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1. Introduction

Comparison technique is a powerful tool in global analysis in differ-
ential geometry, and it has been well developed in Riemannian geome-
try. Volume, as the important geometric invariant, plays a key role in
comparison technique. Recently comparison technique has been devel-
oped for Finsler manifolds and the relationship between curvature and
topology of Finsler manifolds has also been investigated [2, 8–11, 15]. It
should be pointed out here that volume form is uniquely determined by
the given Riemannian metric, while there are different choices of vol-
ume forms for Finsler metrics. As the result, we usually need to control
the S-curvature in order to obtain volume comparison theorems as well
as results on curvature and topology. This additional assumption on
S-curvature has been removed by author recently by using the extreme
volume forms (the maximal and minimal volume forms) [14].
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In [14] we obtain some volume comparison theorems for extreme vol-
ume forms without any assumption on S-curvature and obtain some
applications. For further study on curvature and topology of Finsler
manifolds we need the relative volume comparison theorems. The main
purpose of the present paper is to establish some relative volume com-
parison theorems for extreme volume forms and then to investigate the
curvature and topology of Finsler manifolds further. Our results remove
the usual assumption on S-curvature that is needed in the literature.

2. Finsler geometry

Let (M,F ) be a Finsler n-manifold with Finsler metric F : TM →
[0,∞). Let (x, y) = (xi, yi) be local coordinates on TM , and π :
TM\0 → M the natural projection. Unlike in the Riemannian case,
most Finsler quantities are functions of TM rather than M . The fun-
damental tensor gij and the Cartan tensor Cijk are defined by

gij(x, y) :=
1

2

∂2F 2(x, y)

∂yi∂yj
, Cijk(x, y) :=

1

4

∂3F 2(x, y)

∂yi∂yj∂yk
.

Let Γi
jk(x, y) be the Chern connection coefficients. Then the first

Chern curvature tensor R i
j kl can be expressed by

R i
j kl =

δΓi
jl

δxk
−

δΓi
jk

δxl
+ Γi

ksΓ
s
jl − Γs

jkΓ
i
ls,

where δ
δxi := ∂

∂xi − ykΓj
ik

∂
∂yj

. Let Rijkl := gjsR
s
i kl, and write gy =

gij(x, y)dx
i ⊗ dxj ,Ry = Rijkl(x, y)dx

i ⊗ dxj ⊗ dxk ⊗ dxl. For a tangent
plane P ⊂ TxM , let

K(P, y) = K(y;u) :=
Ry(y, u, u, y)

gy(y, y)gy(u, u)− [gy(y, u)]2
,

where y, u ∈ P are tangent vectors such that P = span{y, u}. We call
K(P, y) the flag curvature of P with flag pole y. Let

Ric(y) =
∑
i

K(y; ei),

here e1, · · · , en is a gy-orthogonal basis for the corresponding tangent
space. We call Ric(y) the Ricci curvature of y.

Let V = vi∂/∂xi be a non-vanishing vector field on an open subset
U ⊂ M . One can introduce a Riemannian metric g̃ = gV and a linear
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connection ∇V (called Chern connection) on the tangent bundle over U
as follows:

∇V
∂

∂xi

∂

∂xj
:= Γk

ij(x, v)
∂

∂xk
.

From the torsion freeness and almost g-compatibility of Chern connec-
tion we have

(2.1) ∇V
XY −∇V

Y X = [X,Y ],

(2.2) X · gV (Y, Z) = gV (∇V
XY, Z) + gV (Y,∇V

XZ) + 2CV (∇V
XV, Y, Z),

here CV = Cijk(x, v)dx
i ⊗ dxj ⊗ dxk.

Given a Finsler manifold (M,F ), the dual Finsler metric F ∗ on M is
defined by

F ∗(ξx) := sup
Y ∈TxM\0

ξ(Y )

F (Y )
, ∀ξ ∈ T ∗M,

and the corresponding fundamental tensor is defined by

g∗kl(ξ) =
1

2

∂2F ∗2(ξ)

∂ξk∂ξl
.

The Legendre transformation l : TM → T ∗M is defined by

l(Y ) =

{
gY (Y, ·), Y ̸= 0
0, Y = 0.

It is well-known that for any x ∈ M , the Legendre transformation is
a smooth diffeomorphism from TxM\0 onto T ∗

xM\0, and it is norm-
preserving, namely, F (Y ) = F ∗(l(Y )), ∀Y ∈ TM . Consequently, gij(Y ) =
g∗ij(l(Y )).

