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Abstract. In this paper we discuss the fixed points of asymptotic
contractions and Boyd-Wong type contractions in uniform spaces
equipped with an E-distance. A new version of Kirk’s fixed point
theorem is given for asymptotic contractions and Boyd-Wong type
contractions is investigated in uniform spaces.

1. Introduction and preliminaries

In 2003, Kirk [5] discussed the existence of fixed points for (not nec-
essarily continuous) asymptotic contractions in complete metric spaces.
Jachymski and Jóźwik [4] constructed an example to show that con-
tinuity of the self-mapping is essential in Kirk’s theorem. They also
established a fixed point result for uniformly continuous asymptotic ϕ-
contractions in complete metric spaces.
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1262 Aghanians, Fallahi and Nourouzi

Motivated by [5, Theorem 2.1] and [4, Example 1], we aim to give a
more general form of [5, Theorem 2.1] in uniform spaces where the self-
mappings are assumed to be continuous. We also generalize the Boyd-
Wong fixed point theorem [3, Theorem 1] to uniform spaces equipped
with an E-distance.

We begin with some basics in uniform spaces which are needed in this
paper. The reader can find an in-depth discussion in, e.g., [6].

A uniformity on a nonempty set X is a nonempty collection U of
subsets of X × X (called the entourages of X) satisfying the following
conditions:

(1) Each entourage of X contains the diagonal {(x, x) : x ∈ X};
(2) U is closed under finite intersections;
(3) For each entourage U in U, the set {(x, y) : (y, x) ∈ U} is in U;
(4) For each U ∈ U, there exists an entourage V such that (x, y), (y, z)
∈ V implies (x, z) ∈ U for all x, y, z ∈ X;

(5) U contains the supersets of its elements.

If U is a uniformity on X, then (X,U) (shortly denoted by X) is called
a uniform space.

If d is a metric on a nonempty set X, then it induces a uniformity,
called the uniformity induced by the metric d, in which the entourages
of X are all the supersets of the sets{

(x, y) ∈ X ×X : d(x, y) < ε
}
,

where ε > 0.
It is well-known that a uniformity U on a nonempty setX is separating

if the intersection of all entourages of X coincides with the diagonal
{(x, x) : x ∈ X}. In this case, X is called a separated uniform space.

We next recall some basic concepts about E-distances. For more
details and examples, the reader is referred to [1].

Definition 1.1. [1] Let X be a uniform space. A function p : X ×X →
R≥0 is called an E-distance on X if

(1) for each entourage U in U, there exists a δ > 0 such that p(z, x) ≤
δ and p(z, y) ≤ δ imply (x, y) ∈ U for all x, y, z ∈ X;

(2) p satisfies the triangular inequality, i.e.,

p(x, y) ≤ p(x, z) + p(z, y) (x, y, z ∈ X).

If p is an E-distance on a uniform space X, then a sequence {xn}
in X is said to be p-convergent to a point x ∈ X, denoted by xn

p−→
x, whenever p(xn, x) → 0 as n → ∞, and X is p-Cauchy whenever
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E-asymptotic contractions and Boyd-Wong type E-contractions 1263

p(xm, xn)→ 0 as m,n→∞. The uniform space X is called p-complete
if every p-Cauchy sequence in X is p-convergent to some point of X.

The next lemma contains an important property of E-distances on
separated uniform spaces. The proof is straightforward and it is omitted
here.

Lemma 1.2. [1] Let {xn} and {yn} be two arbitrary sequences in a

separated uniform space X equipped with an E-distance p. If xn
p−→ x

and xn
p−→ y, then x = y. In particular, p(z, x) = p(z, y) = 0 for some

z ∈ X implies x = y.

Using E-distances, p-boundedness and p-continuity are defined in uni-
form spaces.

Definition 1.3. [1] Let p be an E-distance on a uniform space X. Then

(1) X is called p-bounded if

δp(X) = sup
{
p(x, y) : x, y ∈ X

}
<∞.

(2) A mapping T : X → X is called p-continuous on X if xn
p−→ x

implies Txn
p−→ Tx for all sequences {xn} and all points x in

X.

2. E-asymptotic contractions

In this section, we denote by Φ the class of all functions ϕ : R≥0 →
R≥0 with the following properties:

• ϕ is continuous on R≥0;
• ϕ(t) < t for all t > 0.

It is worth mentioning that if ϕ ∈ Φ, then

0 ≤ ϕ(0) = lim
t→0+

ϕ(t) ≤ lim
t→0+

t = 0,

that is, ϕ(0) = 0.
Following [5, Definition 2.1], we define E-asymptotic contractions.

