FIXED POINTS FOR *E*-ASYMPTOTIC CONTRACTIONS AND BOYD-WONG TYPE *E*-CONTRACTIONS IN UNIFORM SPACES

A. AGHANIANS, K. FALLAHI AND K. NOUROUZI*

Communicated by Gholam Hossein Esslamzadeh

ABSTRACT. In this paper we discuss the fixed points of asymptotic contractions and Boyd-Wong type contractions in uniform spaces equipped with an *E*-distance. A new version of Kirk's fixed point theorem is given for asymptotic contractions and Boyd-Wong type contractions is investigated in uniform spaces.

1. Introduction and preliminaries

In 2003, Kirk [5] discussed the existence of fixed points for (not necessarily continuous) asymptotic contractions in complete metric spaces. Jachymski and Jóźwik [4] constructed an example to show that continuity of the self-mapping is essential in Kirk's theorem. They also established a fixed point result for uniformly continuous asymptotic φ -contractions in complete metric spaces.

MSC(2010): Primary: 47H10; Secondary: 54E15, 47H09.

Keywords: Separated uniform space, E-asymptotic contraction, Boyd-Wong type E-contraction, fixed point.

Received: 1 June 2012, Accepted: 1 December 2012.

^{*}Corresponding author

[©] 2013 Iranian Mathematical Society.

Motivated by [5, Theorem 2.1] and [4, Example 1], we aim to give a more general form of [5, Theorem 2.1] in uniform spaces where the self-mappings are assumed to be continuous. We also generalize the Boyd-Wong fixed point theorem [3, Theorem 1] to uniform spaces equipped with an E-distance.

We begin with some basics in uniform spaces which are needed in this paper. The reader can find an in-depth discussion in, e.g., [6].

A uniformity on a nonempty set X is a nonempty collection \mathcal{U} of subsets of $X \times X$ (called the entourages of X) satisfying the following conditions:

- (1) Each entourage of X contains the diagonal $\{(x, x) : x \in X\}$;
- (2) \mathcal{U} is closed under finite intersections;
- (3) For each entourage U in \mathcal{U} , the set $\{(x,y):(y,x)\in U\}$ is in \mathcal{U} ;
- (4) For each $U \in \mathcal{U}$, there exists an entourage V such that $(x, y), (y, z) \in V$ implies $(x, z) \in U$ for all $x, y, z \in X$;
- (5) \mathcal{U} contains the supersets of its elements.

If \mathcal{U} is a uniformity on X, then (X,\mathcal{U}) (shortly denoted by X) is called a uniform space.

If d is a metric on a nonempty set X, then it induces a uniformity, called the uniformity induced by the metric d, in which the entourages of X are all the supersets of the sets

$$\big\{(x,y)\in X\times X: d(x,y)<\varepsilon\big\},$$

where $\varepsilon > 0$.

It is well-known that a uniformity \mathcal{U} on a nonempty set X is separating if the intersection of all entourages of X coincides with the diagonal $\{(x,x):x\in X\}$. In this case, X is called a separated uniform space.

We next recall some basic concepts about E-distances. For more details and examples, the reader is referred to [1].

Definition 1.1. [1] Let X be a uniform space. A function $p: X \times X \to \mathbb{R}^{\geq 0}$ is called an E-distance on X if

- (1) for each entourage U in U, there exists a $\delta > 0$ such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ imply $(x, y) \in U$ for all $x, y, z \in X$;
- (2) p satisfies the triangular inequality, i.e.,

$$p(x,y) \le p(x,z) + p(z,y) \qquad (x,y,z \in X).$$

If p is an E-distance on a uniform space X, then a sequence $\{x_n\}$ in X is said to be p-convergent to a point $x \in X$, denoted by $x_n \stackrel{p}{\longrightarrow} x$, whenever $p(x_n, x) \to 0$ as $n \to \infty$, and X is p-Cauchy whenever

 $p(x_m, x_n) \to 0$ as $m, n \to \infty$. The uniform space X is called p-complete if every p-Cauchy sequence in X is p-convergent to some point of X.

