Bull. Iranian Math. Soc. Vol. 40 (2014), No. 1, pp. 263–279 Online ISSN: 1735-8515

IMPLICIT ITERATION APPROXIMATION FOR A FINITE FAMILY OF ASYMPTOTICALLY QUASI-PSEUDOCONTRACTIVE TYPE MAPPINGS

S. ZHANG

(Communicated by Behzad Djafari-Rouhani)

(Communicated by Behzad Djafari-Rouhani)

ABSTRACT. In this paper, strong convergence theorems of Ishikawa

type implicit iteration process with errors for a finite lamily of

asymptotically nonexpansive in the intermedia Abstract. In this paper, strong convergence theorems of Ishikawa type implicit iteration process with errors for a finite family of asymptotically nonexpansive in the intermediate sense and asymptotically quasi-pseudocontractive type mappings in normed linear spaces are established by using a new analytical method, which essentially improve and extend some recent results obtained by Yang [Convergence theorems of implicit iteration process for asymptotically pseudocontractive mappings, Bulletin of the Iranian Mathematical Society, Available Online from 12 April 2011] and others. **Keywords:** Normed linear spaces, implicit iteration process, asymptotically quasi-pseudocontractive type mappings, nonexpansive mappings.

MSC(2010): Primary: 47H05; Secondary: 47H10, 47J25.

1. **Introduction**

Let *E* be an arbitrary real normed linear space with norm $\|\cdot\|$ and E^* be the duality space of E . Let $\langle \cdot, \cdot \rangle$ denote the duality pairing between *E* and *E*^{***}. For $1 < p < \infty$, the mapping $J_p : E \to 2^{E^*}$ defined by

$$
J_p(x) = \{ f \in E^* : \langle x, f \rangle = ||x|| \cdot ||f||, ||f|| = ||x||^{p-1} \}
$$

is called the duality mapping with gauge function $\varphi(t) = t^{p-1}$. In particular, for $p = 2$, the duality mapping J_2 with gauge function $\varphi(t) = t$ is called the normalized duality mapping. It is well known that the duality

*⃝*c 2014 Iranian Mathematical Society

263

Article electronically published on February 25, 2014.

Received: 6 December 2011, Accepted: 28 January 2013.

mapping J_p has the following properties:

(i) $J_p(x) = ||x||^{p-2} J_2(x)$ for all $x \in E(x \neq 0)$, (ii) $J_p(\alpha x) = \alpha^{p-1} J_p(x)$ for all $\alpha \geq 0$, (iii) J_p can be equivalently defined as the subdifferential of the functional $\psi(x) = p^{-1} ||x||^p$, i.e., $J_p(x) = \partial \psi(x) = \{ f \in E^* : \psi(y) - \psi(x) \geq 0 \}$ *⟨y − x, f⟩, ∀y ∈ E}*(Asplund [1]).

Definition 1.1. Let K be a nonempty subset of E. A mapping T : $K \to K$ *is said to be*

(i) asymptotically nonexpansive, if there exists a sequence $\{k_n\} \subset [1, \infty)$ *with* $\lim_{n\to\infty} k_n = 1$ *, such that*

$$
||T^nx - T^ny|| \le k_n ||x - y||, \quad \forall x, y \in K, n \ge 1,
$$

(ii) asymptotically pseudo-contractive, if for all $x, y \in K$, *there exist j*(*x* − *y*) \in *J*(*x* − *y*) and a sequence { k_n } \subset [1, ∞) with $\lim_{n \to \infty} k_n = 1$, *such that*

$$
\langle T^n x - T^n y, j(x - y) \rangle \le k_n ||x - y||^2, \ n \ge 1,
$$

(iii) asymptotically quasi-pseudocontractive type if $F(T) \neq \emptyset$ *and there exists a sequence* $\{k_n\} \subset [1, \infty)$ *with* $\lim_{n \to \infty} k_n = 1$ *, such that*

lim sup *n→∞* $\{$ sup *x∈K* $\inf_{j_p(x-x^*)\in J_p(x-x^*)}\langle T^n x - x^*, j_p(x-x^*)\rangle - k_n||x-x^*|^p\Big\} \leq 0,$

(iv) asymptotically nonexpansive in the intermediat sense if

$$
\limsup_{n\to\infty}\left\{\sup_{x,y\in K}\left(\|T^nx-T^ny\|-\|x-y\|\right)\right\}\leq 0.
$$

