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Abstract. The purpose of this paper is to establish some cou-
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mon fixed points. The results presented in the paper generalize and
extend several well-known results in the literature.
Keywords: Coupled coincidence point, ordered sets, coupled fixed
point, mixed monotone property.
MSC(2010): Primary: 46N40; Secondary: 47H10, 54H25, 46T99.

1. Introduction and preliminaries

The Banach contraction mapping principle and its applications can
be given as a pivotal example to support the conclusion that fixed point
theory is crucial to nonlinear analysis, which is frequently used not only
in many fundamental fields of mathematics, but also in Economics, Com-
puter Science, and many others. Hence, it is very sensible to investigate
generalizations of the Banach’s principle to better equip the quantitative
scientists working in these areas to tackle their problems.

Currently there exist considerable number of generalizations of the
Banach contraction principle in the literature. For instance, Ran and
Reurings [18] extended the Banach contraction principle in the context
of partially ordered sets with some applications to linear and nonlinear
matrix equations. Then Nieto and Rodŕiguez-López [17] extended the
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result of Ran and Reurings and applied their main theorems to obtain
a unique solution to a first order ordinary differential equation with
periodic boundary conditions. As a continuation of the work of these
mathematicians, Guo and Lakshmikantham [11] introduced the notion
of coupled fixed point. Later, Gnana-Bhaskar and Lakshmikantham [6]
suggested the concept of mixed monotone mappings and obtained some
coupled fixed point results for these mappings. Also, they applied their
results to certain first order differential equation with periodic boundary
conditions.

Recently, many researchers have obtained further fixed point, common
fixed point, coupled fixed point and coupled common fixed point results
in metric spaces and partially ordered metric spaces (see [1]-[20]). In
this paper, we are particularly interested in establishing some coupled
coincidence point results in partially ordered metric spaces for mappings
having the mixed g-monotone property. Additionally, we aim to apply
our result on integral equations to get the existence and uniqueness of
coupled common fixed points. First, we recall some basic definitions and
notations:

Definition 1.1. (See [6]) An element (x, y) ∈ X×X is called a coupled
fixed point of a mapping F : X×X → X if F (x, y) = x, and F (y, x) = y.

Definition 1.2. (See [15]) An element (x, y) ∈ X×X is called a coupled
coincidence point of mappings F : X × X → X and g : X → X if
F (x, y) = gx, and F (y, x) = gy.

Note that if g is the identity mapping in Definition 1.2, then (x, y) ∈
X ×X is called a coupled fixed point.

Definition 1.3. Let (X, d) be a metric space and F : X ×X → X and
g : X → X be two mappings. Then, F and g are said to commute if
F (gx, gy) = g(F (x, y)) for all x, y ∈ X.

Definition 1.4. (See [6]) Let (X,⪯) be a partially ordered set and F :
X×X → X be a mapping. Then F is said to be non-decreasing if x ⪯ y
implies F (x) ⪯ F (y) and non-increasing if x ⪯ y implies F (x) ⪰ F (y)
for every x, y ∈ X.

Definition 1.5. (See [15]) Let (X,⪯) be a partially ordered set and
F : X × X → X and g : X → X be two mappings. The mapping
F is said to be g-non-decreasing if gx ⪯ gy implies F (x) ⪯ F (y) and
g-non-increasing if gx ⪯ gy implies F (x) ⪰ F (y) for every x, y ∈ X.
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Notice that if g is the identity map in the definition above, then
Definition 1.5 reduces to Definition 1.4.

Definition 1.6. (See [6]) Let (X,⪯) be a partially ordered set and
F : X × X → X be a mapping. The mapping F is said to have the
mixed monotone property if F (x, y) is monotone non-decreasing in x
and monotone non-increasing in y, that is, for any x, y ∈ X,

x1, x2 ∈ X,x1 ⪯ x2 ⇒ F (x1, y) ⪯ F (x2, y),

and

y1, y2 ∈ X, y1 ⪯ y2 ⇒ F (x, y1) ⪰ F (x, y2).

Definition 1.7. (See [15]) Let (X,⪯) be a partially ordered set and
F : X × X → X and g : X → X be two mappings. The mapping F
is said to have the mixed g-monotone property if F (x, y) is monotone
g-non-decreasing in x and monotone g-non-increasing in y, that is, for
any x, y ∈ X,

x1, x2 ∈ X, gx1 ⪯ gx2 ⇒ F (x1, y) ⪯ F (x2, y),

and

y1, y2 ∈ X, gy1 ⪯ gy2 ⇒ F (x, y1) ⪰ F (x, y2).

Similar to the remarks above, if g is the identity mapping in Definition
1.7, then the mapping F is said to have the mixed monotone property.

