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ABSTRACT. In this paper we discuss the fixed points of asymptotic
contractions and Boyd-Wong type contractions in uniform spaces
equipped with an E-distance. A new version of Kirk’s fixed point
theorem is given for asymptotic contractions and Boyd-Wong type
contractions is investigated in uniform spaces.

1. Introduction and preliminaries

In 2003, Kirk{5] discussed the existence of fixed points for (not nec-
essarily continuous) asymptotic contractions in complete metric spaces.
Jachymski ‘and J6zwik [4] constructed an example to show that con-
tinuity of the self-mapping is essential in Kirk’s theorem. They also
established a fixed point result for uniformly continuous asymptotic -
contractions in complete metric spaces.
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Motivated by [5, Theorem 2.1] and [4, Example 1], we aim to give a
more general form of [5, Theorem 2.1] in uniform spaces where the self-
mappings are assumed to be continuous. We also generalize the Boyd-
Wong fixed point theorem [3, Theorem 1] to uniform spaces equipped
with an E-distance.

We begin with some basics in uniform spaces which are needed in this
paper. The reader can find an in-depth discussion in, e.g., [6].

A uniformity on a nonempty set X is a nonempty collection U of
subsets of X x X (called the entourages of X) satisfying the following
conditions:

(1) Each entourage of X contains the diagonal {(z,z) : € X};
(2) U is closed under finite intersections;
(3) For each entourage U in U, the set {(x,y) : (y,@) € U} is in U;
(4) For each U € U, there exists an entourage V' such that (x, y), (v, 2)
€ V implies (z,z) € U for all z,y,z € X;
(5) U contains the supersets of its elements.
If U is a uniformity on X, then (X, U) (shortly denoted by X) is called
a uniform space.
If d is a metric on a nonempty set X, then it induces a uniformity,
called the uniformity induced by the metric d, in which the entourages
of X are all the supersets of the sets

{(z,y) e X% X d(x,y) <e},

where € > 0.

It is well-known that a uniformity U on a nonempty set X is separating
if the intersection-of all entourages of X coincides with the diagonal
{(z,z) : x € X}. In this case, X is called a separated uniform space.

We next recall some basic concepts about FE-distances. For more
details and examples, the reader is referred to [1].

Definition 1.1. [1] Let X be a uniform space. A functionp: X x X —
R=20 is ealled an E-distance on X if

(1) for each entourage U in U, there exists a § > 0 such that p(z,x) <
0 and p(z,y) < 6 imply (x,y) € U for all x,y,z € X;
(2) p satisfies the triangular inequality, i.e.,

p(z,y) <pz,2) +p(zy) (29,2 €X).
If p is an FE-distance on a uniform space X, then a sequence {z,}

in X is said to be p-convergent to a point x € X, denoted by x, LN

x, whenever p(z,,z) — 0 as n — oo, and X is p-Cauchy whenever
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P(Tm, xy) — 0 as m,n — oo. The uniform space X is called p-complete
if every p-Cauchy sequence in X is p-convergent to some point of X.

The next lemma contains an important property of E-distances on
separated uniform spaces. The proof is straightforward and it is omitted
here.

Lemma 1.2. [1] Let {z,} and {y,} be two arbitrary sequences in a
separated uniform space X equipped with an E-distance p. If x, L
and z, 2>y, then x = y. In particular, p(z,2z) = p(z,y) = 0 for some
z € X implies x = y.

Using E-distances, p-boundedness and p-continuity are defined in uni-
form spaces.
Definition 1.3. [1] Let p be an E-distance on a uniform space X. Then
(1) X is called p-bounded if

dp(X) :sup{p(x,y) D,y € X} < 0.

(2) A mapping T : X — X s called p-continuous on X if x, Ly

implies Txy, 2 Tr for all sequences {x,} and all points x in
X.

2. E-asymptotic contractions

In this section, we denote by ® the class of all functions ¢ : RZ% —
RZ9 with the following properties:

e ( is continuous on RZO;
e o(t) < tforall t > 0.

It is worth mentioning that if ¢ € ®, then

< = li < lim t =
0<¢(0) = lim o(f) < lim ¢ =0,

that is, ©(0).= 0.
Following [5, Definition 2.1], we define F-asymptotic contractions.

Definition 2.1. Let p be an E-distance on a uniform space X. We say
that a mapping T : X — X is an E-asymptotic contraction if

(2.1) p(T"z, T"y) < ¢n(p(z,y)) for allz,y € X andn > 1,

where {¢n} is a sequence of nonnegative functions on RZ9 converging
uniformly to some ¢ € ® on the range of p.
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If (X, d) is a metric space, then replacing the E-distance p by the met-
ric d in Definition 2.1, we get the concept of an asymptotic contraction
introduced by Kirk [5, Definition 2.1]. So each asymptotic contraction
on a metric space is an E-asymptotic contraction on the uniform space
induced by the metric. But in the next example, we see that the converse
is not generally true.