Now let f : M → R be a smooth function on M . The gradient of f is
defined by ∇f = l−1(df). Thus we have

df(X) = g∇f (∇f,X), X ∈ TM.

Let U = {x ∈ M : ∇f |x ̸= 0}. We define the Hessian H(f) of f on U as
follows:

H(f)(X,Y ) := XY (f)−∇∇f
X Y (f), ∀X,Y ∈ TM |U .

It is known that H(f) is symmetric, and it can be rewritten as (see [15])

(2.3) H(f)(X,Y ) = g∇f (∇∇f
X ∇f, Y ).

It should be noted that the notion of Hessian defined here is different
from that in [8]. In that case H(f) is in fact defined by

H(f)(X,X) = X ·X · (f)−∇X
XX(f),
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and there is no definition for H(f)(X,Y ) if X ̸= Y . The advantage of
our definition is that H(f) is a symmetric bilinear form and we can treat
it by using the theory of symmetric matrix.

3. Volume form

A volume form dµ on Finsler manifold (M,F ) is nothing but a global
non-degenerate n-form on M . In local coordinates we can express dµ
as dµ = σ(x)dx1 ∧ · · · ∧ dxn. The frequently used volume forms in
Finsler geometry are so-called Busemann-Hausdorff volume form and
Holmes-Thompson volume form. In [14] we introduce the maximal and
minimal volume forms for Finsler manifolds which play the important
role in comparison technique in Finsler geometry. They are defined as
following. Let

dVmax = σmax(x)dx
1 ∧ · · · ∧ dxn

and

dVmin = σmin(x)dx
1 ∧ · · · ∧ dxn

with

σmax(x) := max
y∈TxM\0

√
det(gij(x, y)), σmin(x) := min

y∈TxM\0

√
det(gij(x, y)).

Then it is easy to check that the n-forms dVmax and dVmin as well
as the function ν := σmax

σmin
are well-defined on M . dVmax and dVmin

are called the maximal volume form and the minimal volume form of
(M,F ), respectively. Both maximal volume form and minimal volume
form are called extreme volume form, and we shall denote by dVext the
maximal or minimal volume form. The volume with respect to dVmax

(respectively dVmin) is called the maximal volume (respectively minimal
volume). Maximal volume and minimal volume are both called extreme
volume.

The uniformity function µ : M → R is defined by

µ(x) = max
y,z,u∈TxM\0

gy(u, u)

gz(u, u)
.

µF = maxx∈M µ(x) is called the uniformity constant [3]. It is clear that

µ−1F 2(u) ≤ gy(u, u) ≤ µF 2(u, u).

Similarly, the reversible function λ : M → R is defined by

λ(x) = max
y∈TxM\0

F (y)

F (−y)
.
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λF = maxx∈M λ(x) is called the reversibility of (M,F ) [7], and (M,F )
is called reversible if λF = 1. It is clear that λ(x)2 ≤ µ(x).

Proposition 3.1. Let (M,F ) be an n-dimensional Finsler manifold.
Then
(1) F is Riemannian ⇔ ν = 1 ⇔ µ = 1;

(2) ν ≤ µ
n
2 .

Proof. (1) is obvious, so we only prove (2). For fixed x ∈ M , let

y, z ∈ TxM\0 be two vectors so that σmax(x) =
√

det(gij(x, y)) and

σmin(x) =
√

det(gij(x, z)). Let e1, · · · , en be an gz-orthogonal basis
for TxM such that they are eigenvectors of (gij(x, y)) with eigenvalues
ρ1, · · · , ρn. Then

ρi = gy(ei, ei) ≤ µ(x)gz(ei, ei) = µ(x),

and consequently,

ν(x) =
√
ρ1ρ2 · · · ρn ≤ µ(x)

n
2 .

□

Remark 3.2. In [14] we wrongly write ν(x) = ρ1ρ2 · · · ρn and obtain
ν ≤ µn accordingly. Of course ν ≤ µn is correct but obviously not
optimal since µ(x) ≥ 1. As the result, the quantity Λn+1 in Theorems

7.1-7.3 of [14] can be improved into Λ
n
2
+1.

Fix x ∈ M , let Ix = {v ∈ TxM : F (v) = 1} be the indicatrix at x.
For v ∈ Ix, the cut-value c(v) is defined by

c(v) := sup{t > 0 : d(x, expx(tv)) = t}.