2. Main results

In this section, we aim to prove some coupled common fixed point
theorems in the context of ordered metric spaces. First, we will give the
following definition that we shall need in our results:

Definition 2.1. Let Θ denote the class of functions θ : [0,∞)×[0,∞) →
[0, 1) which satisfy the statement

θ(tn, sn) → 1 implies tn, sn → 0

for any sequences {tn} and {sn} of positive real numbers.

As examples, consider θ2(s, t) =
ln(1 + ks+ lt)

ks+ lt
, for all (s, t) ∈ [0,∞)×

[0,∞)− {(0, 0)}, θ2(0, 0) ∈ [0, 1), where k, l > 0, and θ3(s, t)

=
ln(1 + max{s, t}

max{s, t}
, for all (s, t) ∈ [0,∞) × [0,∞) − {(0, 0)}, θ3(0, 0) ∈

[0, 1). Both θ2 and θ3 are in Θ. For more examples see [16].
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Remark 2.2. The condition

θ(tn, sn) → 1 implies (tn, sn) → (0, 0) (1)

is equivalent to

(tn, sn) ↛ (0, 0) implies θ(tn, sn) ↛ 1 (2)

Every constant function satisfies the condition (2). So, constant func-
tions are in Θ. That is, θ1 ∈ Θ where θ1(s, t) = k, for all (s, t) ∈
[0,∞)× [0,∞), for k ∈ [0, 1).

Our main theorem is stated as follows:

Theorem 2.3. Let (X,⪯) be a partially ordered set and (X, d) be a
metric space. Suppose that F : X × X → X and g : X → X are
two mappings such that F has the mixed g-monotone property on X.
Assume that there exist two elements x0, y0 ∈ X with g(x0) ⪯ F (x0, y0)
and g(y0) ⪰ F (y0, x0). Suppose also that there exists θ ∈ Θ such that
(2.1)
d(F (x, y), F (u, v)) +d(F (y, x), F (v, u))

≤ θ(d(gx, gu), d(gy, gv))(d(gx, gu) + d(gy, gv))

for all x, y, u, v ∈ X with gx ⪰ gu and gy ⪯ gv. Further suppose that
F (X×X) ⊆ g(X) and g(X) is a complete subspace of X. Also, assume
that X has the following properties:

(i) if {g(xn)} ⊂ X is a non-decreasing sequence with gxn → gx in
g(X), then gxn ⪯ gx, for every n;

(ii) if {g(yn)} ⊂ X is a non-increasing sequence with gyn → gy in
g(X), then gyn ⪰ gy, for every n.

Then there exist x, y ∈ X such that F (x, y) = g(x) and gy = F (y, x),
that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Proof. Let x0, y0 be two elements in X such that gx0 ⪯ F (x0, y0) and
gy0 ⪰ F (y0, x0). Since F (X ×X) ⊆ g(X), we can construct sequences
{xn} and {yn} in X such that

(2.2) gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn), ∀n ≥ 0.

We claim that for all n ≥ 0,

(2.3) gxn ⪯ gxn+1,

and

(2.4) gyn ⪰ gyn+1.
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We shall use the mathematical induction. Let n = 0. Since gx0 ⪯
F (x0, y0) and gy0 ⪰ F (y0, x0), in the view of the facts gx1 = F (x0, y0)
and gy1 = F (y0, x0), we have gx0 ⪯ gx1 and gy0 ⪰ gy1, that is, (2.3)
and (2.4) hold for n = 0. Suppose that (2.3) and (2.4) hold for some
n > 0. As F has the mixed g-monotone property and gxn ⪯ gxn+1 and
gyn ⪰ gyn+1, from (2.2), we get

(2.5) gxn+1 = F (xn, yn) ⪯ F (xn+1, yn) ⪯ F (xn+1, yn+1) = gxn+2,

and

(2.6) gyn+1 = F (yn, xn) ⪰ F (yn+1, xn) ⪰ F (yn+1, xn+1) = gyn+2.

Now from (2.5) and (2.6), we obtain that gxn+1 ⪯ gxn+2 and gyn+1 ⪰
gyn+2. Thus by the mathematical induction, we conclude that (2.3) and
(2.4) hold for all n ≥ 0. Therefore

(2.7) gx0 ⪯ gx1 ⪯ gx2 ⪯ . . . ⪯ gxn ⪯ gxn+1 ⪯ . . . ,

and

(2.8) gy0 ⪰ gy1 ⪰ gy2 ⪰ . . . ⪰ gyn ⪰ gyn+1 ⪰ . . . .

Assume that there is some r ∈ N such that d(gxr, gxr−1)+d(gyr, gyr−1)
= 0, that is, gxr = gxr−1 and gyr = gyr−1. Then gxr−1 = F (xr−1, yr−1)
and gyr−1 = F (yr−1, xr−1), and hence we get the result.