Example 2.2. Uniformize the set X = [0, 1] with the uniformity induced
from the Euclidean metric and put p(x,y) =y for all x,y € X. It is
easily verified that p is an E-distance on X. Define T : X — X and
w1 R=0 — R=20 by

0 0<z<1 % 0<t<1
Tz = 1 and p1(t) =
3 ==1 L h
8

forallxz € X and allt > 0, and set p, = @ for n > 2] where ¢ is any
arbitrary fized function in ®. Clearly, o, — @ uniformly on RZ° and
T =0 for all n > 2. To see that T is an' E-asymptotic contraction on
X, it suffices to check (2.1) for n =1. To this end, given x,y € [0,1], if
y =1, then we have

p(Te, T1) = T1 = 1 (1) = 1 o, 1),

and for 0 <y <1, we have

p(Tx, Ty) = Ty =0.< % = 1(y) = 1 (p(x,y)).

But T fails to becan asymptotic contraction on the metric space X with
the functions p, since

1 1 1 1 1
Tl—T—‘:f S o (R) = (1_,)_
‘ 21 =5 5= =13l
In the next example, we see that an E-asymptotic contraction need

not be p-continuous.

Example 2.3. Let X and p be as in Example 2.2. Define a mapping
T: X —>XbyTex=01if0<x<1andTO0=1. Note that T is fized
point free. Now, let o1 be the constant function 1 and pg = @3 = -+ = ¢,
where ¢ is an arbitrary fived function in ®. Then T satisfies (2.1) and
since TO # 0, it follows that T fails to be p-continuous on X.
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Theorem 2.4. Let p be an E-distance on a separated uniform space X
such that X is p-complete and let T : X — X be a p-continuous E-
asymptotic contraction for which the functions p, in Definition 2.1 are
all continuous on RZY for large indices n. Then T has a unique fized
point u € X, and T"x i>uf01“ allz € X.

Proof. We divide the proof into three steps.
Step 1: p(T"x, T™y) — 0 as n — oo for all x,y € X.
Let 2,y € X be given. Letting n — oo in (2.1), we get
0 < limsupp(T"z, T"y) < lim on(p(z,y)) = ¢(p(z,y)) <plz,y) < oo

n—oo
Now, if
limsup p(T"x, T"y) = € > 0,

n—oo
then there exists a strictly increasing sequence {ny} of positive integers
such that p(T™ x, T"™y) — ¢, and so by the continuity of ¢, one obtains

e(p(T" 2, T y)) — p(e) < e.
Therefore, there is an integer kg > 1 such that @(p(T"*oz, T™0y)) < €.
So (2.1) yields

e = limsup p(T"x, T"y)

n—oo
= limsup p(T™(L™ 0 z), T (T™0y))

n—oQ

< lim o (p(T" 0z, T"oy))
= o(p(T™ox, T™oy)) <e,
which is a contradiction. Hence

limsup p(T"z, T"y) = 0.

n—o0

Consequently,

0 <liminf p(T"z,T"y) < limsup p(T"z,T"y) = 0,

n—00 n—00
that is, p(T"z, T"y) — 0.

Step 2: The sequence {T™x} is p-Cauchy for all z € X.
Suppose that z € X is arbitrary. If {T"x} is not p-Cauchy, then there
exist € > 0 and positive integers my and nj such that

mg >ng >k and p(T"x,T"x) > e k=1,2,....
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Keeping the integer n; fixed for sufficiently large k, say k > ko, and
using Step 1, we may assume without loss of generality that my > ny is
the smallest integer with p(T™kx, T™ x) > €, that is,

p(T™ Ly, T ) < e.
Hence for each k > kg, we have
e < p(T"*x, T )
< p(T™e g, T™ L) 4 p(T™ Lo, T )
< p(T™ex, T™ 12 +e.

If k — oo, since p(T™rx, T™ 1x) — 0, it follows that p(T™*z, T z) —
€.

We next show by induction that
(2.2) lim sup p(T™ Fig, T Tig) > ¢, =132, ...

k—00

To this end, note first that from Step 1,

ko0 k—o00
< limsup [p(kax,ka+1:E) +p(ka+1:E,Tnk+1:U)
k—o00

Fp(T™ g, T”kaj)}

< limsup p(T""5a, T+ e) + limsup p(T7Ha, T )
k—o0 k—o0
+ lim sup p(T™* *la, T )

k—o0

= lim sup p(T7 o, T ),
k—o0

that is, (2.2) holds for @ = 1. If (2.2) is true for some i, then
e < limsupp(Tm’“Hx,T”ka)
k—o0
< limsup [p(ka—’-ix, ka+i+1x) + p(ka+i+1$’ Tnk+i+1x)