The next lemma contains an important property of E-distances on separated uniform spaces. The proof is straightforward and it is omitted here.

Lemma 1.2. [1] Let $\{x_n\}$ and $\{y_n\}$ be two arbitrary sequences in a separated uniform space X equipped with an E-distance p. If $x_n \xrightarrow{p} x$ and $x_n \xrightarrow{p} y$, then x = y. In particular, p(z, x) = p(z, y) = 0 for some $z \in X$ implies x = y.

Using E-distances, p-boundedness and p-continuity are defined in uniform spaces.

Definition 1.3. [1] Let p be an E-distance on a uniform space X. Then

(1) X is called p-bounded if

$$\delta_p(X) = \sup \{p(x,y) : x, y \in X\} < \infty.$$

(2) A mapping $T: X \to X$ is called p-continuous on X if $x_n \xrightarrow{p} x$ implies $Tx_n \xrightarrow{p} Tx$ for all sequences $\{x_n\}$ and all points x in X.

2. E-asymptotic contractions

In this section, we denote by Φ the class of all functions $\varphi: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ with the following properties:

- φ is continuous on $\mathbb{R}^{\geq 0}$;
- $\varphi(t) < t$ for all t > 0.

It is worth mentioning that if $\varphi \in \Phi$, then

$$0 \le \varphi(0) = \lim_{t \to 0^+} \varphi(t) \le \lim_{t \to 0^+} t = 0,$$

that is, $\varphi(0) = 0$.

Following [5, Definition 2.1], we define E-asymptotic contractions.

Definition 2.1. Let p be an E-distance on a uniform space X. We say that a mapping $T: X \to X$ is an E-asymptotic contraction if

$$(2.1) p(T^nx, T^ny) \le \varphi_n\big(p(x,y)\big) for all x, y \in X and n \ge 1,$$

where $\{\varphi_n\}$ is a sequence of nonnegative functions on $\mathbb{R}^{\geq 0}$ converging uniformly to some $\varphi \in \Phi$ on the range of p.

If (X, d) is a metric space, then replacing the E-distance p by the metric d in Definition 2.1, we get the concept of an asymptotic contraction introduced by Kirk [5, Definition 2.1]. So each asymptotic contraction on a metric space is an E-asymptotic contraction on the uniform space induced by the metric. But in the next example, we see that the converse is not generally true.

Example 2.2. Uniformize the set X = [0, 1] with the uniformity induced from the Euclidean metric and put p(x,y) = y for all $x,y \in X$. It is easily verified that p is an E-distance on X. Define $T: X \to X$ and $\varphi_1: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0} \ by$

$$Tx = \begin{cases} 0 & 0 \le x < 1 \\ \frac{1}{8} & x = 1 \end{cases} \quad and \quad \varphi_1(t) = \begin{cases} \frac{1}{16} & 0 \le t < 1 \\ \frac{1}{8} & t \ge 1 \end{cases}$$

for all $x \in X$ and all $t \geq 0$, and set $\varphi_n = \varphi$ for $n \geq 2$, where φ is any arbitrary fixed function in Φ . Clearly, $\varphi_n \to \varphi$ uniformly on $\mathbb{R}^{\geq 0}$ and $T^n = 0$ for all $n \geq 2$. To see that T is an E-asymptotic contraction on X, it suffices to check (2.1) for n = 1. To this end, given $x, y \in [0, 1]$, if y = 1, then we have

$$p(Tx, T1) = T1 = \frac{1}{8} = \varphi_1(1) = \varphi_1(p(x, 1)),$$

$$p(Tx,T1)=T1=\frac{1}{8}=\varphi_1(1)=\varphi_1\big(p(x,1)\big),$$
 and for $0\leq y<1$, we have
$$p(Tx,Ty)=Ty=0\leq \frac{1}{16}=\varphi_1(y)=\varphi_1\big(p(x,y)\big).$$

But T fails to be an asymptotic contraction on the metric space X with the functions φ_n since

$$\left| T1 - T\frac{1}{2} \right| = \frac{1}{8} > \frac{1}{16} = \varphi_1(\frac{1}{2}) = \varphi_1(\left| 1 - \frac{1}{2} \right|).$$

In the next example, we see that an E-asymptotic contraction need not be p-continuous.