Then, we can define the tangential cut locus C(x) of x by C(x) :=
{c(v)v : c(v) < ∞, v ∈ Ix}, the cut locus C(x) of x by C(x) = expxC(x),
and the injectivity radius ix at x by ix = inf{c(v) : v ∈ Ix}, respectively.
It is known that C(x) has zero Hausdorff measure in M . Also, we set
Dx = {tv : 0 ≤ t < c(v), v ∈ Ix} and Dx = expxDx. It is known that
Dx is the largest domain, which is starlike with respect to the origin of
TxM for which expx restricted to that domain is a diffeomorphism, and
Dx = M\C(x).

In the following we consider the polar coordinates on D(x). For any
q ∈ D(x), the polar coordinates of q are defined by (r, θ) = (r(q), θ1(q),
· · · , θn−1(q)), where r(q) = F (v), θα(q) = θα(u), here v = exp−1

x (q)
and u = v/F (v). Then by the Gauss lemma (see [2], page 140), the unit
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radial coordinate vector T = d(expx)
(

∂
∂r

)
is gT -orthogonal to coordinate

vectors ∂α which is defined by

∂α|expx(ru) = d(expx)

(
∂

∂θα

)∣∣∣∣
expx(ru)

= d(expx)ru

(
r

∂

∂θα

)
= rd(expx)ru

(
∂

∂θα

)
for α = 1, · · · , n − 1, and consequently, T = ∇r. Consider the singular
Riemannian metric g̃ = g∇r on D(x), then it is clear that

g̃ = dr2 + g̃αβdθ
αdθβ, g̃αβ = g∇r(∂α, ∂β).

4. Relative volume comparison theorems

In order to study the volume we need the following result which can
be verified directly.

Lemma 4.1. Let f, g are two positive integrable functions of r. If f/g
is monotone increasing (respectively decreasing), then the function∫ r

0
f(t)dt∫ r

0
g(t)dt

is also monotone increasing (respectively decreasing).

Let Bp(R) be the forward geodesic ball ofM with radius R centered at
p, and dµ a volume form of (M,F ). By definition, Bp(R) = r−1([0, R)),
here r = d(p, ·) : M → R is the distance function from p. The volume
of Bp(R) with respect to dµ is defined by

vol(Bp(R)) =

∫
Bp(R)

dµ .

For r > 0, let Dp(r) ⊂ Ip be defined by

Dp(r) = {v ∈ Ip : rv ∈ Dp}.

It is easy to see that Dp(r1) ⊂ Dp(r2) for r1 > r2 and Dp(r) = Ip
for r < ip. Consider the Riemannian metric g̃ = g∇r on Ḃp(R) =
Bp(R) ∩ Dp\{p} as defined in §3. It is clear that the corresponding
volume form is dVg̃ = σ̃(r, θ)dr ∧ dθ1 ∧ · · · ∧ θn−1 := σ̃(r, θ)dr ∧ dθ, here
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σ̃(r, θ) =
√

det(g̃αβ). Since C(p) has zero Hausdorff measure in M , we
have

volg̃(Bp(R)) =

∫
Bp(R)

dVg̃ =

∫
Bp(R)∩Dp

dVg̃

(4.1) =

∫
exp−1

p (Bp(R))∩Dp

exp∗p(dVg̃) =

∫ R

0
dr

∫
Dp(r)

σ̃(r, θ)dθ.

Let

(4.2) sc(t) =


sin(

√
ct)√
c

, c > 0

t, c = 0
sinh(

√
−ct)√

−c
, c < 0

,

Vc,n(R) = vol(Sn−1(1))

∫ R

0
sc(t)

n−1dt.

The geometric meaning of Vc,n(R) is that it equals to vol(Bn
c (R)) when

R ≤ ic, here Bn
c (R) denotes the geodesic ball of radius R in space form

of constant c, and ic the corresponding injectivity radius. Now we are
ready to prove the following relative volume comparison theorem with
flag curvature bound.

Theorem 4.2. Let (M,F ) be a forward complete Finsler n-manifold
which satisfies K(V ;W ) ≤ c. Then

volext(Bp(r))

vol(Bn
c (r))

≤ max
x∈Bp(R)

µ(x)
n
2 · volext(Bp(R))

vol(Bn
c (R))

for any r < R ≤ ip, here volext denotes the extreme volume (i.e., the
maximal volume volmax or minimal volume volmin), and ip the injectivity
radius of p.