Definition 2.1. Let p be an E-distance on a uniform space X. We say
that a mapping T : X → X is an E-asymptotic contraction if

(2.1) p(Tnx, Tny) ≤ ϕn

(
p(x, y)

)
for all x, y ∈ X and n ≥ 1,

where {ϕn} is a sequence of nonnegative functions on R≥0 converging
uniformly to some ϕ ∈ Φ on the range of p.
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1264 Aghanians, Fallahi and Nourouzi

If (X, d) is a metric space, then replacing the E-distance p by the met-
ric d in Definition 2.1, we get the concept of an asymptotic contraction
introduced by Kirk [5, Definition 2.1]. So each asymptotic contraction
on a metric space is an E-asymptotic contraction on the uniform space
induced by the metric. But in the next example, we see that the converse
is not generally true.

Example 2.2. Uniformize the set X = [0, 1] with the uniformity induced
from the Euclidean metric and put p(x, y) = y for all x, y ∈ X. It is
easily verified that p is an E-distance on X. Define T : X → X and
ϕ1 : R≥0 → R≥0 by

Tx =


0 0 ≤ x < 1

1

8
x = 1

and ϕ1(t) =


1

16
0 ≤ t < 1

1

8
t ≥ 1

for all x ∈ X and all t ≥ 0, and set ϕn = ϕ for n ≥ 2, where ϕ is any
arbitrary fixed function in Φ. Clearly, ϕn → ϕ uniformly on R≥0 and
Tn = 0 for all n ≥ 2. To see that T is an E-asymptotic contraction on
X, it suffices to check (2.1) for n = 1. To this end, given x, y ∈ [0, 1], if
y = 1, then we have

p(Tx, T1) = T1 =
1

8
= ϕ1(1) = ϕ1

(
p(x, 1)

)
,

and for 0 ≤ y < 1, we have

p(Tx, Ty) = Ty = 0 ≤ 1

16
= ϕ1(y) = ϕ1

(
p(x, y)

)
.

But T fails to be an asymptotic contraction on the metric space X with
the functions ϕn since∣∣∣T1− T 1

2

∣∣∣ =
1

8
>

1

16
= ϕ1

(1

2

)
= ϕ1

(∣∣1− 1

2

∣∣).
In the next example, we see that an E-asymptotic contraction need

not be p-continuous.

Example 2.3. Let X and p be as in Example 2.2. Define a mapping
T : X → X by Tx = 0 if 0 < x ≤ 1 and T0 = 1. Note that T is fixed
point free. Now, let ϕ1 be the constant function 1 and ϕ2 = ϕ3 = · · · = ϕ,
where ϕ is an arbitrary fixed function in Φ. Then T satisfies (2.1) and
since T0 6= 0, it follows that T fails to be p-continuous on X.
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E-asymptotic contractions and Boyd-Wong type E-contractions 1265

Theorem 2.4. Let p be an E-distance on a separated uniform space X
such that X is p-complete and let T : X → X be a p-continuous E-
asymptotic contraction for which the functions ϕn in Definition 2.1 are
all continuous on R≥0 for large indices n. Then T has a unique fixed

point u ∈ X, and Tnx
p−→ u for all x ∈ X.

Proof. We divide the proof into three steps.

Step 1: p(Tnx, Tny) → 0 as n → ∞ for all x, y ∈ X.
Let x, y ∈ X be given. Letting n→∞ in (2.1), we get

0 ≤ lim sup
n→∞

p(Tnx, Tny) ≤ lim
n→∞

ϕn

(
p(x, y)

)
= ϕ

(
p(x, y)

)
≤ p(x, y) <∞.

Now, if

lim sup
n→∞

p(Tnx, Tny) = ε > 0,

then there exists a strictly increasing sequence {nk} of positive integers
such that p(Tnkx, Tnky)→ ε, and so by the continuity of ϕ, one obtains

ϕ
(
p(Tnkx, Tnky)

)
→ ϕ(ε) < ε.

Therefore, there is an integer k0 ≥ 1 such that ϕ(p(Tnk0x, Tnk0y)) < ε.
So (2.1) yields

ε = lim sup
n→∞

p(Tnx, Tny)

= lim sup
n→∞

p
(
Tn(Tnk0x), Tn(Tnk0y)

)
≤ lim

n→∞
ϕn

(
p(Tnk0x, Tnk0y)

)
= ϕ

(
p(Tnk0x, Tnk0y)

)
< ε,

which is a contradiction. Hence

lim sup
n→∞

p(Tnx, Tny) = 0.

