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1. Introduction

Conjugate gradient (CG) methods comprise a class of unconstrained
optimization algorithms characterized by low memory requirements and
strong global convergence properties [7]. Although CG methods are
not the fastest or most robust optimization algorithms available today,
they remain very popular for engineers and mathematicians engaged in
solving large-scale problems in the following form:

min
x∈Rn

f(x),

where f : Rn → R is a smooth nonlinear function and its gradient is
available.

The iterative formula of a CG method is given by

(1.1)
x0 ∈ Rn,
xk+1 = xk + sk, sk = αkdk, k = 0, 1, ...,
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in which αk is a steplength to be computed by a line search procedure,
and dk is the search direction defined by

(1.2)
d0 = −g0,
dk+1 = −gk+1 + βkdk, k = 0, 1, ...,

where gk = ∇f(xk), and βk is a scalar called the CG (update) parameter.
Different choices for the CG parameter lead to different CG methods

(see [11] and the references therein). One of the efficient CG methods
has been proposed by Polak, Ribière [12] and Polyak [13] (PRP), with
the following CG parameter:

βPRP
k =

gTk+1yk

||gk||2
,

where yk = gk+1−gk, and ||.|| stands for the Euclidean norm. Numerical
efficiency of the PRP method is related to an automatic restart feature
which avoids jamming [14], i.e., the generation of many short steps with-
out making significant progress to the minimum. More exactly, when the
step sk is small, the factor yk in the numerator of βPRP

k tends to zero.

Therefore, βPRP
k becomes small and the new search direction is approx-

imately the steepest descent direction. Next, a brief discussion on the
convergence results development of the PRP method will be provided.
In this context, the following definition is needed.

Definition 1.1. We say that the search direction dk is a descent direc-
tion (or equivalently, satisfies the descent condition) iff

gTk dk < 0.

Also, we say that the search directions {dk}k≥0 satisfy the sufficient
descent condition iff

(1.3) gTk dk ≤ −τ ||gk||2, ∀k ≥ 0,

where τ is a positive constant.

In the past decades, efforts have been made to study the global conver-
gence of the PRP method. For example, Polak and Ribière [12] showed
that the PRP method is globally convergent when the objective function
is uniformly convex and the line search is exact. Powell [15] established
that for a general nonlinear function, if ||sk|| tends to zero, the line
search is exact, and ∇f is Lipschitz continuous, then the PRP method
is globally convergent. On the other hand, he constructed a three di-
mensional counter example and showed that the PRP method with the
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exact line search may cycle infinitely without convergence to a solu-
tion [15]. Hence, the assumption ||sk|| → 0 is necessary in the Powell’s
convergence result. Yuan [19] proved that if the search directions of the
PRP method are descent directions, then, under the Wolfe line search
conditions [17], the method is globally convergent for uniformly convex
functions. However, Dai [5] showed that even for the uniformly convex
functions, the PRP method may fail to generate a descent direction. So,
the PRP method lacks global convergence in certain circumstances.

In a recent effort to make a modification on the PRP method in order
to achieve the sufficient descent condition, Yu et al. [18] proposed a
modified form of βPRP

k as follows:

(1.4) βDPRP
k = βPRP

k − C
||yk||2

||gk||4
gTk+1dk,

where C is a constant satisfying

(1.5) C >
1

4
.

Note that if the line search is exact, then gTk+1dk = 0, and consequently,

the CG parameter βDPRP
k reduces to βPRP

k .
An interesting feature of the DPRP method is that its search direc-

tions satisfy the sufficient descent condition (1.3) with τ = 1− 1

4C
, inde-

pendent of the line search and the objective function convexity. Also, the
DPRP method is globally convergent under certain line search strate-
gies [18]. Furthermore, numerical results of [18] showed that the DPRP
method is numerically efficient.

2. On the sufficient descent property of the DPRP method

Although the descent condition is often adequate [7], sufficient de-
scent condition may be crucial in the convergence analysis of the CG
methods [1–4,8,9]. Also, satisfying in the sufficient descent condition is
considered as a strength of a CG method [6,10]. Here, based on an eigen-
value study, a new proof for the sufficient descent property of the DPRP
method is presented. The proof nicely demonstrates the importance of
the condition (1.5).

It is remarkable that from (1.2) and (1.4), the search directions of the
DPRP method can be written as:

(2.1) dk+1 = −Qk+1gk+1, k = 0, 1, ...,
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where Qk+1 ∈ Rn×n is defined by

(2.2) Qk+1 = I −
dky

T
k

||gk||2
+ C

||yk||2

||gk||4
dkd

T
k .

Since Qk+1 is determined based on a rank-two update, its determinant
can be computed by

(2.3) det(Qk+1) = C
||yk||2||dk||2

||gk||4
−

dTk yk
||gk||2

+ 1
def
= ξk.