T koo

4 p(T™ T g, T”’“H:I;)]

< limsup p(T™* Tty pretitlyy,
k—o00

Consequently, we have

p(e) = lim go(p(kax,T”ka:))
k—o0
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= lim lim ¢;(p(T™z, T"z))

k—o00 1—00

i i (5, 1740

> lim sup lim sup p(ka—H'x’ Tnk—l—il,)
1—00 k—oo

67

v

where the first equality holds because ¢ is continuous, the second equal-
ity holds because {p;} is pointwise convergent to ¢ on the range of p,
the third equality holds because {y;} is uniformly convergent to ¢ on
the range of p, and the last two inequalities hold by (2.1) and (2.2), re-
spectively. Hence yp(g) > ¢, which is a contradiction. Therefore {T"x}
is p-Cauchy.

Step 3: T has a unique fixed point.

Because X is p-complete, it is concluded from Steps 1 and 2 that the
family {{T"z} : © € X} of Picard iterates of T' is p-equiconvergent,
that is, there exists u € X such that Tz Ly uforallz € X. In
particular, T™u 25 u. We claim that u isthe unique fixed point for 7.
To this end, first note that since T is p-continuous on X, it follows that
Ty 25 T, and so, by Lemma 1.2, we have v = Tu. And if v € X
is a fixed point for 7', then

p(u,v) = lim p(T"u,T”v) < lim gon(p( )) (p( (u, )),

which is impossible unless p(u,v) = 0. Similarly p(u,u) = 0 and using
Lemma 1.2 once more; we get v = u. O

It is worth mentioning that the boundedness of some orbit of 7" is not
necessary in Theorem 2.4 unlike [5, Theorem 2.1] or [2, Theorem 4.1.15].

As a consequence of Theorem 2.4, we have the following version of [1,
Theorem 3.1].

Corollary 2.5. Let p be an E-distance on a separated uniform space X
such that X is p-complete and p-bounded and let a mapping T : X — X
satisfy

(2.3) p(Tz, Ty) < ¢(p(x,y)) for all z,y € X,

where ¢ : RZ0 — R2Y is nondecreasing and continuous with @™ (t) — 0

for allt > 0. Then T has a unique fized point u € X, and T"x Ly
forallx € X.
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Proof. Note first that ¢(0) = 0; for if 0 < ¢ < ¢(0) for some ¢, then the
monotonicity of ¢ implies that 0 <t < ¢(0) < ¢"(¢) for all n > 1, which
contradicts the fact that ¢"(t) — 0.

Next, since ¢ is nondecreasing, it follows that T satisfies

p(T"z, T"y) < " (p(:c, y)) for all z,y € X and n > 1.

Setting ¢, = ™ for each n > 1 in Definition 2.1, it is seen that {¢,}
converges pointwise to the constant function 0 on [0, +00), and since

sup {cp”(p(x,y)) cx,y € X} = @”((%(X)) — 0,

it follows that {, } converges uniformly to 0 on the range of p. Because
the constant function 0 belongs to @, it is concluded that 7" is.an E-
asymptotic contraction on X. Moreover, ¢,’s are all continuous on R=Y
and (2.3) ensures that T is p-continuous on X. Consequently, the result
follows immediately from Theorem 2.4. O

The next corollary is a partial modification of Kirk’s theorem [5, The-
orem 2.1] in uniform spaces. One can find it with an additional assump-
tion, e.g., in [2, Theorem 4.1.15].

Corollary 2.6. Let X be a complete metric space and let T : X — X
be a continuous asymptotic contraction for which the functions o, in
Definition 2.1 are all continuous onR=% for large indices n. Then T
has a unique fixed point u € X, and T"x — u for all x € X.

3. Boyd-Wong type E-contractions

In this section, we denote by ¥ the class of all functions ¢ : RZ? —
R=Y with the following properties:

e ¢ is-upper semicontinuous on RZ° from the right, i.e.,
tndt >0 implies limsup(t,) < (t);
n—oo

e (t) < tforall t >0, and ¥(0) = 0.

It might be interesting for the reader to be mentioned that the family
® defined and used in Section 2 is contained in the family ¥ but these
two families do not coincide. To see this, consider the function ¢ (t) =0
if 0 <t<1, and ¥(t) = % if ¢ > 1. Then 1 is upper semicontinuous
from the right but it is not continuous on R=°. Furthermore, the upper
semicontinuity of 1) on R=Y from the right and the condition that ¥ (t) <
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t for all ¢ > 0, do not imply that v vanishes at zero in general. In fact,
the function v : RZ0 — R29 defined by the rule

a t=20
t 0<t<1
Y(t)=19q 2
1
— t>1
\ 2t

for all ¢ > 0, where a is an arbitrary positive real number, confirms this
claim.