Consequently,

0 ≤ lim inf
n→∞

p(Tnx, Tny) ≤ lim sup
n→∞

p(Tnx, Tny) = 0,

that is, p(Tnx, Tny)→ 0.

Step 2: The sequence {Tnx} is p-Cauchy for all x ∈ X.
Suppose that x ∈ X is arbitrary. If {Tnx} is not p-Cauchy, then there

exist ε > 0 and positive integers mk and nk such that

mk > nk ≥ k and p(Tmkx, Tnkx) ≥ ε k = 1, 2, . . . .
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1266 Aghanians, Fallahi and Nourouzi

Keeping the integer nk fixed for sufficiently large k, say k ≥ k0, and
using Step 1, we may assume without loss of generality that mk > nk is
the smallest integer with p(Tmkx, Tnkx) ≥ ε, that is,

p(Tmk−1x, Tnkx) < ε.

Hence for each k ≥ k0, we have

ε ≤ p(Tmkx, Tnkx)

≤ p(Tmkx, Tmk−1x) + p(Tmk−1x, Tnkx)

< p(Tmkx, Tmk−1x) + ε.

If k →∞, since p(Tmkx, Tmk−1x)→ 0, it follows that p(Tmkx, Tnkx)→
ε.

We next show by induction that

(2.2) lim sup
k→∞

p(Tmk+ix, Tnk+ix) ≥ ε, i = 1, 2, . . . .

To this end, note first that from Step 1,

ε = lim
k→∞

p(Tmkx, Tnkx) = lim sup
k→∞

p(Tmkx, Tnkx)

≤ lim sup
k→∞

[
p(Tmkx, Tmk+1x) + p(Tmk+1x, Tnk+1x)

+ p(Tnk+1x, Tnkx)
]

≤ lim sup
k→∞

p(Tmkx, Tmk+1x) + lim sup
k→∞

p(Tmk+1x, Tnk+1x)

+ lim sup
k→∞

p(Tnk+1x, Tnkx)

= lim sup
k→∞

p(Tmk+1x, Tnk+1x),

that is, (2.2) holds for i = 1. If (2.2) is true for some i, then

ε ≤ lim sup
k→∞

p(Tmk+ix, Tnk+ix)

≤ lim sup
k→∞

[
p(Tmk+ix, Tmk+i+1x) + p(Tmk+i+1x, Tnk+i+1x)

+ p(Tnk+i+1x, Tnk+ix)
]

≤ lim sup
k→∞

p(Tmk+i+1x, Tnk+i+1x).

Consequently, we have

ϕ(ε) = lim
k→∞

ϕ
(
p(Tmkx, Tnkx)

)
Arc

hive
 of

 S
ID

www.SID.ir

www.sid.ir


E-asymptotic contractions and Boyd-Wong type E-contractions 1267

= lim
k→∞

lim
i→∞

ϕi

(
p(Tmkx, Tnkx)

)
= lim

i→∞
lim
k→∞

ϕi

(
p(Tmkx, Tnkx)

)
≥ lim sup

i→∞
lim sup
k→∞

p(Tmk+ix, Tnk+ix)

≥ ε,

where the first equality holds because ϕ is continuous, the second equal-
ity holds because {ϕi} is pointwise convergent to ϕ on the range of p,
the third equality holds because {ϕi} is uniformly convergent to ϕ on
the range of p, and the last two inequalities hold by (2.1) and (2.2), re-
spectively. Hence ϕ(ε) ≥ ε, which is a contradiction. Therefore {Tnx}
is p-Cauchy.

Step 3: T has a unique fixed point.
Because X is p-complete, it is concluded from Steps 1 and 2 that the

family {{Tnx} : x ∈ X} of Picard iterates of T is p-equiconvergent,

that is, there exists u ∈ X such that Tnx
p−→ u for all x ∈ X. In

particular, Tnu
p−→ u. We claim that u is the unique fixed point for T .

To this end, first note that since T is p-continuous on X, it follows that

Tn+1u
p−→ Tu, and so, by Lemma 1.2, we have u = Tu. And if v ∈ X

is a fixed point for T , then

p(u, v) = lim
n→∞

p(Tnu, Tnv) ≤ lim
n→∞

ϕn

(
p(u, v)

)
= ϕ

(
p(u, v)

)
,

which is impossible unless p(u, v) = 0. Similarly p(u, u) = 0 and using
Lemma 1.2 once more, we get v = u. �

It is worth mentioning that the boundedness of some orbit of T is not
necessary in Theorem 2.4 unlike [5, Theorem 2.1] or [2, Theorem 4.1.15].