For simplicity, we let tn+1 := d(gxn+1, gxn) + d(gyn+1, gyn) and also
θn = θ(d(gxn, gxn−1), d(gyn, gyn−1)). Now, we assume that
tn = d(gxn, gxn−1)+d(gyn, gyn−1) ̸= 0 for all n. Since gxn ⪰ gxn−1 and
gyn ⪯ gyn−1, from (2.1) and (2.2), we have
(2.9)
tn+1 = d(gxn+1, gxn) +d(gyn+1, gyn) = d(F (xn, yn), F (xn−1, yn−1))

+d(F (yn, xn), F (yn−1, xn−1))
≤ θn(d(gxn−1, gxn) + d(gyn−1, gyn)),
≤ θn · tn

which implies that tn+1 < tn. It follows that the sequence {tn} is mono-
tone decreasing. Therefore, there is some t ≥ 0 such that limn→∞ tn = t.

Now, we shall show that t = 0. Assume to the contrary that t > 0,
then from (2.9), we have

d(gxn+1, gxn) + d(gyn+1, gyn)

d(gxn−1, gxn) + d(gyn−1, gyn)
≤ θn < 1,

which yields that limn→∞ θn = 1.
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This implies that d(gxn−1, gxn) → 0 and d(gyn−1, gyn) → 0 (since
θ ∈ Θ) or d(gxn+1, gxn) + d(gyn+1, gyn) → 0, which is a contradiction.
Therefore t = 0, that is,

(2.10) lim
n→∞

tn = lim
n→∞

[d(gxn+1, gxn) + d(gyn+1, gyn)] = 0.

Now, we shall prove that {gxn} and {gyn} are Cauchy sequences. On
the contrary, assume that at least one of {gxn} or {gyn} is not a Cauchy
sequence. Then there exists an ϵ > 0 for which we can find subsequences
{gxm(k)} and {gxn(k)} of {gxn} and {gym(k)} and {gyn(k)} of {gyn} with
n(k) > m(k) > k such that for every k,

(2.11) d(gxm(k), gxn(k)) + d(gym(k), gyn(k)) ≥ ϵ.

Furthermore, corresponding to m(k), we can choose n(k) in such a way
that it is the smallest integer with n(k) > m(k) ≥ k and satisfies (2.11).
Then we get

(2.12) d(gxn(k)−1, gxm(k)) + d(gyn(k)−1, gym(k)) < ϵ.

Using (2.11) and (2.12), we have

ϵ ≤ rk := d(gxn(k), gxm(k)) + d(gyn(k), gym(k))

≤ d(gxn(k), gxn(k)−1) + d(gxn(k)−1, gxm(k))

+d(gyn(k), gyn(k)−1) + d(gyn(k)−1, gym(k))

< ϵ+ tn(k).

On letting k → ∞ and using (2.10), we obtain

(2.13) lim rk = lim[d(gxm(k), gxn(k)) + d(gym(k), gyn(k))] = ϵ.

Also, by the triangle inequality, we have

rk = d(gxn(k), gxm(k)) + d(gyn(k), gym(k))

≤ d(gxn(k), gxn(k)+1) + d(gxn(k)+1, gxm(k)+1) + d(gxm(k)+1, gxm(k))

+d(gyn(k), gyn(k)+1) + d(gyn(k)+1, gym(k)+1) + d(gym(k)+1, gym(k))

= tn(k) + tm(k) + d(gxn(k)+1, gxm(k)+1) + d(gyn(k)+1, gxm(k)+1).

Since n(k) > m(k), gxn(k) ⪰ gxm(k) and gyn(k) ⪯ gym(k), from (2.1) and
(2.2), we derive

d(gxn(k)+1,gxm(k)+1) + d(gyn(k)+1,gxm(k)+1)=d(F (xn(k),yn(k)),F (xm(k),ym(k)))

≤ θ(d(gxn(k),gxm(k)),d(gyn(k),gym(k)))

(d(gxn(k),gxm(k))+d(gyn(k),gym(k)))

= θ(d(gxn(k),gxm(k)),d(gyn(k),gym(k)))rk.

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

205 Chandok, Karapınar and Khan

Therefore, we find
rk ≤ tn(k)+ tm(k)+θ(d(gxn(k), gxm(k)), d(gyn(k), gym(k)))rk. This implies
that

rk − tn(k) − tm(k)

rk
≤ θ(d(gxn(k), gxm(k)), d(gyn(k), gym(k))) < 1.