Example 2.3. Let X and p be as in Example 2.2. Define a mapping $T: X \to X$ by Tx = 0 if $0 < x \le 1$ and T0 = 1. Note that T is fixed point free. Now, let φ_1 be the constant function 1 and $\varphi_2 = \varphi_3 = \cdots = \varphi$, where φ is an arbitrary fixed function in Φ . Then T satisfies (2.1) and since $T0 \neq 0$, it follows that T fails to be p-continuous on X.

Theorem 2.4. Let p be an E-distance on a separated uniform space X such that X is p-complete and let $T: X \to X$ be a p-continuous E-asymptotic contraction for which the functions φ_n in Definition 2.1 are all continuous on $\mathbb{R}^{\geq 0}$ for large indices n. Then T has a unique fixed point $u \in X$, and $T^n x \xrightarrow{p} u$ for all $x \in X$.

Proof. We divide the proof into three steps.

Step 1: $p(T^nx, T^ny) \to 0$ as $n \to \infty$ for all $x, y \in X$. Let $x, y \in X$ be given. Letting $n \to \infty$ in (2.1), we get

$$0 \le \limsup_{n \to \infty} p(T^n x, T^n y) \le \lim_{n \to \infty} \varphi_n (p(x, y)) = \varphi(p(x, y)) \le p(x, y) < \infty.$$

Now, if

$$\limsup_{n \to \infty} p(T^n x, T^n y) = \varepsilon > 0,$$

then there exists a strictly increasing sequence $\{n_k\}$ of positive integers such that $p(T^{n_k}x, T^{n_k}y) \to \varepsilon$, and so by the continuity of φ , one obtains

$$\varphi(p(T^{n_k}x, T^{n_k}y)) \to \varphi(\varepsilon) < \varepsilon.$$

Therefore, there is an integer $k_0 \ge 1$ such that $\varphi(p(T^{n_{k_0}}x, T^{n_{k_0}}y)) < \varepsilon$. So (2.1) yields

$$\varepsilon = \limsup_{n \to \infty} p(T^n x, T^n y)$$

$$= \limsup_{n \to \infty} p(T^n(T^{n_{k_0}} x), T^n(T^{n_{k_0}} y))$$

$$\leq \lim_{n \to \infty} \varphi_n(p(T^{n_{k_0}} x, T^{n_{k_0}} y))$$

$$= \varphi(p(T^{n_{k_0}} x, T^{n_{k_0}} y)) < \varepsilon,$$

which is a contradiction. Hence

$$\limsup_{n \to \infty} p(T^n x, T^n y) = 0.$$

Consequently

$$0 \le \liminf_{n \to \infty} p(T^n x, T^n y) \le \limsup_{n \to \infty} p(T^n x, T^n y) = 0,$$

that is, $p(T^n x, T^n y) \to 0$.

Step 2: The sequence $\{T^n x\}$ is p-Cauchy for all $x \in X$.

Suppose that $x \in X$ is arbitrary. If $\{T^n x\}$ is not p-Cauchy, then there exist $\varepsilon > 0$ and positive integers m_k and n_k such that

$$m_k > n_k \ge k$$
 and $p(T^{m_k}x, T^{n_k}x) \ge \varepsilon$ $k = 1, 2, \dots$

Keeping the integer n_k fixed for sufficiently large k, say $k \geq k_0$, and using Step 1, we may assume without loss of generality that $m_k > n_k$ is the smallest integer with $p(T^{m_k}x, T^{n_k}x) \geq \varepsilon$, that is,

$$p(T^{m_k-1}x, T^{n_k}x) < \varepsilon.$$

Hence for each $k \geq k_0$, we have

$$\varepsilon \le p(T^{m_k}x, T^{n_k}x)
\le p(T^{m_k}x, T^{m_k-1}x) + p(T^{m_k-1}x, T^{n_k}x)
< p(T^{m_k}x, T^{m_k-1}x) + \varepsilon.$$

If $k \to \infty$, since $p(T^{m_k}x, T^{m_k-1}x) \to 0$, it follows that $p(T^{m_k}x, T^{n_k}x)$ ε .