Proof. Recall that T = ∇r is a geodesic field, and

[T, ∂α] =

[
d(expp)

(
∂

∂r

)
, d(expp)

(
∂

∂θα

)]
= 0,

by (2.1)-(2.3) we have

∂g̃αβ
∂r

= T · gT (∂α, ∂β) = gT (∇T
T∂α, ∂β) + gT (∂α,∇T

T∂β)

= gT (∇T
∂αT, ∂β) + gT (∂α,∇T

∂β
T ) = 2H(r)(∂α, ∂β).
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Consequently,

(4.3)
∂

∂r
log σ̃ =

1

2
g̃αβ

∂g̃αβ
∂r

= trgTH(r).

Since K(V ;W ) ≤ c, by Hessian comparison theorem [15] it follows that

(4.4)
∂

∂r
log σ̃ ≥ (n− 1)ctc(r) =

d

dr
log

(
sc(r)

n−1
)
,

here sc is given by (4.2), and

ctc(r) =


√
c · cotan(

√
cr), c > 0

1
r , c = 0√
−c · cotanh(

√
−cr), c < 0

.

From (4.4) we see that the function∫
Ip

σ̃(r, θ)dθ

vol(Sn−1)sc(r)n−1

is monotone increasing about r(≤ ip), and thus by Lemma 4.1 and (4.1)
the function ∫ R

0

∫
Ip

σ̃(r, θ)drdθ

vol(Sn−1)

∫ R

0
sc(r)

n−1dr

=
volg̃(Bp(R))

vol(Bn
c (R))

is also monotone increasing for R ≤ ip. On the other hand, by Propo-
sition 3.1 it is clear that dVmin ≤ dVg̃ ≤ dVmax = ν(x) · dVmin ≤
µ(x)

n
2 · dVmin, and consequently,

volmin(Bp(r))

vol(Bn
c (r))

≤
volg̃(Bp(r))

vol(Bn
c (r))

≤
volg̃(Bp(R))

vol(Bn
c (R))

≤max
x∈Bp(R)

µ(x)
n
2 ·volmin(Bp(R))

vol(Bn
c (R))

holds for any r < R ≤ ip. Similarly,

volmax(Bp(r))

vol(Bn
c (r))

≤ max
x∈Bp(R)

µ(x)
n
2 · volmax(Bp(R))

vol(Bn
c (R))

for any r < R ≤ ip, and the theorem is proved. □

We also have the following relative volume comparison theorem with
Ricci curvature bound.
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Theorem 4.3. Let (M,F ) be a forward complete Finsler n-manifold
which satisfies RicM ≥ (n− 1)c. Then

volext(Bp(r))

vol(Bn
c (r))

≥ max
x∈Bp(R)

µ(x)−
n
2 · volext(Bp(R))

vol(Bn
c (R))

, ∀r < R.

Proof. First we note that from (4.3) and the proof of Theorem 5.3 of [15]
one has

∂

∂r
log σ̃ = trgTH(r) ≤ (n− 1)ctc(r) =

d

dr
log

(
sc(r)

n−1
)
,

namely, the function
σ̃(r, θ)

sc(r)n−1

is monotone decreasing for r where it is smooth. Noting that Dp(R) ⊂
Dp(r) for R > r > 0, we have for R > r > 0,∫

Dp(r)
σ̃(r, θ)dθ

sc(r)n−1
=

∫
Dp(r)

σ̃(r, θ)

sc(r)n−1
dθ ≥

∫
Dp(R)

σ̃(r, θ)

sc(r)n−1
dθ

≥
∫
Dp(R)

σ̃(R, θ)

sc(R)n−1
dθ =

∫
Dp(R)

σ̃(R, θ)dθ

sc(R)n−1
,

which together with (4.1) and Lemma 4.1 implies that

volg̃(Bp(R))

vol(Bn
c (R))

=

∫ R

0
dr

∫
Dp(r)

σ̃(r, θ)dθ

vol(Sn−1)

∫ R

0
sc(r)

n−1dr

is monotone decreasing for any R > 0. Now the theorem follows similarly
as Theorem 4.2. □

5. Gromov pre-compactness theorem

The notion of Hausdorff distance between metrics spaces was general-
ized by M. Gromov, and the corresponding pre-compactness theorem for
Riemannian manifolds was proved in [4]. Gromov pre-compactness prop-
erty has been generalized to Finsler manifolds by Shen [8] in reversible
case and by Shen and Zhao [10] in non-reversible case. To state our re-
sult let us first recall some notations related to Gromov pre-compactness,
for details one is referred to see [10]. As is known in [10], any Finsler
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manifold (M,F ) induces a general metric space (M,d). Let (Mδ, dδGH)
denote the collection of compact general metric space with δ-Gromov-
Hausdorff distance dδGH whose reversibilities are not large than δ < ∞,
and CapM (ϵ) be the maximal number of disjoint forward geodesic ball
of radius ϵ in M . Also, let (Mδ

∗, d
δ
GH) be the collection of proper pointed

general metric space whose reversibilities are not large than δ < ∞.