Letting k → ∞, we get θ(d(gxn(k), gxm(k)), d(gyn(k), gym(k))) = 1. Since
θ ∈ Θ, we conclude

lim d(gxn(k), gxm(k)) = lim d(gyn(k), gym(k)) = 0,

a contradiction. This implies that {gxn} and {gyn} are Cauchy se-
quences in g(X). Since g(X) is a complete subspace of X, there exists
(x, y) ∈ X × X such that gxn → gx and gyn → gy. By the facts that
{gxn} is a non-decreasing sequence with gxn → gx and {gyn} is a non-
increasing sequence with gyn → gy, it follows by the assumption of the
theorem that gxn ⪯ gx and gyn ⪰ gy for all n. As a result, we derive
the following inequality

d(F (x,y),gx)+d(F (y,x),gy) ≤d(F (x,y),gxn+1)+d(gxn+1,gx)

+d(F (y,x),gyn+1)+d(gyn+1,gy)

=d(gxn+1,gx)+d(gyn+1,gy)+d(F (x,y),F (xn,yn))

+d(F (y,x),F (yn,xn))

≤d(gxn+1,gx)+d(gyn+1,gy)

+θ(d(gx,gxn),d(gy,gyn))(d(gx,gxn)+d(gy,gyn)).

Taking the limit as n→ ∞, in the inequality above, we get d(F (x, y), gx)+
d(F (y, x), gy) = 0. Hence, we find gx = F (x, y) and gy = F (y, x), which
proves that F and g have a coupled coincidence point. □
Remark 2.4. Theorem 2.3 is a generalization of Theorem 2.1 in [16].

Theorem 2.5. Let (X,⪯) be a partially ordered set and (X, d) be a
complete metric space. Let F : X × X → X and g : X → X are
two mappings such that F has the mixed g-monotone property on X.
Assume that there exist two elements x0, y0 ∈ X with g(x0) ⪯ F (x0, y0)
and g(y0) ⪰ F (y0, x0). Suppose also that there exists a θ ∈ Θ such that
the inequality in (2.1) is satisfied for all x, y, u, v ∈ X with gx ⪰ gu and
gy ⪯ gv. Suppose further that g is a continuous, non-decreasing map
which commutes with F such that F (X ×X) ⊆ g(X). If either

a) F is continuous or
b) X has the following properties:
(i) if a sequence {g(xn)} ⊂ X is a non-decreasing sequence with

gxn → gx in g(X), then gxn ⪯ gx, for every n;
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(ii) if a sequence {g(yn)} ⊂ X is a non-increasing sequence with
gyn → gy in g(X), then gyn ⪰ gy, for every n,

then there exist x, y ∈ X such that F (x, y) = g(x) and gy = F (y, x);
that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Proof. Following the proof of Theorem 2.3, we will get two Cauchy se-
quences {gxn} and {gyn} in X such that {gxn} is a non-decreasing
sequence in X and {gyn} is a non-increasing sequence in X. Since X is
a complete metric space, there is (x, y) ∈ X×X such that gxn → x and
gyn → y. Since g is continuous, we get g(gxn) → gx and g(gyn) → gy.

Firstly, suppose that F is continuous. Then we know that F (gxn, gyn)
→ F (x, y) and F (gyn, gxn) → F (y, x). As, F commutes with g, we
have F (gxn, gyn) = gF (xn, yn) = g(gxn+1) → gx and F (gyn, gxn) =
gF (yn, xn) = g(gyn+1) → gy. By the uniqueness of limit, we get gx =
F (x, y) and gy = F (y, x).

Secondly, suppose that (b) holds. Since {gxn} is a non-decreasing
sequence with gxn → x and {gyn} is a non-increasing sequence with
gyn → y, and g is a non-decreasing function, we find g(gxn) ⪯ gx and
g(gyn) ⪰ gy hold for all n ∈ N. Hence by (2.1), we have

d(g(gxn+1), F (x, y)) + d(g(gyn+1), F (y, x)) = d(F (gxn, gyn), F (x, y))

+d(F (gyn, gxn)F (y, x))

≤ θ(d(g(gxn), gx), d(g(gyn), gy))

(d(g(gxn), gx) + d(g(gyn), gy)).

Taking the limit as n→ ∞, we get d(gx+F (x, y)) + d(gy, F (y, x)) = 0.
In other words, we obtain gx = F (x, y) and gy = F (y, x). Thus F and
g have a coupled coincidence point. □

The following example illustrates that our result is more general than
the main result of Lakshmikantham- Ćirić [15].

Example 2.6. Let X = [0,∞) and d(x, y) = |x− y|.

Let F : X ×X → X be defined as F (x, y) =

{
3x2−7y2

12 if x ≥ y
0 if x < y

for x, y ∈ X
and
g : X → X be defined as g(x) = x2.
Then the operator F has strict mixed monotone property and sat-

isfies the condition of Theorem 2.1 in [15]. But the main result of

Lakshmikantham-Ćirić [15] is not applicable.