We next show by induction that

(2.2)
$$\limsup_{k\to\infty} p(T^{m_k+i}x,T^{n_k+i}x)\geq \varepsilon, \qquad i=1,2,\dots$$
 To this end, note first that from Step 1,

$$\varepsilon = \lim_{k \to \infty} p(T^{m_k}x, T^{n_k}x) = \limsup_{k \to \infty} p(T^{m_k}x, T^{n_k}x)$$

$$\leq \lim_{k \to \infty} \sup_{k \to \infty} \left[p(T^{m_k}x, T^{m_k+1}x) + p(T^{m_k+1}x, T^{n_k+1}x) + p(T^{n_k+1}x, T^{n_k+1}x) \right]$$

$$\leq \lim_{k \to \infty} \sup_{k \to \infty} p(T^{m_k}x, T^{m_k+1}x) + \lim_{k \to \infty} \sup_{k \to \infty} p(T^{m_k+1}x, T^{n_k+1}x) + \lim_{k \to \infty} \sup_{k \to \infty} p(T^{n_k+1}x, T^{n_k}x)$$

$$= \lim_{k \to \infty} \sup_{k \to \infty} p(T^{m_k+1}x, T^{n_k+1}x),$$

that is, (2.2) holds for i = 1. If (2.2) is true for some i, then

$$\begin{split} \varepsilon &\leq \limsup_{k \to \infty} p(T^{m_k+i}x, T^{n_k+i}x) \\ &\leq \limsup_{k \to \infty} \left[p(T^{m_k+i}x, T^{m_k+i+1}x) + p(T^{m_k+i+1}x, T^{n_k+i+1}x) \right. \\ &+ p(T^{n_k+i+1}x, T^{n_k+i}x) \right] \\ &\leq \limsup_{k \to \infty} p(T^{m_k+i+1}x, T^{n_k+i+1}x). \end{split}$$

Consequently, we have

$$\varphi(\varepsilon) = \lim_{k \to \infty} \varphi(p(T^{m_k}x, T^{n_k}x))$$

$$= \lim_{k \to \infty} \lim_{i \to \infty} \varphi_i \left(p(T^{m_k} x, T^{n_k} x) \right)$$

$$= \lim_{i \to \infty} \lim_{k \to \infty} \varphi_i \left(p(T^{m_k} x, T^{n_k} x) \right)$$

$$\geq \lim_{i \to \infty} \sup_{k \to \infty} \lim \sup_{k \to \infty} p(T^{m_k + i} x, T^{n_k + i} x)$$

$$\geq \varepsilon,$$

where the first equality holds because φ is continuous, the second equality holds because $\{\varphi_i\}$ is pointwise convergent to φ on the range of p, the third equality holds because $\{\varphi_i\}$ is uniformly convergent to φ on the range of p, and the last two inequalities hold by (2.1) and (2.2), respectively. Hence $\varphi(\varepsilon) \geq \varepsilon$, which is a contradiction. Therefore $\{T^n x\}$ is p-Cauchy.

Step 3: T has a unique fixed point.

Because X is p-complete, it is concluded from Steps 1 and 2 that the family $\{\{T^nx\}:x\in X\}$ of Picard iterates of T is p-equiconvergent, that is, there exists $u\in X$ such that $T^nx\stackrel{p}{\longrightarrow} u$ for all $x\in X$. In particular, $T^nu\stackrel{p}{\longrightarrow} u$. We claim that u is the unique fixed point for T. To this end, first note that since T is p-continuous on X, it follows that $T^{n+1}u\stackrel{p}{\longrightarrow} Tu$, and so, by Lemma 1.2, we have u=Tu. And if $v\in X$ is a fixed point for T, then

$$p(u,v) = \lim_{n \to \infty} p(T^n u, T^n v) \le \lim_{n \to \infty} \varphi_n \big(p(u,v) \big) = \varphi \big(p(u,v) \big),$$

which is impossible unless p(u, v) = 0. Similarly p(u, u) = 0 and using Lemma 1.2 once more, we get v = u.