Lemma 5.1. [10] (1) Let C ⊂ (Mδ, dδGH) be a class satisfying the
following conditions:
(a) There is a constant D such that DiamM ≤ D for all M ∈ C.
(b) For each ϵ > 0 there exists N = N(ϵ) < ∞ such that CapM (ϵ) ≤
N(ϵ) for all M ∈ C.
Then C is pre-compact in the δ-Gromov-Hausdorff topology.
(2) A class C ⊂ (Mδ

∗, d
δ
GH) is pre-compact if for each r > 0 and ϵ > 0,

there exists a number N = N(r, ϵ) < ∞ such that for every Bx(r) ⊂
(M,x) ∈ C, one has Cap

Bx(r)
(ϵ) ≤ N(r, ϵ).

The following Gromov pre-compactness theorem removes the addi-
tional restriction on S-curvature.

Theorem 5.2. For any integer n ≥ 2, c ∈ R, and D > 0, the following
classes are pre-compact in the (pointed) δ-Gromov-Hausdorff topology:
(1) The collection {(Mi, Fi)} of compact Finsler n-manifolds satisfying
conditions

Diam(Mi) ≤ D, RicMi ≥ (n− 1)c,

uniformity constant µFi ≤ δ2 < ∞, for all i.
(2) The collection {(Mi, xi, Fi)} of pointed forward complete Finsler n-
manifolds satisfying conditions

RicMi ≥ (n− 1)c,

uniformity constant µFi ≤ δ2 < ∞, for all i.

Proof. Note that λ2
Fi

≤ µFi , one has {(Mi, Fi)} ⊂ (Mδ, dδGH). For

each (Mi, Fi), note that Diam(Mi) ≤ D, one has Mi = Bxi(D) for
any xi ∈ Mi. Since Mi is compact, there are finite disjoint forward
geodesic balls Bx1(ϵ), · · · , Bxl

(ϵ) of radius ϵ in Mi. Let Bxl0
(ϵ) be the

forward geodesic ball with the smallest minimal volume. Then we have,
by Theorem 4.3,

l ≤ volmin(Mi)

volmin(Bxl0
(ϵ))

=
volmin(Bxl0

(D))

volmin(Bxl0
(ϵ))

≤ vol(Bn
c (D))

vol(Bn
c (ϵ))

· δn.
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Now (1) is easily followed by (1) of Lemma 5.1. By (2) of Lemma 5.1,
we can prove (2) similarly. □

6. The first Betti number

Let (M,F ) be a compact Finsler n-manifold of reversibility λF and

M̃ be its universal covering space. By the Hurewicz theorem,

H1(M,Z) = π1(M)/[π1(M), π1(M)].

Then H1(M,Z) acts by deck transformation on the covering space

M̄ := M̃/[π1(M), π1(M)]

with quotient M . Denote by F̄ the pulled-back Finsler metric of F on
M̄ . Since H1(M,Z) is a finitely generated Abelian group, the rank of
H1(M,Z) is equal to b1(M) =dimH1(M,R). For simplicity, set Γ :=
H1(M,Z). Recall that any finite-index subgroup of Γ has the same rank
as Γ. The following lemma is proved by [12] which is the Finsler version
of Lemma 37 in [6], page 274.

Lemma 6.1. Given any fixed point p ∈ M̄ , there exists a finite-index
subgroup Γ′ ⊂ Γ that is generated by elements γ1, · · · , γb1 such that

d(p, γi(p)) ≤ (1 + λF̄ )Diam(M).

Furthermore, for each γ ∈ Γ′ − {1}, we have

d(p, γ(p)) > Diam(M).

Now we prove

Theorem 6.2. There exists a finite constant C = C(n,D,Λ, k) such
that for any compact n-dimensional Finsler manifold (M,F ) with diam-
eter D, uniformity constant µF ≤ Λ and RicM ≥ −(n − 1)k2(k ≥ 0)
one has b1 ≤ C(n,D,Λ, k). Moreover, b1 ≤ n when Dk is sufficiently
small ( depends on n and Λ).