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

207 Chandok, Karapınar and Khan

Note that,

(2.14) [d(gx, gu) + d(gy, gv)] = [|x2 − u2|+ |y2 − v2|]

(2.15)

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) =

∣∣∣∣3x2 − 7y2

12
− 3u2 − 7v2

12

∣∣∣∣ .
for x, y, u, v ∈ X with x ≤ u, y ≥ v.

On the other hand, we derive that
(2.16)

d(F (x, y), F (u, v)) =

∣∣∣∣x2 − 7y2

12
− u2 − 7v2

12

∣∣∣∣ = ∣∣∣∣7v2 − 7y2

12

∣∣∣∣ = 7

12
|v2−y2|

where x = u and y ≤ v. By combining (2.15) and (2.16), we get

7

12
|v2 − y2| ≤ k

1

2
(|y2 − v2|)

which is a contradiction. (Since k is less than 1.)
But, F satisfied Theorem 2.3. Indeed, we have

(2.17) [d(x, u) + d(y, v)] = (|x2 − u2|+ |y2 − v2|).

and also

(2.18)

∣∣∣∣x2 − 7y2

12
− u2 − 7v2

12

∣∣∣∣ ≤ 1

12
|x2−u2|+ 7

12
|v2−y2|, x ≥ u, y ≤ v

(2.19)∣∣∣∣7x2 − y2

12
− 7u2 − v2

12

∣∣∣∣ ≤ 1

12
|v2 − y2|+ 7

12
|x2 − u2|, x ≥ u, y ≤ v.

From (2.18) and (2.19), we obtain that

d(F (x,y),F (u,v))+d(F (y,x),F (v,u)) =

(∣∣∣∣x2−7y2

12
−u2−7v2

12

∣∣∣∣+∣∣∣∣ 7x2−y2

12
− 7u2−v2

12

∣∣∣∣)

≤ 8
12(|x

2−u2|+|y2−v2|).

The claim follows by choosing θ(s, t) = k = 2
3 < 1. Notice that (0, 0) is

the coupled fixed point of F .

Corollary 2.7. Let (X,⪯) be a partially ordered set and (X, d) be a
complete metric space. Suppose that F : X × X → X and g : X → X
are two mappings such that F has the mixed g-monotone property on X.
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Assume that there exists two elements x0, y0 ∈ X with g(x0) ⪯ F (x0, y0)
and g(y0) ⪰ F (y0, x0). Suppose also that there exists a ζ ∈ Θ such that
(2.20)

d(F (x, y), F (u, v)) ≤ 1

2
ζ(d(gx, gu), d(gy, gv))(d(gx, gu) + d(gy, gv))

for all x, y, u, v ∈ X with gx ⪰ gu and gy ⪯ gv. Furthermore, suppose
that g is continuous non-decreasing map which commutes with F such
that F (X ×X) ⊆ g(X). If either

a) F is continuous or
b) X has the following properties:
(i) if a sequence {g(xn)} ⊂ X is a non-decreasing sequence with

gxn → gx in g(X), then gxn ⪯ gx, for every n;
(ii) if a sequence {g(yn)} ⊂ X is a non-increasing sequence with

gyn → gy in g(X), then gyn ⪰ gy, for every n,
then there exist x, y ∈ X such that F (x, y) = g(x) and gy = F (y, x);

that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Proof. For x, y, u, v ∈ X with gx ⪰ gu and gy ⪯ gv, from (2.20), we
have

d(F (x, y), F (u, v)) ≤ 1

2
ζ(d(gx, gu), d(gy, gv))(d(gx, gu) + d(gy, gv)),

and

d(F (y, x), F (v, u)) = d(F (v, u), F (y, x))

≤ 1

2
ζ(d(gv, gy), d(gu, gx))(d(gv, gy) + d(gu, gx))

=
1

2
ζ(d(gv, gy), d(gu, gx))(d(gx, gu) + d(gy, gv)).

Therefore, we derive the inequality

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

≤ 1

2
[ζ(d(gv, gy), d(gu, gx)) + ζ(d(gx, gu), d(gy, gv))](d(gx, gu)

+d(gy, gv))

= θ(d(gx, gu), d(gy, gv))(d(gx, gu) + d(gy, gv)),

where θ(t1, t2) =
1
2 [ζ(t1, t2)+ ζ(t2, t1)] for all t1, t2 ∈ [0,∞). It is easy to

verify that θ ∈ Θ. Now, using the above theorem, we get the result. □

For the rest of the paper, we will need the definition below:
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Definition 2.8. Let Ω denote the class of functions ψ : [0,∞) → [0, 1)
which satisfy the following condition: for any sequence {tn} of the posi-
tive real numbers, ψ(tn) → 1 implies tn → 0.