(See equality (1.2.70) of [16].) The following proposition is now imme-
diate.

Proposition 2.1. If the inequality (1.5) holds, then

(2.4) 4ξk >
||yk||2||dk||2 − (dTk yk)

2

||gk||4
def
= γk.

Proof. Since C >
1

4
, we can write

ξk −
1

4
γk =

(
C − 1

4

)
||yk||2||dk||2

||gk||4
+

1

4

(dTk yk)
2

||gk||4
−

dTk yk
||gk||2

+ 1

=

(
C − 1

4

)
||yk||2||dk||2

||gk||4
+

(
1

2

dTk yk
||gk||2

− 1

)2

> 0,

which completes the proof. □

From Cauchy inequality, γk defined in (2.4) is nonnegative and so,
the inequality (2.1) ensures that ξk > 0. Thus, from (2.3) the matrix
Qk+1 defined by (2.2) is nonsingular. The following theorem ensures the
sufficient descent property of the DPRP method.

Theorem 2.2. For a CG method in the form of (1.1)-(1.2) with the
CG parameter βDPRP

k defined by (1.4), the following sufficient descent
condition holds:

(2.5) gTk dk ≤ −
(
1− 1

4C

)
||gk||2, ∀k ≥ 0.

Proof. Since d0 = −g0, the sufficient descent condition (2.5) holds for
k = 0. For the subsequent indices, from (2.1) we can write

(2.6) dTk+1gk+1 = −gTk+1Q
T
k+1gk+1 = −gTk+1

QT
k+1 +Qk+1

2
gk+1.
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So, in our proof we need to find the eigenvalues of the following sym-
metric matrix:

Ak+1 =
QT

k+1 +Qk+1

2
= I + C

||yk||2

||gk||4
dkd

T
k − 1

2

dky
T
k + ykd

T
k

||gk||2
.

Note that if yk = 0, then Ak+1 = I, and consequently, all the eigen-
values of Ak+1 are equal to 1. Otherwise, since dk ̸= 0, there exists a
set of mutually orthogonal vectors {uik}

n−2
i=1 such that

dTk u
i
k = yTk u

i
k = 0, ||uik|| = 1, i = 1, ..., n− 2,

which leads to
Ak+1u

i
k = uik, i = 1, ..., n− 2.

That is, the vectors uik, i = 1, ..., n − 2, are the eigenvectors of Ak+1

correspondent to the eigenvalue 1. Now, we find the two remaining
eigenvalues of Ak+1 namely λ−

k and λ+
k .

Since the trace of a square matrix is equal to the summation of its
eigenvalues, we have

tr(Ak+1) = n+ ξk − 1

= 1 + ...+ 1︸ ︷︷ ︸
(n−2) times

+λ−
k + λ+

k ,

which yields

(2.7) λ−
k + λ+

k = ξk + 1,

with ξk defined in (2.3). On the other hand, since from the properties
of the Frobenius norm, we have

||Ak+1||2F = tr(AT
k+1Ak+1) = tr(A2

k+1)

= 1 + ...+ 1︸ ︷︷ ︸
(n−2) times

+λ−2

k + λ+2

k ,

after some algebraic manipulations we get

λ−2

k + λ+2

k =

(
C
||dk||2||yk||2

||gk||4
+ 1

)2

− 2C
||dk||2||yk||2(dTk yk)

||gk||6

+
1

2

||dk||2||yk||2 + (dTk yk)
2

||gk||4
− 2

dTk yk
||gk||2

+ 1,

which together with (2.7) yields

(2.8) λ−
k λ

+
k = ξk −

1

4
γk,
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with γk defined in (2.4). Thus, from (2.7) and (2.8), λ−
k and λ+

k can be
computed as the solutions of the following quadratic equation:

λ2 − (ξk + 1)λ+ ξk −
1

4
γk = 0.

More precisely,

λ±
k =

ξk + 1±
√

(ξk − 1)2 + γk
2

.

Since C >
1

4
, from Proposition 2.1 we have ξk >

1

4
γk, and conse-

quently, λ−
k > 0. Also, λ+

k ≥ λ−
k and so, λ+

k > 0. Therefore, the
symmetric matrix Ak+1 is positive definite. Hence, considering (2.6),

to complete the proof it is enough to show that λ−
k ≥ 1 − 1

4C
. In this

context, we define the following function:

h(z) =
z + 1−

√
(z − 1)2 + γk
2

,

which is nondecreasing. Since C >
1

4
, it can be shown that

ξk ≥ Cγk + 1− 1

4C
.

Thus,

h(ξk) = λ−
k ≥ f

(
Cγk + 1− 1

4c

)
= 1− 1

4C
,

which completes the proof.
□
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