Proof. By Lemma 6.1, we can choose a covering M̄ of M with free
Abelian group of deck transformation Γ = ⟨γ1, · · · , γb1⟩ such that for
some point p ∈ M̄ , d(p, γi(p)) ≤ (1 + λF )D and d(p, γ(p)) > D, ∀γ ∈
Γ− {1}. Note that λF̄ = λF , it is clear that

Bγi(p)

(
D

2λF

)
⊂ Bp

(
(1 + λF )D +

D

2λF

)
, ∀1 ≤ i ≤ b1,
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and all these forward balls are mutually disjoint and have the same
minimal volume, as γi acts isometrically. Therefore,

b1 ≤
volmin

(
Bp

(
(1 + λF )D + D

2λF

))
volmin

(
Bp

(
D

2λF

)) .

Notice that µF̄ = µF and 1 ≤ λ2
F ≤ µF , which together with Theorem

4.3 yields

b1 ≤ Λ
n
2 ·

vol
(
Bn
−k2

(
(1 +

√
Λ)D + D

2

))
vol

(
Bn
−k2

(
D

2
√
Λ

)) =: C(n,D,Λ, k).

To prove the second result, it suffices to show the case when k > 0.
Suppose on the contrary that b1 ≥ n+ 1, and define Ir ⊂ Γ by

Ir =

{
γ ∈ Γ : γ =

n+1∑
i=1

ki · γi,
n+1∑
i=1

|ki| ≤ r

}
.

For γ =
∑n+1

i=1 ki · γi ∈ Ir, we have

d(p, γ(p)) ≤
n+1∑
i=1

|ki|d(p, γi(p)) ≤ r(1 + λF )D,

which implies that

Bγ(p)

(
D

2λF

)
⊂ Bp

(
r(1 + λF )D +

D

2λF

)
, ∀γ ∈ Ir.

On the other hand, all these forward balls are mutually disjoint and have
the same minimal volume, as γ acts isometrically. We can use Theorem
4.3 to conclude that the cardinality ♯Ir of Ir is bounded from above by

volmin

(
Bp

(
r(1 + λF )D + D

2λF

))
volmin

(
Bp

(
D

2λF

)) ≤ Λ
n
2 ·
vol

(
Bn
−k2

(
r(1 +

√
Λ)D + D

2

))
vol

(
Bn
−k2

(
D

2
√
Λ

)) .

If r ∈ N, then it is clear that

(2r + 1)n+1 ≤ ♯I(n+1)r ≤ Λ
n
2 ·

vol
(
Bn
−k2

((
(n+ 1)r(1 +

√
Λ) + 1

2

)
D
))

vol
(
Bn
−k2

(
D

2
√
Λ

))
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= Λ
n
2 ·

∫ ((n+1)r(1+
√
Λ)+ 1

2
)D

0

(
sinh kt

k

)n−1

dt∫ D

2
√

Λ

0

(
sinh kt

k

)n−1

dt

= Λ
n
2 ·

∫ ((n+1)r(1+
√
Λ)+ 1

2
)Dk

0
sinhn−1(t)dt∫ Dk

2
√

Λ

0
sinhn−1(t)dt

.

Since limt→0
sinh t

t = 1, there exists η > 0 such that

1

2
<

sinh t

t
< 2, ∀0 < t < η.

Take Dk < η/((n+ 1)r(1 +
√
Λ) + 1

2), then

(2r + 1)n+1 ≤ Λ
n
2 ·

∫ ((n+1)r(1+
√
Λ)+ 1

2
)Dk

0
2n−1tn−1dt∫ Dk

2
√

Λ

0
2−(n−1)tn−1dt

= 23n−2 · Λn ·
(
(n+ 1)r(1 +

√
Λ) +

1

2

)n

.

The last formula is false when r is sufficiently large (depends on n and
Λ), or equivalently, whenDk is sufficiently small, and so we are done. □

Corollary 6.3. For any compact n-dimensional Finsler manifold (M,F )
with nonnegative Ricci curvature one has b1 ≤ n.

7. Finiteness of fundamental group

In this last section we shall use Theorem 4.3 to obtain some finiteness
results of fundamental groups for Finsler manifolds. For given Finsler

manifold (M,F ), let f : (M̃, F̃ ) → (M,F ) be the universal covering
with pulled-back metric, then it is known that the fundamental group is
isomorphic to the deck transformation group and each deck transforma-

tion is an isometry of (M̃, F̃ ) (see [11] for details). Recall that the first
systole of a compact Finsler manifold (M,F ), say sys1(M), is defined
to be the length of shortest closed, non-contractible curve in M . Let
R(n, δ) be a pre-compact family of forward complete Finsler n-manifolds
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of reversibility ≤ δ with respect to δ-Gromov-Hausdorff distance, and
R(n, δ, σ) = {(M,F ) ∈ R(n, δ) : sys1(M) ≥ σ}.