Corollary 2.9. Let (X,⪯) be a partially ordered set and (X, d) be a
complete metric space. Suppose that F : X × X → X and g : X → X
are two mappings such that F has the mixed g-monotone property on X.
Assume that there exist two elements x0, y0 ∈ X with g(x0) ⪯ F (x0, y0)
and g(y0) ⪰ F (y0, x0). Suppose that there exists an ω ∈ Ω such that
(2.21)
d(F (x, y), F (u, v)) +d(F (y, x), F (v, u))

≤ ω(d(gx, gu) + d(gy, gv))(d(gx, gu) + d(gy, gv)),

for all x, y, u, v ∈ X with gx ⪰ gu and gy ⪯ gv. Furthermore, suppose
that g is a continuous non-decreasing map which commutes with F such
that F (X ×X) ⊆ g(X). If either

a) F is continuous or
b) X has the following properties:
(i) if a sequence {g(xn)} ⊂ X is a non-decreasing sequence with

gxn → gx in g(X), then gxn ⪯ gx, for every n;
(ii) if a sequence {g(yn)} ⊂ X is a non-increasing sequence with

gyn → gy in g(X), then gyn ⪰ gy, for every n,
then there exist x, y ∈ X such that F (x, y) = g(x) and gy = F (y, x);

that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Proof. Taking θ(t1, t2) = ω(t1 + t2) for all t1, t2 ∈ [0,∞) in the theorem
above, we get the result. □

If we let ω(t) = k, where k ∈ [0, 1) for all t ∈ [0,∞) in the above
corollary, we get the following result.

Corollary 2.10. Let (X,⪯) be a partially ordered set and (X, d) be a
complete metric space. Suppose that F : X × X → X and g : X → X
are two mappings such that F has the mixed g-monotone property on X.
Assume that there exist two elements x0, y0 ∈ X with g(x0) ⪯ F (x0, y0)
and g(y0) ⪰ F (y0, x0). Suppose that there exists k ∈ [0, 1) such that
(2.22)
d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ k(d(gx, gu) + d(gy, gv)),

for all x, y, u, v ∈ X with gx ⪰ gu and gy ⪯ gv. Furthermore suppose
that g is a continuous non-decreasing map which commutes with F such
that F (X ×X) ⊆ g(X). If either

a) F is continuous or
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b) X has the following properties:
(i) if a sequence {g(xn)} ⊂ X is a non-decreasing sequence with

gxn → gx in g(X), then gxn ⪯ gx, for every n;
(ii) if a sequence {g(yn)} ⊂ X is a non-increasing sequence with

gyn → gy in g(X), then gyn ⪰ gy, for every n,
then there exist x, y ∈ X such that F (x, y) = g(x) and gy = F (y, x);

that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Corollary 2.11. Let (X,⪯) be a partially ordered set and (X, d) be a
complete metric space. Suppose that F : X × X → X and g : X → X
are two mappings such that F has the mixed g-monotone property on X.
Assume that there exist two elements x0, y0 ∈ X with g(x0) ⪯ F (x0, y0)
and g(y0) ⪰ F (y0, x0). Suppose that there exists k ∈ [0, 1) such that

(2.23) d(F (x, y), F (u, v)) ≤ k

2
(d(gx, gu) + d(gy, gv)),

for all x, y, u, v ∈ X with gx ⪰ gu and gy ⪯ gv. Furthermore suppose
that g is a continuous non-decreasing map which commutes with F such
that F (X ×X) ⊆ g(X). If either

a) F is continuous or
b) X has the following properties:
(i) if a sequence {g(xn)} ⊂ X is a non-decreasing sequence with

gxn → gx in g(X), then gxn ⪯ gx, for every n;
(ii) if a sequence {g(yn)} ⊂ X is a non-increasing sequence with

gyn → gy in g(X), then gyn ⪰ gy, for every n,
then there exist x, y ∈ X such that F (x, y) = g(x) and gy = F (y, x);

that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Now, we shall prove the existence and uniqueness of a coupled com-
mon fixed point. Note that, if (X,⪯) is a partially ordered set, then we
endow the product space X×X with the following partial order relation:

for (x, y), (u, v) ∈ X ×X, (u, v) ⪯ (x, y) ⇔ x ⪯ u, y ⪰ v.

Theorem 2.12. In addition to the hypotheses of Theorem 2.5, sup-
pose that for every (x, y), (z, t) ∈ X × X, there exists (u, v) ∈ X ×
X such that (F (u, v), F (v, u)) is comparable to (F (x, y), F (y, x)) and
(F (z, t), F (t, z)). Then F and g have a unique coupled common fixed
point; that is, there exists a unique (x, y) ∈ X ×X such that x = gx =
F (x, y) and y = gy = F (y, x).

