutions of Problem I, for
given Ā ∈ Cn×n, find Â ∈ SE , such that

(1.2) ‖Â− Ā‖ = min
A∈SE

‖A− Ā‖.

The rest of this paper is organized as follows. In Section 2, we propose
an iterative algorithm for solving Problem I and present some basic
properties of this algorithm. In Section 3, we consider the iterative
method for solving Problem II. A numerical example is given in Section
4 to show the efficiency of the proposed algorithm. Conclusions will be
put in Section 5.

2. Iterative algorithm for solving Problem I

Firstly, we present several basic properties of Hermitian-generalized
Hamiltonian matrices in the following lemmas.

Lemma 2.1. Consider a matrix Y ∈ Cn×n. Then Y + Y H + Jn(Y +
Y H)Jn ∈ HGHn×n.

Proof. The proof is easy, thus is omitted. �

Lemma 2.2. Suppose a matrix Y ∈ Cn×n and a matrix D ∈ HGHn×n.
Then 4Re〈Y,D〉 = 〈Y + Y H + Jn(Y + Y H)Jn, D〉.

Proof. Since

〈Y H , D〉 = tr(DHY H) = tr((Y D)H) = 〈Y,DH〉 = 〈Y,D〉,

we have 〈Y + Y H , D〉 = 2Re〈Y,D〉. Then we get

〈Jn(Y + Y H)Jn, D〉 = tr(DHJn(Y + Y H)Jn)
= tr(JnD

HJn(Y + Y H)) = tr(DH(Y + Y H))
= 〈Y + Y H , D〉 = 2Re〈Y,D〉.

Hence we have 〈Y + Y H + Jn(Y + Y H)Jn, D〉 = 4Re〈Y,D〉. �

Next we propose an iterative algorithm for solving Problem I.
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Algorithm 1. Step 1. Input X,B ∈ Cn×m,AS ∈ HCs×t,p = (p1, p2, · · ·,
ps) ∈ Qs,n, q = (q1, q2, · · · , qt) ∈ Qt,n and an arbitrary A0 ∈ HGHn×n;
Step 2. Compute
R0 = B −A0X;
S0 = AS − (ep1 , ep2 , · · · , eps)TA0(eq1 , eq2 , · · · , eqt);
E0 = R0X

H + (ep1 , ep2 , · · · , eps)S0(eq1 , eq2 , · · · , eqt)T ;

F0 =
1

4
[E0 + EH

0 + Jn(E0 + EH
0 )Jn]; P0 = F0;

k := 0;
Step 3. If Rk = Sk = 0 then stop; else, k := k + 1;
Step 4. Compute

αk−1 =
‖Rk−1‖2 + ‖Sk−1‖2

‖Pk−1‖2
;

Ak = Ak−1 + αk−1Pk−1;
Rk = B −AkX;
Sk = AS − (ep1 , ep2 , · · · , eps)TAk(eq1 , eq2 , · · · , eqt);
Ek = RkX

H + (ep1 , ep2 , · · · , eps)Sk(eq1 , eq2 , · · · , eqt)T ;

Fk =
1

4
[Ek + EH

k + Jn(Ek + EH
k )Jn];

βk−1 =
tr(FkPk−1)

‖Pk−1‖2
;

Pk = Fk − βk−1Pk−1;
Step 5. Go to Step 3.

Remark 2.3. By Lemma 2.1, one can easily see that the matrix se-
quences {Ak},{Pk} and {Fk} generated by Algorithm 1 are all the
Hermitian-generalized Hamiltonian matrices. And Algorithm 1 implies
that if Rk = Sk = 0, then Ak is the solution of Problem I.

We list some basic properties of Algorithm 1 as follows.

Theorem 2.4. Assume that A∗ is a solution of Problem I. Then the
sequences {Ai}, {Pi}, {Ri} and {Si} generated by Algorithm 2.1 satisfy
the following equality:

(2.1) 〈Pi, A
∗ −Ai〉 = ‖Ri‖2 + ‖Si‖2, i = 0, 1, 2, · · · .