Definition 1.1. Let K be a nonempty subset of E . A mapping T :
 $K \to K$ is said to be

(i) asymptotically nonexpansive, if there exists a sequence $\{k_n\} \subset [1, \infty)$

with $\lim_{n \to \infty} k_n = 1$, such that
 $\|T^nx - T^ny\| \le$ It is easy to see that an asymptotically nonexpansive mapping is asymptotically nonexpansive in the intermediate sense if the domain of *T* is bounded. Every asymptotically nonexpansive mapping is asymptotically pseudocontractive, and every asymptotically pseudocontractive mapping is asymptotically quasi-pseudocontractive type mapping. But the inverse is not true, in general.

The concept of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [5], while the concept of asymptotically pseudocontractive mapping was introduced by Schu [12] in 1991. The iterative approximation problems for asymptotically nonexpansive mappings and asymptotically pseudo-contractive mappings were studied extensively by

Schu [12], Chang [3], Khan et al. [7], Ofoedu [8], Plubtieng et al [10], Xu and Ori [14], Zhou [19], Sun [13], Yang and Hu [15] and Yang [16] in the setting of Hilbert spaces or Banach spaces.

Let *K* be a nonempty closed convex subset of *E* and $\{T_i\}_{i=1}^m$ be a finite family of nonexpansive mappings from *K* into itself (i.e., $||T_i x - T_i y|| \leq$ $||x - y||$ for *x, y* ∈ *K* and *i* = 1*,* 2*, ..., m*). In 2001, Xu and Ori [14] introduced the following implicit iteration process. For an arbitrary $x_0 \in K$ and $\alpha_n \in [0,1]$, the sequence $\{x_n\}$ is generated as follows:

$$
\begin{cases}\nx_1 = (1 - \alpha_1) x_0 + \alpha_1 T_1 x_1, \\
x_2 = (1 - \alpha_2) x_1 + \alpha_2 T_2 x_2, \\
\vdots \\
x_N = (1 - \alpha_N) x_{N-1} + \alpha_N T_N x_N, \\
x_{N+1} = (1 - \alpha_{N+1}) x_N + \alpha_{N+1} T_{N+1} x_{N+1}, \\
\vdots\n\end{cases}
$$

The scheme is expressed in its compact form by

$$
x_n = (1 - \alpha_n)x_n + \alpha_n T_{n \text{(mod } N)} x_n, n \ge 1.
$$

Using this iteration, they proved that the sequence $\{x_n\}$ converges weakly to a common fixed point of a finite family of nonexpansive mappings ${T_i}_{i=1}^N$ in a Hilbert space under certain conditions.

In 2006, Chang et al.[3] introduced another implicit iteration process with error. In the sense of [3], the implicit iteration process with errors for a finite family of asymptotically nonexpansive mappings ${T_i}_{i=1}^m$ is generated from an arbitrary $x_0 \in K$ by

$$
x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_{i(n)}^{k(n)} x_n + u_n, n \ge 1,
$$

 $\label{eq:22} \begin{cases} \begin{array}{l} x_1=(1-\alpha_1)\,x_0+\alpha_1T_1x_1,\\ x_2=(1-\alpha_2)\,x_1+\alpha_2T_2x_2,\\ \vdots\\ x_N=(1-\alpha_N)\,x_{N-1}+\alpha_NT_Nx_N,\\ x_{N+1}=(1-\alpha_{N+1})\,x_N+\alpha_{N+1}T_{N+1}x_{N+1},\\ \vdots\\ x_n=(1-\alpha_n)x_n+\alpha_nT_{n(modN)}x_n, n\geq 1. \end{array} \end{cases} \end{cases}$ Tajking this iteration, they pro where $n = (k - 1)m + i$, $i = i(n) \in \{1, 2, ..., m\}$, $k = k(n) \ge 1$ is a positive integer and $k(n) \to \infty$, as $n \to \infty$. $\{\alpha_n\}$ is a suitable sequence in [0, 1] and $\{u_n\} \subset K$ is such that $\sum_{n=0}^{\infty} ||u_n|| < \infty$. They extended the results of [14] from Hilbert spaces to more general uniformly convex Banach spaces and from nonexpansive mappings to asymptotically nonexpansive mappings.