Proof. From Theorem 2.5, the set of coupled coincidence points of F and
g is non-empty. Suppose that (x, y) and (z, t) are coupled coincidence
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points of F and g; that is, gx = F (x, y), gy = F (y, x), gz = F (z, t) and
gt = F (t, z). We shall show that gx = gz and gy = gt. By the assump-
tion, there exists (u, v) ∈ X ×X such that (F (u, v), F (v, u)) is compa-
rable with (F (x, y), F (y, x)) and (F (z, t), F (t, z)). Put u0 = u, v0 = v
and choose u1, v1 ∈ X so that gu1 = F (u0, v0) and gv1 = F (v0, u0).
Then similarly as in the proof of Theorem 2.3, we can inductively define
sequences {gun}, {gvn} as gun+1 = F (un, vn) and gvn+1 = F (vn, un)
for all n. Furthermore, set x0 = x, y0 = y, z0 = z, t0 = t and in the
same way define the sequences {gxn}, {gyn}, and {gzn}, {gtn}. Then
as in Theorem 2.3, we can show that gxn → gx = F (x, y), gyn →
gy = F (y, x), gzn → gz = F (z, t), gtn → gt = F (t, z), for all n ≥ 1.
Since we have the fact that (F (x, y), F (y, x)) = (gx1, gy1) = (gx, gy)
and (F (u, v), F (v, u)) = (gu1, gv1) are comparable, we derive gx ⪰ gu1
and gy ⪯ gv1. Now, we shall show that (gx, gy) and (gun, gvn) are com-
parable; that is, gx ⪰ gun and gy ⪯ gvn for all n. Suppose that it holds
for some n ≥ 0. Then by the mixed g-monotone property of F , we have
gun+1 = F (un, vn) ⪯ F (x, y) = gx and gvn+1 = F (vn, un) ⪰ F (y, x) =
gy. Hence gx ⪰ gun and gy ⪯ gvn hold for all n. Thus from (2.1), we
have

d(gx,gun+1)+d(gy,gvn+1) = d(F (x,y),F (un,vn))+d(F (y,x),F (vn,un))

≤ θ(d(gx,gun),d(gy,gvn))(d(gx,gun)+d(gy,gvn))

< d(gx,gun)+d(gy,gvn)(2.24)

Consequently, the sequence {δn := d(gx, gun)+d(gy, gvn)} is non-negative
and decreasing and, therefore, lim δn = δ, for some δ ≥ 0. We shall show
that δ = 0. On the contrary, assume that δ > 0. By passing to the subse-
quences, if necessary, we may assume that lim θ(d(gx, gun), d(gy, gvn)) =
λ exists (since 0 ≤ θ(d(gx, gun), d(gy, gvn)) < 1). From (2.24), taking
the limit as n→ ∞, we obtain δ ≤ λδ and so λ = 1. Since θ ∈ Θ, we get
lim d(gx, gun) = 0 = lim d(gy, gvn); that is, lim d(gx, gun)+d(gy, gvn) =
0, which is contradiction. Thus, lim d(gx, gun) = 0 = lim d(gy, gvn).
Similarly, we can prove that lim d(gz, gun) = 0 = lim d(gt, gvn). Finally,
we have d(gx, gz) ≤ d(gx, gun)+d(gun, gz) and d(gy, gt) ≤ d(gy, gvn)+
d(gvn, gt). Taking the limit as n → ∞ in these inequalities, we get
d(gx, gz) = 0 = d(gy, gt); that is gx = gz and gy = gt. Since gx =
F (x, y) and gy = F (y, x), by the commutativity of F and g, we have
(2.25)
g(g(x)) = g(F (x, y)) = F (gx, gy), and g(gy) = g(F (y, x)) = F (gy, gx).
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Denote gx = p and gy = q. Then we obtain gp = F (p, q) and gq =
F (q, p). Thus (p, q) is a coupled coincidence point. Then from (2.25),
with z = p and t = q, it follows that gp = gx and gq = gy; that is, gp = p
and gq = q. Hence p = gp = F (p, q) and q = gq = F (q, p). Therefore,
(p, q) is a coupled common fixed point of F and g. To prove the unique-
ness, assume that (r, s) is another coupled common fixed point. Then
by (2.25), we have r = gr = gp = p and s = gs = gq = q. Hence we get
the result.

□
Theorem 2.13. In addition to the hypotheses of Theorem 2.5, if we
assume that gx0 and gy0 are comparable, then F and g have a coupled
coincidence point; that is, there exists a (x, y) ∈ X ×X such that gx =
F (x, y) = F (y, x) = gy.