Proof. From Remark 2.3, it follows that A∗ − Ai ∈ HGHn×n, i =
0, 1, 2, · · · . Then according to Lemma 2.2 and Algorithm 1, for i = 0,
we have

〈P0, A
∗ −A0〉 = 〈1

4
(E0 + EH

0 + Jn(E0 + EH
0 )Jn), A∗ −A0〉

= Re〈E0, A
∗ −A0〉

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


Iterative Hermitian-generalized Hamiltonian solutions 1253

= Re〈R0X
H + (ep1 , ep2 , · · · , eps)S0(eq1 , eq2 , · · · , eqt)T , A∗ −A0〉

= Re〈(ep1 , ep2 , · · · , eps)S0(eq1 , eq2 , · · · , eqt)T , A∗ −A0〉
+Re〈R0X

H , A∗ −A0〉
= Retr((eq1 , eq2 , · · · , eqt)T (A∗ −A0)(ep1 , ep2 , · · · , eps)S0)
+Retr(XH(A∗ −A0)R0)

= Retr(RH
0 R0) + Retr(SH

0 S0) = tr(RH
0 R0) + tr(SH

0 S0)
= ‖R0‖2 + ‖S0‖2.

Assume that the conclusion holds for i = k(k > 0), i.e., 〈Pk, A
∗−Ak〉 =

‖Rk‖2 + ‖Sk‖2, then for i = k + 1, we have

〈Pk+1, A
∗ −Ak+1〉 = 〈Fk+1, A

∗ −Ak+1〉 − βk〈Pk, A
∗ −Ak+1〉

=
1

4
〈Ek+1 + EH

k+1 + Jn(Ek+1 + EH
k+1)Jn, A

∗ −Ak+1〉
−βk〈Pk, A

∗ −Ak − αkPk〉
= Re〈Ek+1, A

∗ −Ak+1〉 − βk〈Pk, A
∗ −Ak〉+ βkαk‖Pk‖2

= 〈Rk+1X
H + (ep1 , ep2 , · · · , eps)Sk+1(eq1 , eq2 , · · · , eqt)T , A∗ −Ak+1〉

−βk(‖Rk‖2 + ‖Sk‖2) + βk
‖Rk‖2 + ‖Sk‖2

‖Pk‖2
‖Pk‖2

= ‖Rk+1‖2 + ‖Sk+1‖2.

This completes the proof by the principle of induction. �

Remark 2.5. Theorem 2.4 implies that if Problem I is consistent, then
‖Ri‖2 + ‖Si‖2 6= 0 implies that Pi 6= 0. On the other hand, if there
exists a positive number k such that ‖Rk‖2 +‖Sk‖2 6= 0 but Pk = 0, then
Problem I must be inconsistent.

Lemma 2.6. For the sequences {Ri}, {Si}, {Pi} and {Fi} generated by

Algorithm 1, let R̂i =

(
Ri

RH
i

)
and Ŝi =

(
Si
SH
i

)
. Then it follows that

(2.2) 〈R̂i+1, R̂j〉+ 〈Ŝi+1, Ŝj〉 = 〈R̂i, R̂j〉+ 〈Ŝi, Ŝj〉 − 2αi〈Fj , Pi〉.

Proof. By Algorithm 1, Remark 2.3 and Lemma 2.2, we have

〈R̂i+1, R̂j〉+ 〈Ŝi+1, Ŝj〉 = tr(RH
j Ri+1 +RjR

H
i+1)+ tr(SH

j Si+1 + SjS
H
i+1)

= tr(RH
j (Ri − αiPiX) +Rj(Ri − αiPiX)H) + tr(SH

j (Si − αi(ep1 , ep2 ,

· · · , eps)TPi(eq1 , eq2 , · · · , eqt)) + Sj(Si − αi(eq1 , eq2 , · · · , eqt)T

Pi(ep1 , ep2 , · · · , eps)))
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1254 Cai

= tr(RH
j Ri +RjR

H
i ) + tr(SH

j Si + SjS
H
i )− αitr(R

H
j PiX +Rj(PiX)H

+SH
j (ep1 , ep2 , · · · , eps)TPi(eq1 , eq2 , · · · , eqt) + Sj(eq1 , eq2 , · · · , eqt)TPi

(ep1 , ep2 , · · · , eps))
= 〈R̂i, R̂j〉+ 〈Ŝi, Ŝj〉 − αi〈Ei + EH

i , Pi〉
= 〈R̂i, R̂j〉+ 〈Ŝi, Ŝj〉 −

αi

2
〈Ei + EH

i + Jn(Ei + EH
i )Jn, Pi〉

= 〈R̂i, R̂j〉+ 〈Ŝi, Ŝj〉 − 2αi〈Fi, Pi〉.
�

Theorem 2.7. For the sequences {R̂i}, {Ŝi} and {Pi} generated by

Algorithm 1, if there exists a positive number k such that R̂i 6= 0 for all
i = 0, 1, 2, . . . , k, then we have

(2.3) 〈R̂i, R̂j〉+ 〈Ŝi, Ŝj〉 = 0, (i, j = 0, 1, 2, . . . , k, i 6= j).