Lemma 7.1. [12] There are only finitely many isomorphic classes of
fundamental groups in R(n, δ, σ).

Theorem 7.2. Let R(n, c, δ, σ,D) be the class of compact Finsler n-
manifolds {(Mi, Fi)} with

RicMi ≥ (n− 1)c, µFi ≤ δ2, sys1(Mi) ≥ σ, Diam(Mi) ≤ D.

Then there are only finitely many isomorphic classes of fundamental
groups in R(n, c, δ, σ,D) for fixed n, c, δ, σ,D.

Proof. By Theorem 5.2 it is clear that R(n, c, δ, σ,D) ⊂ R(n, δ, σ), the
conclusion follows from Lemma 7.1 directly. □

Lemma 7.3. [12] Let (M,F ) be a compact Finsler n-manifold of re-

versibility λ and M̃ be its universal covering space. For each p ∈ M ,
there always exists a generating set {γ1, · · · , γm} for the fundamental
group Γ = π1(M,p) such that d(p̃, γi(p̃)) ≤ (1 + λ)Diam(M) ( where
p̃ ∈ f−1(p) is in the fiber over p ∈ M) and such that all relations for Γ
in these generators are of form γiγjγ

−1
k = 1.

Given n ∈ N, c ∈ R, δ ∈ [1,∞), and v,D ∈ (0,∞), let M(n, c, δ, v,D)
be the class of compact Finsler n-manifolds {(Mi, Fi)} with

RicMi ≥ (n− 1)c, µFi ≤ δ2, volmin(Mi) ≥ v Diam(Mi) ≤ D.

Anderson [1] obtained two results concerning the finiteness of fundamen-
tal group of Riemannian manifolds, and his results have been extended
to Finsler manifolds recently [12]. We have the following two results
which remove the additional condition on S-curvature in [12].

Theorem 7.4. There are only finitely many isomorphic classes of fun-
damental groups in M(n, c, δ, v,D) for fixed n, c, δ, v,D.

Proof. For each (M,F ) ∈ M(n, c, δ, v,D), choose the generating set
{γ1, · · · , γm} of π1(M,p) as in Lemma 7.3. Since the number of possible

relations is bounded by 2m
3
, it suffices to show m is bounded. Let Ωp ⊂

M̃ be a fundamental domain constructed as [11]. The sets γi(Ωp), 1 ≤
i ≤ m are mutually disjoint and have same minimal volume as M .
Since d(p̃, γi(p̃)) ≤ (1+ δ)D, γi(Ωp) ⊂ Bp̃(2(1+ δ)D), ∀1 ≤ i ≤ m. Since

RicM ≥ (n−1)c and µF ≤ δ2, one hasRic
M̃

≥ (n−1)c and µ
F̃
≤ δ2, and
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thus by Theorem 5.5 of [14], volmin(Bp̃(R)) ≤ δn·vol(Bn
c (R)),∀R > 0.

Hence,

(7.1) m ≤
volmin(Bp̃(2(1 + δ)D))

volmin(Ωp)
≤ δn · vol(Bn

c (2(1 + δ)D))

v
< ∞.

□

Theorem 7.5. For fixed n, c, δ, v,D there exist

L =
vD

δnvol(Bn
c (2D))

, N =
δnvol(Bn

c (2D))

v

such that for each (M,F ) ∈ M(n, c, δ, v,D), if α ∈ π1(M) with αt ̸= 1
for all t ≤ N , then ∥α∥geo ≥ L, here ∥α∥geo is the geometric norm of α
which is the length of a shortest loop representing α.

Proof. Let α ∈ π1(M) with αt ̸= 1 for all t ≤ N . Define U(r) = {αs :
0 ≤ s ≤ r}. For p ∈ M fix a p̃ ∈ f−1(p) and let Ωp be a fundamental
domain as before. Suppose on the contrary that ∥α∥geo < L, then
d(p̃, γ(p̃)) < rL for each γ ∈ U(r), which implies γ(Ωp) ⊊ Bp̃(rL +D).
Since γ(Ωp) are mutually disjoint and has same minimal volume as M ,
one has

♯U(r) <
volmin(Bp̃(rL+D))

volmin(Ωp)
≤ δnvol(Bn

c (rL+D))

v
.