Yang and Hu [15] proposed another implicit iteration process which appears to be more satisfactory as follows:

(1.1)
$$
x_n = \alpha_n x_{n-1} + \beta_n T_{i(n)}^{k(n)} x_n + \gamma_n u_n, n \ge 1,
$$

where $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\} \subset [0,1]$ with $\alpha_n + \beta_n + \gamma_n = 1$, and $\{u_n\}$ is bounded in *K*.

Since for each $n \geq 1$, it can be written as $n = (k-1)m + i$, where $i = i(n) \in \{1, 2, ..., m\}, k = k(n) - 1$ is a positive integer and $k(n) \to \infty$ as $n \to \infty$. Hence, (1.1) can be expressed in the following form:

$$
(1.2) \t x_n = (1 - \alpha_n - \gamma_n)x_{n-1} + \alpha_n T_{i(n)}^n x_n + \gamma_n u_n, n \ge 1,
$$

where $\alpha_n + \gamma_n \leq 1$, and $\{u_n\}$ is bounded in *K*.

Very recently, Yang [16] proved the following result.

Theorem 1.2. (*I16*)). Let *E* be a real normed linear space, *K* be
a nonempty convex subset of *E*, $T_i : K \to K, i = 1, 2, ..., m$ be a
finite family of asymptotically nonexpansive in the intermediate sense
and asymptotically p **Theorem 1.2.** *([16]).* Let *E* be a real normed linear space, K be *a* nonempty convex subset of $E, T_i: K \to K, i = 1, 2, \ldots, m$ be a *finite family of asymptotically nonexpansive in the intermediate sense and asymptotically pseudo-contractive mappings with* $\{k_{in}\}\subset [1,\infty)$ *such that* $\lim_{n \to \infty} k_n = 1$, where $k_n = max_{1 \le i \le m} \{k_{in}\}\$. Assume that $F =$ $\bigcap_{i=1}^{m} F(T_i) \neq \emptyset$ denotes the set of common fixed points of $\{T_i\}_{i=1}^{m}$. Let ${x_n}$ *be the sequence defined by (1.2). Suppose that* ${x_n}$ *is bounded in K* and that $\{\alpha_n\}$, $\{\gamma_n\}$ are sequences in [0, 1] satisfying the following *conditions:*

 (i) $\sum_{n=0}^{\infty} \gamma_n < \infty$, $\sum_{n=0}^{\infty} \alpha_n (k_n - 1) < \infty$, $\lim_{n \to \infty} \alpha_n = \infty$, $\lim_{n \to \infty} \alpha_n = 0$.

Assume that there exists a strict increasing function $\varphi : [0, \infty) \to [0, \infty)$ *with* $\varphi(0) = 0$ *such that*

lim sup *n→∞* $\left\{ \langle T_i^n x_n - x^*, j(x_n - x^*) \rangle - k_n ||x_n - x^*||^2 + \varphi(||x_n - x^*||) \right\} \leq 0$

for $x^* \in F$ and $i = 1, 2, \dots, m$ *. Then* $\{x_n\}$ *converges strongly to a common fixed point* p *of* $\{T_i\}_{i=1}^m$.

Remark 1.3. *We point out here that the conditions (i) is not always true.*

Example 1.4. *Let* $\alpha_n = \frac{1}{\sqrt{n+1}}$ *and* $k_n = 1 + \frac{1}{\sqrt{n+1}}$ *, then* $\sum_{n=0}^{\infty}$ $\alpha_n(k_n-1) =$ ∑*∞ n*=0 $\frac{1}{n+1}$ = ∞ , which show that conditions (i) in Theorem 1.2 is not *satisfied. Hence Theorem 1.2 need to be improved.*

The purpose of this paper is, under the condition of removing the restriction [∑]*[∞] n*=0 $a_n(k_n-1) < \infty$, to prove strong convergence theorems of Ishikawa type implicit iteration process with errors for a finite family of

asymptotically nonexpansive in the intermediate sense and asymptotically quasi-pseudocontractive type mappings in normed linear spaces by using a new analytical method. Our results essentially extend and improve some recent results obtained by Yang [16] and others.