Proof. Since 〈R̂i, R̂j〉 = 〈R̂j , R̂i〉 and 〈Ŝi, Ŝj〉 = 〈Ŝj , Ŝi〉, we only need to
prove that (2.3) holds for all 0 ≤ j < i ≤ k.

For k = 1, it follows from Lemma 2.6 that

〈R̂1, R̂0〉+ 〈Ŝ1, Ŝ0〉 = 〈R̂0, R̂0〉+ 〈Ŝ0, Ŝ0〉 − 2α0〈F0, P0〉

= tr(RH
0 R0 +R0R

H
0 ) + tr(SH

0 S0 + S0S
H
0 )− 2

‖R0‖2 + ‖S0‖2

‖P0‖2
〈P0, P0〉

= 2(‖R0‖2 + ‖S0‖2)− 2
‖R0‖2 + ‖S0‖2

‖P0‖2
‖P0‖2 = 0.

and

〈P1, P0〉 = 〈F1 −
tr(F1P0)

‖P0‖2
P0, P0〉 = 0,

Assume that 〈R̂m, R̂j〉 + 〈Ŝm, Ŝj〉 = 0 and 〈Pm, Pj〉 = 0 hold for all

0 ≤ j < m, 0 < m ≤ k. We shall show that 〈R̂m+1, R̂j〉+ 〈Ŝm+1, Ŝj〉 = 0
and 〈Pm+1, Pj〉 = 0 hold for all 0 ≤ j < m+ 1, 0 < m+ 1 ≤ k.

For 0 ≤ j < m, by Lemma 2.6, we have

〈R̂m+1, R̂j〉+ 〈Ŝm+1, Ŝj〉 = 〈R̂m, R̂j〉+ 〈Ŝm, Ŝj〉 − 2αm〈Fj , Pm〉
= 〈R̂m, R̂j〉+ 〈Ŝm, Ŝj〉 − αm〈Pj + βj−1Pj−1, Pm〉
= −αm〈Pj , Pm〉 = 0,

and

〈Pm+1, Pj〉 = 〈Fm+1, Pj〉 − βm〈Pm, Pj〉 = 〈Fm+1, Pj〉

=
〈R̂j , R̂m+1〉+ 〈Ŝj , Ŝm+1〉+ 〈R̂j+1, R̂m+1〉+ 〈Ŝj+1, Ŝm+1〉

2αm+1
= 0.
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Iterative Hermitian-generalized Hamiltonian solutions 1255

For j = m, it follows from Lemma 2.6 and the hypothesis that

〈R̂m+1, R̂m〉+ 〈Ŝm+1, Ŝm〉 = 〈R̂m, R̂m〉+ 〈Ŝm, Ŝm〉 − 2αs〈Fm, Pm〉
= 2(‖Rm‖2 + ‖Sm‖2)− 2αs〈Pm + βm−1Pm−1, Pm〉

= 2(‖Rm‖2 + ‖Sm‖2)− 2
‖Rm‖2 + ‖Sm‖2

‖Pm‖2
〈Pm, Pm〉 = 0,

and

〈Pm+1, Pm〉=〈Fm+1−βmPm, Pm〉 =〈Fm+1, Pm〉−
tr(Fm+1Pm)

‖Pm‖2
‖Pm‖2 = 0.

Hence 〈R̂m+1, R̂j〉 + 〈Ŝm+1, Ŝj〉 = 0 and 〈Pm+1, Pj〉 = 0 hold for all
0 ≤ j < m+ 1, 0 < m+ 1 ≤ k.