It is worth mentioning that the boundedness of some orbit of T is not necessary in Theorem 2.4 unlike [5, Theorem 2.1] or [2, Theorem 4.1.15].

As a consequence of Theorem 2.4, we have the following version of [1, Theorem 3.1].

Corollary 2.5. Let p be an E-distance on a separated uniform space X such that X is p-complete and p-bounded and let a mapping $T: X \to X$ satisfy

(2.3)
$$p(Tx, Ty) \le \varphi(p(x, y))$$
 for all $x, y \in X$,

where $\varphi: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ is nondecreasing and continuous with $\varphi^n(t) \to 0$ for all t > 0. Then T has a unique fixed point $u \in X$, and $T^n x \xrightarrow{p} u$ for all $x \in X$.

Proof. Note first that $\varphi(0) = 0$; for if $0 < t < \varphi(0)$ for some t, then the monotonicity of φ implies that $0 < t < \varphi(0) \le \varphi^n(t)$ for all $n \ge 1$, which contradicts the fact that $\varphi^n(t) \to 0$.

Next, since φ is nondecreasing, it follows that T satisfies

$$p(T^n x, T^n y) \le \varphi^n (p(x, y))$$
 for all $x, y \in X$ and $n \ge 1$.

Setting $\varphi_n = \varphi^n$ for each $n \geq 1$ in Definition 2.1, it is seen that $\{\varphi_n\}$ converges pointwise to the constant function 0 on $[0, +\infty)$, and since

$$\sup \left\{ \varphi^n \big(p(x,y) \big) : x, y \in X \right\} = \varphi^n \big(\delta_p(X) \big) \to 0,$$

it follows that $\{\varphi_n\}$ converges uniformly to 0 on the range of p. Because the constant function 0 belongs to Φ , it is concluded that T is an Easymptotic contraction on X. Moreover, φ_n 's are all continuous on $\mathbb{R}^{\geq 0}$ and (2.3) ensures that T is p-continuous on X. Consequently, the result follows immediately from Theorem 2.4.

The next corollary is a partial modification of Kirk's theorem [5, Theorem 2.1] in uniform spaces. One can find it with an additional assumption, e.g., in [2, Theorem 4.1.15].

Corollary 2.6. Let X be a complete metric space and let $T: X \to X$ be a continuous asymptotic contraction for which the functions φ_n in Definition 2.1 are all continuous on $\mathbb{R}^{\geq 0}$ for large indices n. Then T has a unique fixed point $u \in X$, and $T^n x \to u$ for all $x \in X$.

3. Boyd-Wong type E-contractions

In this section, we denote by Ψ the class of all functions $\psi: \mathbb{R}^{\geq 0} \to$ $\mathbb{R}^{\geq 0}$ with the following properties:

• ψ is upper semicontinuous on $\mathbb{R}^{\geq 0}$ from the right, i.e.,

$$t_n \downarrow t \ge 0 \quad \text{implies} \quad \limsup_{n \to \infty} \psi(t_n) \le \psi(t);$$
• $\psi(t) < t \text{ for all } t > 0, \text{ and } \psi(0) = 0.$

It might be interesting for the reader to be mentioned that the family Φ defined and used in Section 2 is contained in the family Ψ but these two families do not coincide. To see this, consider the function $\psi(t) = 0$ if $0 \le t < 1$, and $\psi(t) = \frac{1}{2}$ if $t \ge 1$. Then ψ is upper semicontinuous from the right but it is not continuous on $\mathbb{R}^{\geq 0}$. Furthermore, the upper semicontinuity of ψ on $\mathbb{R}^{\geq 0}$ from the right and the condition that $\psi(t)$ t for all t>0, do not imply that ψ vanishes at zero in general. In fact, the function $\psi: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ defined by the rule

$$\psi(t) = \begin{cases} a & t = 0\\ \frac{t}{2} & 0 < t < 1\\ \frac{1}{2t} & t \ge 1 \end{cases}$$

for all $t \geq 0$, where a is an arbitrary positive real number, confirms this claim.