Proof. By Theorem 2.3, we can construct two sequences {gxn} and
{gyn} in X such that gxn → gx and gyn → gy, where (x, y) is a co-
incidence point of F and g. Suppose that gx0 ⪯ gy0. We shall show
that gxn ⪯ gyn, where gxn = F (xn−1, yn−1), gyn = F (yn−1, xn−1), for
all n. Suppose it holds for some n ≥ 0. Then by mixed g-monotone
property of F , we have gxn+1 = F (xn, yn) ⪯ F (yn, xn) = gyn+1. From
2.1, we have

d(F (yn, xn), F (xn, yn)) + d(F (xn, yn), F (yn, xn))
≤ θ(d(gyn, gxn), d(gxn, gyn))(d(gyn, gxn) + d(gxn, gyn))

or

d(F (yn, xn), F (xn, yn)) ≤ θ(d(gyn, gxn), d(gxn, gyn))d(gyn, gxn).

By the triangle inequality, we have
(2.26)
d(gy, gx) ≤ d(gy, gyn+1) + d(gyn+1, gxn+1) + d(gxn+1, gx)

= d(F (yn, xn), F (xn, yn)) + d(gy, gyn+1) + d(gxn+1, gx)
≤ θ(d(gyn, gxn), d(gxn, gyn))d(gyn, gxn)
+d(gy, gyn+1) + d(gxn+1, gx).

Assume that d(gy, gx) > 0. Set αn = d(gyn, gxn). By passing to
the subsequences, if necessary, we may assume that lim θ(αn, αn) = α
exists. Letting n → ∞ in the above inequality, we obtain d(gy, gx) ≤
αd(gy, gx) or α ≥ 1. Hence we get α = 1. Since θ ∈ Θ, we find
d(gy, gx) = lim d(gyn, gxn) = 0, which is a contradiction. Therefore
d(gy, gx) = 0. Hence F (x, y) = gx = gy = F (y, x).

Similar arguments can be used if gy0 ⪯ gx0. □

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

213 Chandok, Karapınar and Khan

Other consequences of our results for the mappings involving contrac-
tions of integral type are the followings: Denote by Λ the set of functions
µ : [0,∞) → [0,∞) which satisfy the hypotheses below:

(h1) µ is a Lebesgue-integrable mapping on each compact of [0,∞);
(h2) for any ϵ > 0, we have

∫ ϵ
0 µ(t) > 0.

Corollary 2.14. Let (X,⪯) be a partially ordered set and (X, d) be a
metric space. Suppose that F : X × X → X and g : X → X are
two mappings such that F has the mixed g-monotone property on X.
Assume that there exist two elements x0, y0 ∈ X with g(x0) ⪯ F (x0, y0)
and g(y0) ⪰ F (y0, x0). Suppose that there exists a θ ∈ Θ such that∫ [d(F (x,y),F (u,v))+d(F (y,x),F (v,u))]

0 α(s)ds

≤ θ(d(gx, gu), d(gy, gv))
∫ [(d(gx,gu)+d(gy,gv))]
0 β(s)ds

for all x, y, u, v ∈ X with gx ⪰ gu and gy ⪯ gv, where α, β ∈ Λ.
Furthermore suppose that g(X) is a complete subspace of X with F (X×
X) ⊆ g(X). Also, assume that X has the following properties:

(i) if a sequence {g(xn)} ⊂ X is a non-decreasing sequence with
gxn → gx in g(X), then gxn ⪯ gx, for every n;

(ii) if a sequence {g(yn)} ⊂ X is a non-increasing sequence with
gyn → gy in g(X), then gyn ⪰ gy, for every n.

Then there exist x, y ∈ X such that F (x, y) = g(x) and gy = F (y, x);
that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Corollary 2.15. Let (X,⪯) be a partially ordered set and (X, d) be a
metric space. Suppose that F : X × X → X and g : X → X are
two mappings such that F has the mixed g-monotone property on X.
Assume that there exist two elements x0, y0 ∈ X with g(x0) ⪯ F (x0, y0)
and g(y0) ⪰ F (y0, x0). Suppose that there exists k ∈ [0, 1) such that∫ [d(F (x,y),F (u,v))+d(F (y,x),F (v,u))]

0
α(s)ds ≤ k

∫ [(d(gx,gu)+d(gy,gv))]

0
β(s)ds(2.27)

for all x, y, u, v ∈ X with gx ⪰ gu and gy ⪯ gv, where α, β ∈ Λ.
Furthermore suppose that g(X) is a complete subspace of X with F (X×
X) ⊆ g(X). Also, assume that X has the following properties:

(i) if a sequence {g(xn)} ⊂ X is a non-decreasing sequence with
gxn → gx in g(X), then gxn ⪯ gx, for every n;

(ii) if a sequence {g(yn)} ⊂ X is a non-increasing sequence with
gyn → gy in g(X), then gyn ⪰ gy, for every n.

Then there exist x, y ∈ X such that F (x, y) = g(x) and gy = F (y, x),
that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.
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