Now we consider Ishikawa type implicit iteration process with errors for a finite family of asymptotically quasi-pseudocontractive type mappings as follows:

$$
(1.3)\begin{cases} x_n = (1 - \alpha_n - \gamma_n)x_{n-1} + \alpha_n T_{i(n)}^n y_n + \gamma_n u_n \\ y_n = (1 - \beta_n - \mu_n)x_n + \beta_n T_{i(n)}^n x_n + \mu_n v_n, \quad (n \ge 0), \end{cases}
$$

where $n = (k-1)m + i, i = i(n) \in \{1, 2, \dots, m\}, k = k(n) \geq 1$ is a positive integer and $k(n) \to \infty$, as $n \to \infty$. $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\mu_n\}$ are four suitable sequences in [0, 1] with $\alpha_n + \gamma_n \leq 1, \beta_n + \mu_n \leq 1$ and $\{u_n\}$, $\{v_n\}$ are bounded sequences in *K*.

The following lemmas plays an important role in this paper.

Lemma 1.5 ([17). *] Let E be a real normed linear space and* $J_p : E \rightarrow$ 2 *E∗ a duality mapping. Then*

$$
||x+y||^p \le ||x||^p + p\langle y, j_p(x+y)\rangle
$$

for all $x, y \in E, 1 < p < \infty$ *and* $j_p(x + y) \in J_p(x + y)$.

As $\begin{cases} y_n = (1 - \beta_n - \mu_n)x_n + \beta_n T_{i(n)}^{n}x_n + \mu_n v_n, \quad (n \ge 0), \text{ there } n = (k-1)m + i, i = i(n) \in \{1, 2, \dots, m\}, k = k(n) \ge 1 \text{ is a positive integer and } k(n) \to \infty, \text{ as } n \to \infty. \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\mu_n\} \text{ are positive integer and } k(n) \to \infty, \text{ as } n \to \infty. \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\mu_n\} \text{ are } u_n\}$, $\$ **Lemma 1.6.** *Let* $\varphi_i(i = 1, 2, \ldots, m)$: $[0, \infty) \to [0, \infty)$ *be strictly in*creasing functions with $\varphi_i(0) = 0$ and let $\{a_n\}, \{b_n\}, \{c_n\}, \{\delta_n\}$ be non*negative real sequences such that* $\sum_{n=1}^{\infty} \delta_n = \infty$, $\lim_{n \to \infty} \frac{b_n}{\delta_n}$ $\frac{\delta_n}{\delta_n} = 0, \sum_{n=1}^{\infty} c_n <$ *∞. Suppose that*

(1.4)
$$
a_{n+1}^p \le a_n^p - \delta_n \varphi_i(a_{n+1}) + b_n + c_n, \ n \ge n_0,
$$

where n_0 *is some nonnegative integer and* $p \in (1, \infty)$ *, then* $\lim_{n \to \infty} a_n = 0$ *.*

Proof. Setting $\liminf_{n \to \infty} a_n = \tau$, then $\tau \geq 0$. Now we prove $\tau = 0$. If $\tau > 0$, then there exists a positive integer $N_1 > 0$ such that $a_n \geq \frac{\tau}{2}$ 2 for all $n \geq N_1$. By the strictly increasing property of φ_i , we have $\varphi_i(a_{n+1}) > \varphi_i(\frac{\pi}{2})$ $\frac{\tau}{2}) \ge \min_{1 \le i \le m} \varphi_i(\frac{\tau}{2})$ $(\frac{\tau}{2}) =: \sigma$. Since $\lim_{n \to \infty} \frac{b_n}{\delta_n}$ $\frac{b_n}{\delta_n} = 0$, there exists a positive integer $N_2 > N_1$ such that $\frac{b_n}{\delta_n} \leq \frac{1}{2}$ $\frac{1}{2}\sigma$ for all $n \geq N_2$. Taking $N_3 = \max\{N_2, n_0\}$, then from (1.4), we have

$$
a_{n+1}^p \le a_n^p - \delta_n \sigma + \delta_n \frac{\sigma}{2} + c_n = a_n^p - \delta_n \frac{\sigma}{2} + c_n
$$

for all $n \geq N_3$, which means that $\delta_n \frac{\sigma}{2} \leq a_n^p - a_{n+1}^p + c_n$. Hence for any positive integer $h \geq N_3$, we obtain

$$
\frac{\sigma}{2} \sum_{n=N_3}^h \delta_n \le a_{N_3}^p - a_{h+1}^p + \sum_{n=N_3}^h c_n \le a_{N_3}^p + \sum_{n=N_3}^h c_n,
$$

and so

$$
\infty = \frac{\sigma}{2} \sum_{n=N_3}^{\infty} \delta_n \le a_{N_3}^p + \sum_{n=N_3}^{\infty} c_n,
$$