Theorem 3.1. Let p be an E-distance on a separateduniform space X
such that X is p-complete and let T : X — X satisfy

(3.1) p(Tx, Ty) < w(p(a:,y)) for all x,y € X,

where v € V. Then T has a unique fixed point u € X, and T"x Ly
forallx € X.

Proof. We divide the proof into three steps as Theorem 2.4.

Step 1: p(T"x,T™y) — 0 as n — oo for all z,y € X.
Let x,y € X be given. Then for each nonnegative integer n, by the
contractive condition (3.1) we have

(3:2)  p(T"a, T"Hy) < (p(The, T y)) < p(T"z,T"y).
Thus, {p(T™xz,T™y)} is‘a noninereasing sequence of nonnegative num-
bers and so it converges decreasingly to some o > 0. Letting n — oo in
(3.2), by the upper semicontinuity of ¢ from the right, we get
a = lim p(T" e, T"y) <limsup ¢ (p(T"z, T"y)) < ¢(w),
n—oo

n—0o0
which is a contradiction unless o = 0. Consequently, p(7T"z, T"y) — 0.

Step 2: The sequence {T™x} is p-Cauchy for all z € X.

Let '€ X be arbitrary and suppose on the contrary that {17z} is
not p-Cauchy. Then similar to the proof of Step 2 of Theorem 2.4, it is
seen that there exist an € > 0 and sequences {my} and {ny} of positive
integers such that my > ny for each k and p(T™kx, T™x) — . On the
other hand, for each k, by (3.1) we have

p(T™ e, T a) < p(T™a, T ) + p(T™ e, T a)

+ p(T" g, T )
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< p(T™eg, T™ ) 4 Y(p(T™ z, T x))
+ p(T™ g, T ),

Letting £ — oo and using Step 1 and the upper semicontinuity of ¢ from
the right, we obtain

e = lim p(T™Fz, T™ x) = limsup p(T™"* x, T"* )
k—o0 k—oo
< limsup [p(kam,Tm’“Hx) + ¢ (p(T™ z, T x))
k—o00

+ p(T™ g, T"’“:L‘)}

IN

lim sup p(T™* 2, T z) + lim sup ¢ (p(kaa:, Lk x))
k—o0 k—o00
+ limsup p(T™ g, T™ 1)

k—o0

= limsup ¢ (p(T"* z, T™x))

k—ro0
< ¥(e),
which is a contradiction. Therefore, {T"} is p-Cauchy.

Step 3: T has a unique fixed point.

Since X is p-complete, it follows from Steps 1 and 2 that the family
{{T™z} : = € X} is p-equiconvergent to some v € X. In particular,
T'u 5 u. Since (3.1)/implies the p-continuity of 7' on X, it follows
that 7"y -2 Tw and so, by Lemma 1.2, we have u = T, that is, u
is a fixed point for 7. If v.€ X is a fixed point for T', then

pu,v) = p(Tu, Tv) < ¢(p(u,v)),

which is impossible unless p(u,v) = 0. Similarly p(u,u) = 0. Therefore,
using Lemma 1.2 once more, one gets v = u. O

As an immediate consequence of Theorem 3.1, we have the Boyd-
Wong’s theorem [3] in metric spaces:

Corollary 3.2. Let X be a complete metric space and let a mapping
T:X — X satisfy

(3.3) d(Tz,Ty) < ¢(d(z,y)) foralz,y€ X,

where b € V. Then T has a unique fived point u € X, and T"x — u for
allx € X.
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In the following example, we see that Theorem 3.1 guarantees the
existence and uniqueness of a fixed point while Corollary 3.2 cannot be
applied.

Example 3.3. Let the set X = [0,1] be endowed with the uniformity
induced by the Fuclidean metric and define a mapping T : X — X by
Tr=0if0<x<1,andT1= %. Then T does not satisfy (3.3) for any
Y € U since it is not continuous on X. In fact, if ¥ € V is arbitrary,
then

gl = g v @ = (-4

Now set p(z,y) = max{x,y}. Then p is an E-distance on X and T
satisfies (3.1) for the function v : RZ0 — R20 defined by the rule 1 (t) =
% for allt > 0. It is easy to check that this ¥ belongs to ¥, and the
hypotheses of Theorem 3.1 are fulfilled.

Remark 3.4. In Theorem 2.4 (Corollary 2.6), assume that for some
index k the function gy belongs to ®. Then Theorem 3.1 (Corollary 3.2)

implies that T* and so T has a unique fized point v and T*"x L for
all x € X. So, it is concluded by the p-continuity of T that the family
{{T"x} : = € X} is p-equiconvergent to u. Hence the significance of
Theorem 2.4 (Corollary 2.6) is whenever none of vy ’s satisfy pn(t) <t
for allt > 0, that is, whenever for each n > 1 there exists a t, > 0 such
that o, (tn) > ty.
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