By assumption, ♯U(N) ≥ N , and by taking r = N we have

δnvol(Bn
c (2D))

v
= N ≤ ♯U(N) <

δnvol(Bn
c (2D))

v
,

which is a contradiction. □

Let G be a finitely generated group and S = {gi} be a generating set
for G. For each g ∈ G, define ∥g∥alg be the smallest length of the word
in terms of gi and their inverse that represents g. We call ∥ · ∥alg the
algebraic norm associated with the generating set S. One is referred to
see [4, 5, 11] for more details of algebraic norm.

The following theorem is the Finsler version of Wei’s result [13].

Theorem 7.6. Given any constants δ ≥ 1 and v > 0, there exists
ϵ = ϵ(n, δ, v) > 0 such that if a compact n-manifold M admits a Finsler
metric F satisfying the conditions RicM ≥ −(n − 1)ϵ,Diam(M) =
1, µF ≤ δ2 and volmin(M) ≥ v, then π1(M) is of polynomial growth
of order ≤ n.
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Proof. Choose a base point p̃ in the universal covering (M̃, F̃ )
f→ (M,F ),

and let p = f(p̃) and {γ1, · · · , γk} be a set of generators of π1(M) viewed

as deck transformation in the isometry group of (M̃, F̃ ). Define Γ(s) =
{γ ∈ π1(M) : ∥γ∥alg ≤ s}, and l = max1≤i≤k{d(p̃, γi(p̃))}. Choose the
fundamental domain Ωp as before, one has γ(Ωp) ⊂ Bp̃(sl +Diam(M))
for each γ ∈ Γ(s), and consequently,

(7.2) ♯Γ(s) ≤
volmin(Bp̃(sl +Diam(M))

volmin(M)
.

Suppose that for any 1 > ϵ > 0, there exists a Finsler metric F satis-
fying RicM ≥ −(n − 1)ϵ,Diam(M) = 1, µF ≤ δ2 and volmin(M) ≥ v
such that π1(M) is not of polynomial growth of order ≤ n. Clearly,
(M,F ) ∈ M(n,−1, δ, v, 1). By Lemma 7.3 and (7.1), one can choose a
finite generating set {γ1, · · · , γm} of π1(M) such that

(i) m ≤ δn·vol(Bn
−1(2(1+δ)))

v := N(n, δ, v).
(ii) d(p̃, γi(p̃)) ≤ 1 + δ, for each 1 ≤ i ≤ m.
(iii) every relation is of form γiγjγ

−1
k = 1.

Since π1(M) is not of polynomial growth of order ≤ n, for each j ∈ N,
there exists sj ∈ N such that

(7.3) ♯Γ(sj) > j · (sj)n.

It is crucial that this relation is independent of ϵ, as follows from (i) and
(iii).

Now by (7.2) and Theorem 5.5 of [14] we have

♯Γ(s) ≤
δnvol(Bn

−ϵ((1 + δ)s+ 1))

v

=
δnvol(Sn−1(1))

v

∫ (1+δ)s+1

0

(
sinh

√
ϵt√

ϵ

)n−1

dt.

Choose η > 0 such that sinh t/t < 2 for any 0 < t < η. If
√
ϵ((1 + δ)s+

1) < η, then

♯Γ(s) ≤ δnvol(Sn−1(1))

v

∫ (1+δ)s+1

0
(2t)n−1dt

≤ 2n−1δnvol(Sn−1(1))(2(1 + δ))n

nv
sn.
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In summary, for any fixed, sufficiently large s0, there is ϵ0 = ϵ0(s0, δ) :=
η2/((1 + δ)s0 + 1)2 such that for each s ≤ s0 and ϵ ≤ ϵ0,

(7.4) ♯Γ(s) ≤ C(n, δ, v)sn, C(n, δ, v) :=
22n−1δnvol(Sn−1(1))(1 + δ)n

nv
.

Now let j0 > C(n, δ, v), by (7.3), there exists sj0 such that

♯Γ(sj0) > C(n, δ, v)(sj0)
n.

But we get a contradiction by taking ϵ ≤ ϵ0(sj0 , δ) and (7.4). □

Acknowledgments

The research was supported by the Natural Science Foundation of China
(No. 11171139).

References

[1] M. Anderson, On the topology of complete manifolds of nonnegative Ricci cur-
vature, Topology 29 (1990), no. 1, 41–55.

[2] D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemannian-Finsler Ge-
ometry, Springer-Verlag, New York, 2000.

[3] D. Egloff, Uniform Finsler Hadamard manifolds, Ann. Henri Poincaré 66 (1997),
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