Theorem 3.1. Let p be an E-distance on a separated uniform space X such that X is p-complete and let $T: X \to X$ satisfy

(3.1)
$$p(Tx, Ty) \le \psi(p(x, y)) \quad \text{for all } x, y \in X,$$

where $\psi \in \Psi$. Then T has a unique fixed point $u \in X$, and $T^n x \xrightarrow{p} u$ for all $x \in X$.

Proof. We divide the proof into three steps as Theorem 2.4.

Step 1: $p(T^n x, T^n y) \to 0$ as $n \to \infty$ for all $x, y \in X$.

Let $x, y \in X$ be given. Then for each nonnegative integer n, by the contractive condition (3.1) we have

(3.2)
$$p(T^{n+1}x, T^{n+1}y) \le \psi(p(T^nx, T^ny)) \le p(T^nx, T^ny).$$

Thus, $\{p(T^nx, T^ny)\}$ is a nonincreasing sequence of nonnegative numbers and so it converges decreasingly to some $\alpha \geq 0$. Letting $n \to \infty$ in (3.2), by the upper semicontinuity of ψ from the right, we get

$$\alpha = \lim_{n \to \infty} p(T^{n+1}x, T^{n+1}y) \leq \limsup_{n \to \infty} \psi \big(p(T^nx, T^ny) \big) \leq \psi(\alpha),$$
 which is a contradiction unless $\alpha = 0$. Consequently, $p(T^nx, T^ny) \to 0$.

Step 2: The sequence $\{T^n x\}$ is p-Cauchy for all $x \in X$.

Let $x \in X$ be arbitrary and suppose on the contrary that $\{T^n x\}$ is not p-Cauchy. Then similar to the proof of Step 2 of Theorem 2.4, it is seen that there exist an $\varepsilon > 0$ and sequences $\{m_k\}$ and $\{n_k\}$ of positive integers such that $m_k > n_k$ for each k and $p(T^{m_k}x, T^{n_k}x) \to \varepsilon$. On the other hand, for each k, by (3.1) we have

$$p(T^{m_k}x, T^{n_k}x) \le p(T^{m_k}x, T^{m_k+1}x) + p(T^{m_k+1}x, T^{n_k+1}x) + p(T^{n_k+1}x, T^{n_k}x)$$

$$\leq p(T^{m_k}x, T^{m_k+1}x) + \psi(p(T^{m_k}x, T^{n_k}x)) + p(T^{n_k+1}x, T^{n_k}x).$$

Letting $k \to \infty$ and using Step 1 and the upper semicontinuity of ψ from the right, we obtain

$$\varepsilon = \lim_{k \to \infty} p(T^{m_k}x, T^{n_k}x) = \lim_{k \to \infty} \sup p(T^{m_k}x, T^{n_k}x)$$

$$\leq \lim_{k \to \infty} \sup \left[p(T^{m_k}x, T^{m_k+1}x) + \psi(p(T^{m_k}x, T^{n_k}x)) + p(T^{n_k+1}x, T^{n_k}x) \right]$$

$$\leq \lim_{k \to \infty} \sup p(T^{m_k}x, T^{m_k+1}x) + \lim_{k \to \infty} \sup \psi(p(T^{m_k}x, T^{n_k}x))$$

$$+ \lim_{k \to \infty} \sup p(T^{n_k+1}x, T^{n_k}x)$$

$$= \lim_{k \to \infty} \sup \psi(p(T^{m_k}x, T^{n_k}x))$$

$$\leq \psi(\varepsilon),$$

which is a contradiction. Therefore, $\{T^n x\}$ is p-Cauchy.

Step 3: T has a unique fixed point.