As a consequence of Theorem 2.4, we have the following version of [1,
Theorem 3.1].

Corollary 2.5. Let p be an E-distance on a separated uniform space X
such that X is p-complete and p-bounded and let a mapping T : X → X
satisfy

(2.3) p(Tx, Ty) ≤ ϕ
(
p(x, y)

)
for all x, y ∈ X,

where ϕ : R≥0 → R≥0 is nondecreasing and continuous with ϕn(t) → 0

for all t > 0. Then T has a unique fixed point u ∈ X, and Tnx
p−→ u

for all x ∈ X.
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1268 Aghanians, Fallahi and Nourouzi

Proof. Note first that ϕ(0) = 0; for if 0 < t < ϕ(0) for some t, then the
monotonicity of ϕ implies that 0 < t < ϕ(0) ≤ ϕn(t) for all n ≥ 1, which
contradicts the fact that ϕn(t)→ 0.

Next, since ϕ is nondecreasing, it follows that T satisfies

p(Tnx, Tny) ≤ ϕn
(
p(x, y)

)
for all x, y ∈ X and n ≥ 1.

Setting ϕn = ϕn for each n ≥ 1 in Definition 2.1, it is seen that {ϕn}
converges pointwise to the constant function 0 on [0,+∞), and since

sup
{
ϕn
(
p(x, y)

)
: x, y ∈ X

}
= ϕn

(
δp(X)

)
→ 0,

it follows that {ϕn} converges uniformly to 0 on the range of p. Because
the constant function 0 belongs to Φ, it is concluded that T is an E-
asymptotic contraction on X. Moreover, ϕn’s are all continuous on R≥0

and (2.3) ensures that T is p-continuous on X. Consequently, the result
follows immediately from Theorem 2.4. �

The next corollary is a partial modification of Kirk’s theorem [5, The-
orem 2.1] in uniform spaces. One can find it with an additional assump-
tion, e.g., in [2, Theorem 4.1.15].

Corollary 2.6. Let X be a complete metric space and let T : X → X
be a continuous asymptotic contraction for which the functions ϕn in
Definition 2.1 are all continuous on R≥0 for large indices n. Then T
has a unique fixed point u ∈ X, and Tnx→ u for all x ∈ X.

3. Boyd-Wong type E-contractions

In this section, we denote by Ψ the class of all functions ψ : R≥0 →
R≥0 with the following properties:

• ψ is upper semicontinuous on R≥0 from the right, i.e.,

tn ↓ t ≥ 0 implies lim sup
n→∞

ψ(tn) ≤ ψ(t);

• ψ(t) < t for all t > 0, and ψ(0) = 0.

It might be interesting for the reader to be mentioned that the family
Φ defined and used in Section 2 is contained in the family Ψ but these
two families do not coincide. To see this, consider the function ψ(t) = 0
if 0 ≤ t < 1, and ψ(t) = 1

2 if t ≥ 1. Then ψ is upper semicontinuous

from the right but it is not continuous on R≥0. Furthermore, the upper
semicontinuity of ψ on R≥0 from the right and the condition that ψ(t) <
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t for all t > 0, do not imply that ψ vanishes at zero in general. In fact,
the function ψ : R≥0 → R≥0 defined by the rule

ψ(t) =



a t = 0

t

2
0 < t < 1

1

2t
t ≥ 1

for all t ≥ 0, where a is an arbitrary positive real number, confirms this
claim.

Theorem 3.1. Let p be an E-distance on a separated uniform space X
such that X is p-complete and let T : X → X satisfy

(3.1) p(Tx, Ty) ≤ ψ
(
p(x, y)

)
for all x, y ∈ X,

where ψ ∈ Ψ. Then T has a unique fixed point u ∈ X, and Tnx
p−→ u

for all x ∈ X.

Proof. We divide the proof into three steps as Theorem 2.4.

Step 1: p(Tnx, Tny) → 0 as n → ∞ for all x, y ∈ X.
Let x, y ∈ X be given. Then for each nonnegative integer n, by the

contractive condition (3.1) we have

(3.2) p(Tn+1x, Tn+1y) ≤ ψ
(
p(Tnx, Tny)

)
≤ p(Tnx, Tny).

Thus, {p(Tnx, Tny)} is a nonincreasing sequence of nonnegative num-
bers and so it converges decreasingly to some α ≥ 0. Letting n→∞ in
(3.2), by the upper semicontinuity of ψ from the right, we get

α = lim
n→∞

p(Tn+1x, Tn+1y) ≤ lim sup
n→∞

ψ
(
p(Tnx, Tny)

)
≤ ψ(α),

which is a contradiction unless α = 0. Consequently, p(Tnx, Tny)→ 0.