 $2 \sum_{n=N_3}^{N_3} \sum_{n=-N_3}^{N_3} \sum_{n=N_3}^{N_3} \sum_{n=N_3}^{N_3}$

a contradition. This implies that $\tau > 0$ is impossible. Therefore $\tau = 0$, which there exists a subsequence $\{a_{n_j}\} \subset \{a_n\}$ such that $a_{n_j} \to 0(j \to \infty)$. Since a contradition. This implies that $\tau > 0$ is impossible. Therefore $\tau =$ 0, which there exists a subsequence ${a_{n_j}} \subset {a_n}$ such that $a_{n_j} \to a_j$ $0(j \rightarrow \infty)$. Since $\lim_{n \to \infty} \frac{b_n}{\delta_n}$ $\frac{b_n}{\delta_n} = 0, \sum_{n=1}^{\infty} c_n < \infty$, for any given $\varepsilon > 0$, there exist two positive integers $j_0 > 0$ and $N_4 > 0$, such that for all $n \geq N_4, \sum_{n=N_4}^{\infty} c_n < \varepsilon^p, \frac{b_n}{\delta_n}$ $\frac{b_n}{\delta_n} < \frac{1}{2}$ $\frac{1}{2}\omega$ and $a_{n_j} \leq \varepsilon$ for all $j \geq j_0$, where $\omega = \min\{\varphi_1(\varepsilon), \varphi_2(\varepsilon), \cdots, \varphi_m(\varepsilon)\}.$ Let $N_5 = \max\{j_0, N_4\}.$ For fixed j_* > N_5 and all $k \geq 0$, we now want to show that $a_{n_{j_*}+k} < 2\varepsilon$. To see this consider two possible cases.

Case I: $a_{n_{j_*}+1} < \varepsilon$.

In this case, $a_{n_{j*}+1}^p < \varepsilon^p + c_{n_{j*}} + c_{n_{j*}+1}$ and so we have the desired result.

Case II: $a_{n_{j*}+1} \geq \varepsilon$.

In this case, $\varphi_i(a_{n_{j_*}+1}) \geq \varphi_i(\varepsilon) \geq \omega > 0$ since for each $i = 1, 2, \cdots, m$, φ_i is a strictly increasing function. From (1.4), we also have

$$
a_{n_{j_{*}}+1}^{p} \le a_{n_{j_{*}}}^{p} - \delta_{n_{j_{*}}}\varphi_{i}(a_{n_{j_{*}}+1}) + b_{n_{j_{*}}} + c_{n_{j_{*}}}
$$

\n
$$
\le a_{n_{j_{*}}}^{p} - \delta_{n_{j_{*}}}(\omega - \frac{\omega}{2}) + c_{n_{j_{*}}}
$$

\n
$$
< \varepsilon^{p} + c_{n_{j_{*}}} + c_{n_{j_{*}}+1}.
$$

By using induction, we have

$$
a_{n_{j*}+k}^p < \varepsilon^p + \sum_{i=n_{j*}}^{n_{j*}+k} c_i < \varepsilon^p + \varepsilon^p = 2\varepsilon^p < (2\varepsilon)^p
$$

for all $k \geq 0$. This shows $a_n \to 0$ as $n \to \infty$. The proof of Lemma 1.6 is completed.

2. **Main results**

Theorem 2.1. *Let E be a real normed linear space, K a nonempty convex subset of E* and $T_i: K \to K(i = 1, 2, \ldots, m)$ *a finite family of asymptotically nonexpansive in the intermediate sense and asymptotically quasi-pseudocontractive type mappings with* $\{k_n^{(i)}\} \subset [1,\infty)$ *such that* $\lim_{n\to\infty} k_n = 1$, where $k_n = \max_{1 \le i \le m} \{k_n^{(i)}\}$. Assume that $F =$ $\bigcap_{i=1}^{m} F(T_i) \neq \emptyset$ denotes the set of common fixed points of $\{T_i\}_{i=1}^{m}$. Let ${x_n}$ *be the sequence defined by (1.3). Suppose that* ${u_n}$ *and* ${v_n}$ *are* bounded sequences in K and that $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ and $\{\mu_n\}$ are se*quences in [0, 1] satisfying the following conditions:*