Since X is p-complete, it follows from Steps 1 and 2 that the family $\{\{T^nx\}: x \in X\}$ is p-equiconvergent to some $u \in X$. In particular, $T^nu \stackrel{p}{\longrightarrow} u$. Since (3.1) implies the p-continuity of T on X, it follows that $T^{n+1}u \stackrel{p}{\longrightarrow} Tu$ and so, by Lemma 1.2, we have u = Tu, that is, u is a fixed point for T. If $v \in X$ is a fixed point for T, then

$$p(u,v) = p(Tu,Tv) \le \psi(p(u,v)),$$

which is impossible unless p(u, v) = 0. Similarly p(u, u) = 0. Therefore, using Lemma 1.2 once more, one gets v = u.

As an immediate consequence of Theorem 3.1, we have the Boyd-Wong's theorem [3] in metric spaces:

Corollary 3.2. Let X be a complete metric space and let a mapping $T: X \to X$ satisfy

(3.3)
$$d(Tx, Ty) \le \psi(d(x, y)) \quad \text{for all } x, y \in X,$$

where $\psi \in \Psi$. Then T has a unique fixed point $u \in X$, and $T^n x \to u$ for all $x \in X$.

In the following example, we see that Theorem 3.1 guarantees the existence and uniqueness of a fixed point while Corollary 3.2 cannot be applied.

Example 3.3. Let the set X = [0,1] be endowed with the uniformity induced by the Euclidean metric and define a mapping $T: X \to X$ by Tx = 0 if $0 \le x < 1$, and $T1 = \frac{1}{4}$. Then T does not satisfy (3.3) for any $\psi \in \Psi$ since it is not continuous on X. In fact, if $\psi \in \Psi$ is arbitrary, then

$$\left|T1-T\frac{3}{4}\right|=\frac{1}{4}>\psi\left(\frac{1}{4}\right)=\psi\left(\left|1-\frac{3}{4}\right|\right).$$

Now set $p(x,y) = \max\{x,y\}$. Then p is an E-distance on X and T satisfies (3.1) for the function $\psi : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ defined by the rule $\psi(t) = \frac{t}{4}$ for all $t \geq 0$. It is easy to check that this ψ belongs to Ψ , and the hypotheses of Theorem 3.1 are fulfilled.

Remark 3.4. In Theorem 2.4 (Corollary 2.6), assume that for some index k the function φ_k belongs to Φ . Then Theorem 3.1 (Corollary 3.2) implies that T^k and so T has a unique fixed point u and $T^{kn}x \xrightarrow{p} u$ for all $x \in X$. So, it is concluded by the p-continuity of T that the family $\{\{T^nx\}: x \in X\}$ is p-equiconvergent to u. Hence the significance of Theorem 2.4 (Corollary 2.6) is whenever none of φ_n 's satisfy $\varphi_n(t) < t$ for all t > 0, that is, whenever for each $n \ge 1$ there exists a $t_n > 0$ such that $\varphi_n(t_n) \ge t_n$.

References

- [1] M. Aamri and D. El Moutawakil, Common fixed point theorems for *E*-contractive or *E*-expansive maps in uniform spaces, *Acta Math. Acad. Paedagog. Nyházi.* (N.S.) **20** (2004), no. 1, 83–91.
- [2] R. P. Agarwal, D. O'Regan and D. R. Sahu, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Springer, New York, 2009.
- [3] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969) 458–464.
- [4] J. Jachymski and I. Jóźwik, On Kirk's asymptotic contractions, *J. Math. Anal. Appl.* **300** (2004), no. 1, 147–159.
- [5] W. A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl. 277 (2003), no. 2, 645–650.
- [6] S. Willard, General Topology, Addison-Wesley Publishing Co., Mass.-London-Don Mills, Ont., 1970.

Aris Aghanians

Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran

Email: a.aghanians@dena.kntu.ac.ir

Kamal Fallahi

Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran

Email: k_fallahi@dena.kntu.ac.ir

Kourosh Nourouzi

Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran

Email: nourouzi@kntu.ac.ir