Step 2: The sequence {Tnx} is p-Cauchy for all x ∈ X.
Let x ∈ X be arbitrary and suppose on the contrary that {Tnx} is

not p-Cauchy. Then similar to the proof of Step 2 of Theorem 2.4, it is
seen that there exist an ε > 0 and sequences {mk} and {nk} of positive
integers such that mk > nk for each k and p(Tmkx, Tnkx)→ ε. On the
other hand, for each k, by (3.1) we have

p(Tmkx, Tnkx) ≤ p(Tmkx, Tmk+1x) + p(Tmk+1x, Tnk+1x)

+ p(Tnk+1x, Tnkx)
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≤ p(Tmkx, Tmk+1x) + ψ
(
p(Tmkx, Tnkx)

)
+ p(Tnk+1x, Tnkx).

Letting k →∞ and using Step 1 and the upper semicontinuity of ψ from
the right, we obtain

ε = lim
k→∞

p(Tmkx, Tnkx) = lim sup
k→∞

p(Tmkx, Tnkx)

≤ lim sup
k→∞

[
p(Tmkx, Tmk+1x) + ψ

(
p(Tmkx, Tnkx)

)
+ p(Tnk+1x, Tnkx)

]
≤ lim sup

k→∞
p(Tmkx, Tmk+1x) + lim sup

k→∞
ψ
(
p(Tmkx, Tnkx)

)
+ lim sup

k→∞
p(Tnk+1x, Tnkx)

= lim sup
k→∞

ψ
(
p(Tmkx, Tnkx)

)
≤ ψ(ε),

which is a contradiction. Therefore, {Tnx} is p-Cauchy.

Step 3: T has a unique fixed point.
Since X is p-complete, it follows from Steps 1 and 2 that the family

{{Tnx} : x ∈ X} is p-equiconvergent to some u ∈ X. In particular,

Tnu
p−→ u. Since (3.1) implies the p-continuity of T on X, it follows

that Tn+1u
p−→ Tu and so, by Lemma 1.2, we have u = Tu, that is, u

is a fixed point for T . If v ∈ X is a fixed point for T , then

p(u, v) = p(Tu, Tv) ≤ ψ
(
p(u, v)

)
,

which is impossible unless p(u, v) = 0. Similarly p(u, u) = 0. Therefore,
using Lemma 1.2 once more, one gets v = u. �

As an immediate consequence of Theorem 3.1, we have the Boyd-
Wong’s theorem [3] in metric spaces:

Corollary 3.2. Let X be a complete metric space and let a mapping
T : X → X satisfy

(3.3) d(Tx, Ty) ≤ ψ
(
d(x, y)

)
for all x, y ∈ X,

where ψ ∈ Ψ. Then T has a unique fixed point u ∈ X, and Tnx→ u for
all x ∈ X.
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In the following example, we see that Theorem 3.1 guarantees the
existence and uniqueness of a fixed point while Corollary 3.2 cannot be
applied.

Example 3.3. Let the set X = [0, 1] be endowed with the uniformity
induced by the Euclidean metric and define a mapping T : X → X by
Tx = 0 if 0 ≤ x < 1, and T1 = 1

4 . Then T does not satisfy (3.3) for any
ψ ∈ Ψ since it is not continuous on X. In fact, if ψ ∈ Ψ is arbitrary,
then ∣∣∣T1− T 3

4

∣∣∣ =
1

4
> ψ

(1

4

)
= ψ

(∣∣1− 3

4

∣∣).
Now set p(x, y) = max{x, y}. Then p is an E-distance on X and T
satisfies (3.1) for the function ψ : R≥0 → R≥0 defined by the rule ψ(t) =
t
4 for all t ≥ 0. It is easy to check that this ψ belongs to Ψ, and the
hypotheses of Theorem 3.1 are fulfilled.

Remark 3.4. In Theorem 2.4 (Corollary 2.6), assume that for some
index k the function ϕk belongs to Φ. Then Theorem 3.1 (Corollary 3.2)

implies that T k and so T has a unique fixed point u and T knx
p−→ u for

all x ∈ X. So, it is concluded by the p-continuity of T that the family
{{Tnx} : x ∈ X} is p-equiconvergent to u. Hence the significance of
Theorem 2.4 (Corollary 2.6) is whenever none of ϕn’s satisfy ϕn(t) < t
for all t > 0, that is, whenever for each n ≥ 1 there exists a tn > 0 such
that ϕn(tn) ≥ tn.
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