(i)
$$
\sum_{n=0}^{\infty} \alpha_n = \infty,
$$

\n(ii) $\alpha_n \to 0, \beta_n \to 0 (n \to \infty),$
\n(iii)
$$
\sum_{n=0}^{\infty} \gamma_n < \infty, \mu_n \to 0 (n \to \infty).
$$

Assume that there exist strict increasing functions $\varphi_i : [0, \infty) \to [0, \infty)$ *with* $\varphi_i(0) = 0$ *such that*

(2.1)
$$
\limsup_{n \to \infty} \left\{ \inf_{j_p(x_n - x^*) \in J_p(x_n - x^*)} \langle T_i^n x_n - x^*, j_p(x_n - x^*) \rangle -k_n \|x_n - x^*\|^p + \varphi_i(\|x_n - x^*\|) \right\} \leq 0
$$

 $for x^* \in F$ *and* $i = 1, 2, \ldots, m$ *. Then* $\{x_n\}$ *converges strongly to a common fixed point* x^* *of* $\{T_i\}_{i=1}^m$.

$$
x_n\} \text{ be the sequence defined by (1.3). Suppose that } \{u_n\} \text{ and } \{v_n\} \text{ are } \\ \text{ounded sequences in } K \text{ and that } \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\} \text{ and } \{\mu_n\} \text{ are } \text{se-} \\ \text{uences in } [0, 1] \text{ satisfying the following conditions:} \\ \begin{aligned} \text{in } \sum_{n=0}^{\infty} \alpha_n = \infty, \\ \text{in } \sum_{n=0}^{\infty} \alpha_n = \infty, \\ \text{in } \sum_{n=0}^{\infty} \gamma_n < \infty, \mu_n \to 0 \text{ (}n \to \infty \text{).} \end{aligned}
$$
\n
$$
\text{in } \sum_{n=0}^{\infty} \gamma_n < \infty, \mu_n \to 0 \text{ (}n \to \infty \text{).}
$$
\n
$$
\text{Assume that there exist strict increasing functions } \varphi_i : [\mathbf{0}, \infty) \to [0, \infty)
$$
\n
$$
\text{in } \sum_{n=0}^{\infty} \gamma_n < \infty, \mu_n \to 0 \text{ (}n \to \infty \text{).}
$$
\n
$$
\text{in } \sum_{n=0}^{\infty} \gamma_n < \infty, \mu_n \to 0 \text{ (}n \to \infty \text{).}
$$
\n
$$
\text{in } \sum_{n=0}^{\infty} \gamma_n < \infty, \mu_n \to 0 \text{ (}n \to \infty \text{).}
$$
\n
$$
\text{in } \sum_{n=0}^{\infty} \gamma_n < \infty, \mu_n \to 0 \text{ (}n \to \infty \text{).}
$$
\n
$$
\text{in } \sum_{n=0}^{\infty} \gamma_n < \infty, \mu_n \to 0 \text{ (}n \to \infty \text{).}
$$
\n
$$
\text{in } \sum_{n=0}^{\infty} \gamma_n < \infty, \mu_n \to 0 \text{ (}n \to \infty \text{).}
$$
\n
$$
\text{in } \sum_{n=0}^{\infty} \gamma_n < \infty, \mu_n \to 0 \text{ (}n \to \infty \text{).}
$$
\n
$$
\text{in } \sum_{n=
$$

then there exist $j_p^{(i)}(x_n - x^*) \in J_p(x_n - x^*)$, such that

(2.2)
$$
\langle T_i^n x_n - x^*, j_p^{(i)}(x_n - x^*) \rangle - k_n \|x_n - x^*\|^p + \varphi_i(\|x_n - x^*\|)
$$

$$
< \sigma_n^{(i)} + \varepsilon_n^{(i)} \le \xi_n,
$$

where $\varepsilon_n^{(i)} \in (0,1)$ with $\varepsilon_n^{(i)} \to 0$ ($n \to \infty$), and $\xi_n = \max_{1 \le i \le m} {\{\sigma_n^{(i)}, 0\}} +$ $\max_{1 \le i \le m} {\{\varepsilon_n^{(i)}\}}$. It is easy see (using (2.1)) that $\lim_{n \to \infty} \xi_n = 0$. Since $\{u_n\}$ and ${v_n}$ are bounded sequences in K , $M = \sup_{n \geq 0} { \|u_n - x^*\| + \|v_n - x^*\| }$ > ∞ *.* Also, since for each $i = 1, 2, \ldots, m$, $T_i: K \to K$ is an asymptotically