This completes the proof by the principle of induction. �

Remark 2.8. Based on Theorem 2.7, we can further demonstrate the

finite termination property of Algorithm 1. Let Zk =

(
R̂k

Ŝk

)
. Theorem

2.7 implies that the matrix sequences Z0, Z1, · · · are orthogonal to each
other in the finite dimension matrix subspace. Hence there exists a pos-
itive integer t0 such that Zt0 = 0. Then we have Rt0 = St0 = 0. Thus
the iteration will be terminated in finite steps in the absence of roundoff
errors.

Next we consider the least Frobenius norm solution of Problem I.

Lemma 2.9. [?] Suppose that the consistent system of linear equations
Ax = b has a solution x∗ ∈ R(AH), then x∗ is the unique least norm
solution of the system of linear equations.

Theorem 2.10. Suppose that Problem I is consistent. If we choose the
initial bisymmetric matrix as follows:
(2.4)
A0 = Y1X

H +XY H
1 + Jn(Y1X

H +XY H
1 )Jn + (ep1 , ep2 , · · · , eps)Y2

(eq1 , eq2 , · · · , eqt)T + (eq1 , eq2 , · · · , eqt)Y H
2 (ep1 , ep2 , · · · , eps)T

+Jn((ep1 , ep2 , · · · , eps)Y2(eq1 , eq2 , · · · , eqt)T + (eq1 , eq2 , · · · , eqt)Y H
2

(ep1 , ep2 , · · · , eps)T )Jn,

where Y1, Y2 are arbitrary n× n complex matrices, or more especially, if
A0 = 0, then the solution obtained by Algorithm 1 is the least Frobenius
norm solution.
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Proof. Consider the matrix equations as follows:

(2.5)



AX = B,
XHA = BH ,
(ep1 , ep2 , · · · , eps)TA(eq1 , eq2 , · · · , eqt) = AS ,
(eq1 , eq2 , · · · , eqt)TA(ep1 , ep2 , · · · , eps) = AH

S ,
JnAJnX = B,
XHJnAJn = BH ,
(ep1 , ep2 , · · · , eps)TJnAJn(eq1 , eq2 , · · · , eqt) = AS ,
(eq1 , eq2 , · · · , eqt)TJnAJn(ep1 , ep2 , · · · , eps) = AH

S .

If A is a solution of Problem I, then it must be a solution of (2.5).

Conversely, if (2.5) has a solution A, let Ã =
A+AH + Jn(A+AH)Jn

4
,

then it is easy to verify that Ã is a solution of Problem I. Therefore, the
consistency of Problem I is equivalent to that of (2.5).

By using Kronecker products, (2.5) can be equivalently written as
(2.6)

XT ⊗A
I ⊗XH

(eq1 , eq2 , · · · , eqt)T ⊗ (ep1 , ep2 , · · · , eps)T
(ep1 , ep2 , · · · , eps)T ⊗ (eq1 , eq2 , · · · , eqt)T

XTJT
n ⊗ Jn

JT
n ⊗XHJn

(eq1 , eq2 , · · · , eqt)TJT
n ⊗ (ep1 , ep2 , · · · , eps)TJn

(ep1 , ep2 , · · · , eps)TJT
n ⊗ (eq1 , eq2 , · · · , eqt)TJn


vec(A) = vec



B
BH

AS

AH
S
B
BH

AS

AH
S


.

Let the initial matrix A0 be of the form (2.4), then by Algorithm 1
and Remark 2.5, we can obtain the solution A∗ of Problem I within finite
iteration steps, which can be represented in the same form. Hence we
have

vec(A∗) ∈ R





XT ⊗A
I ⊗XH

(eq1 , eq2 , · · · , eqt)T ⊗ (ep1 , ep2 , · · · , eps)T
(ep1 , ep2 , · · · , eps)T ⊗ (eq1 , eq2 , · · · , eqt)T

XTJT
n ⊗ Jn

JT
n ⊗XHJn

(eq1 , eq2 , · · · , eqt)TJT
n ⊗ (ep1 , ep2 , · · · , eps)TJn

(ep1 , ep2 , · · · , eps)TJT
n ⊗ (eq1 , eq2 , · · · , eqt)TJn



H

.
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Iterative Hermitian-generalized Hamiltonian solutions 1257

According to Lemma 2.9, vec(A∗) is the least norm solution of (2.6),
i.e., A∗ is the least norm solution of the (2.5). Since the solution set of
Problem I is a subset of that of (2.5), A∗ also is the least norm solution
of Problem I.

This completes the proof. �

3. Iterative algorithm for solving Problem II

In this section, we consider iterative algorithm for solving Problem II.
For given Ā ∈ Cn×n and arbitrary A ∈ SE , we have

‖A− Ā‖2

= ‖A− Ā+ĀH

2 ‖2 + ‖ Ā−ĀH

2 ‖2

= ‖A− Ā+ĀH+Jn(Ā+ĀH)Jn
4 ‖2 + ‖ Ā+ĀH−Jn(Ā+ĀH)Jn

4 ‖2 + ‖ Ā−ĀH

2 ‖2 ,

which implies that min
A∈SE

‖A− Ā‖ is equivalent to

min
A∈SE

‖A− Ā+ ĀH + Jn(Ā+ ĀH)Jn
4

‖.

When Problem I is consistent, for A ∈ SE , it follows that{
(A− Ā+ĀH+Jn(Ā+ĀH)Jn

4 )X = B − (Ā+ĀH+Jn(Ā+ĀH)Jn)X
4 ,

(A− Ā+ĀH+Jn(Ā+ĀH)Jn
4 )[p|q] = AS − ( Ā+ĀH+Jn(Ā+ĀH)Jn

4 )[p|q].
Hence Problem II is equivalent to finding the least norm Hermitian-

generalized Hamiltonian solution of the following problem:

ÃX = B̃, Ã[p|q] = ÃS ,

where Ã = A − Ā+ĀH+Jn(Ā+ĀH)Jn
4 , B̃ = B − (Ā+ĀH+Jn(Ā+ĀH)Jn)X

4 and

ÃS = AS − ( Ā+ĀH+Jn(Ā+ĀH)Jn
4 )[p|q].

Once the unique least norm solution Ã∗ of the above problem is ob-
tained by applying Algorithm 1 with the initial matrix A0 having the
representation assumed in Theorem 2.10, the unique solution Â of Prob-

lem II can then be obtained, where Â = Ã∗ + Ā+ĀH+Jn(Ā+ĀH)Jn
4 .

4. A numerical example

In this section, we give a numerical example to illustrate the efficiency
of the proposed iterative algorithm. All the tests are performed by
MATLAB 7.4 with machine precision around 10−16. Let zeros(n) denote
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the n × n matrix whose all elements are zero. Because of the influence
of the error of calculation, we shall regard a matrix X as zero matrix if
‖X‖ < 1.0e− 010.
Example 4.1. Given matrices X and B as follows:

X =


0 2 −1 1 4
−1 2 1 −1 1
4 −2 5 −6 0
2 6 −1 0 −3
−1 2 0 0 −4
3 −1 1 1 2

 , B =


25 4 4 −5 −1
19 −25 12 −2 −10
7 25 0 4 −11
−3 4 5 −10 −6
21 21 22 −33 −29
4 −6 20 −21 23

 .

Let p = (1, 3, 5), q = (1, 2, 6) ∈ Q3,6 and

AS =

 1 −4 2
2 1 3
−1 1 −1

 .

Consider the least Frobenius norm Hermitian-generalized Hamilton-
ian solution of the following inverse problem with submatrix constraint:

(4.1) AX = B and A[1, 3, 5|1, 2, 6] = AS .

If we choose the initial matrix A0 = zeros(6), then by Algorithm 1
and iterating 11 steps, we obtain the least Frobenius norm solution of
the problem (4.1) as follows:

A11 =


1.0000 −4.0000 2.0000 3.0000 −1.0000 2.0000
−4.0000 −3.0000 1.0000 −1.0000 1.0000 5.0000
2.0000 1.0000 −0.0000 2.0000 5.0000 3.0000
3.0000 −1.0000 2.0000 −1.0000 4.0000 −2.0000
−1.0000 1.0000 5.0000 4.0000 3.0000 −1.0000
2.0000 5.0000 3.0000 −2.0000 −1.0000 0.0000


with

‖R11‖2 + ‖S11‖2 = 5.8839e− 012.

5. Conclusions

In this paper, we construct an iterative method to solve the inverse
problem AX = B of the Hermitian-generalized Hamiltonian matrices
with general submatrix constraint. In the solution set of the matrix
equations, the optimal approximation solution to a given matrix can
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Iterative Hermitian-generalized Hamiltonian solutions 1259

also be found by this iterative method. The given numerical example
show that the proposed iterative method is quite efficient.
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