nonexpansive in the intermediate sense, there exists $n_0 \geq 1$ such that $\sup_{x,y\in K} (||T_i^n x - T_i^n y|| - ||x - y||) \le 1$ for all $n \ge n_0, i = 1, 2, ..., m$. It follows from (1.3) that

$$
\frac{||x_n - x^*||}{1 + ||x_{n-1} - x^*||}
$$
\n
$$
= \frac{||(1 - \alpha_n - \gamma_n)(x_{n-1} - x^*) + \alpha_n(T_i^n y_n - x^*) + \gamma_n(u_n - x^*)||}{1 + ||x_{n-1} - x^*||}
$$
\n
$$
\leq \frac{||x_{n-1} - x^*|| + \alpha_n||T_i^n y_n - x^*|| + ||u_n - x^*||}{1 + ||x_{n-1} - x^*||}
$$
\n
$$
\leq \frac{||x_{n-1} - x^*|| + \sup_{x,y \in K} (||T_i^n x - T_i^n y|| - ||x - y||)}{1 + ||x_{n-1} - x^*||}
$$
\n
$$
+ \frac{\alpha_n||y_n - x^*|| + ||u_n - x^*||}{1 + ||x_{n-1} - x^*||}
$$
\n
$$
\leq \frac{||x_{n-1} - x^*|| + 1 + \alpha_n[||x_n - x^*|| + ||T_i^n x_n - x^*||}{1 + ||x_{n-1} - x^*||}
$$
\n
$$
+ \frac{||v_n - x^*|| + ||u_n - x^*||}{1 + ||x_{n-1} - x^*||}
$$
\n
$$
\leq \frac{||x_{n-1} - x^*|| + 1 + 2\alpha_n||x_n - x^*||}{1 + ||x_{n-1} - x^*||}
$$
\n
$$
+ \frac{\sup_{x,y \in K} (||T_i^n x - T_i^n y|| - ||x - y||) + 2M}{1 + ||x_{n-1} - x^*||}
$$
\n
$$
(2.3) \leq 3 + 2M + \frac{2\alpha_n ||x_n - x^*||}{1 + ||x_{n-1} - x^*||}
$$
\n
$$
\text{for all } n \geq n_0, \text{ Since } 1 - 2\alpha_n \to 1 \text{ (n } \to \infty \text{), there exists } n_1 \geq n_0 \text{ such that } 1 - 2\alpha_n > 0
$$
\n
$$
\frac{1}{2} > 0 \text{ for all } n \geq n_1, \text{ which together with (2.3) gives that}
$$
\n
$$
(2.4) \frac{||x_n - x^*||}{1 + ||x_{n-1} - x^*||} \leq \frac{3 + 2M
$$

for all $n \geq n_0$.

Since $1-2\alpha_n \to 1$ $(n \to \infty)$, there exists $n_1 \ge n_0$ such that $1-2\alpha_n > \frac{1}{2} > 0$ for all $n \ge n_1$, which together with (2.3) gives that

(2.4)
$$
\frac{\|x_n - x^*\|}{1 + \|x_{n-1} - x^*\|} \leq \frac{3 + 2M}{1 - 2\alpha_n} \leq 6 + 4M.
$$

Let $c_n^{(i)} = \sup_{x,y \in K} (||T_i^n x - T_i^n y|| - ||x - y||), d_n = \max \left\{0, \max_{1 \le i \le m} c_n^{(i)}\right\},$ then $\lim_{n\to\infty} d_n = 0$.

[www.SID.ir](www.sid.ir)

By (1.3) , we have

$$
||x_n - y_n|| \leq \beta_n ||T_i^n x_n - x_n|| + \mu_n ||v_n - x_n||
$$

\n
$$
\leq \beta_n (||T_i^n x_n - x^*|| - ||x_n - x^*||)
$$

\n
$$
+ (2\beta_n + \mu_n) ||x_n - x^*|| + \mu_n ||v_n - x^*||
$$

\n
$$
\leq \beta_n \sup_{x,y \in K} (||T_i^n x - T_i^n y|| - ||x - y||)
$$

\n
$$
+ (2\beta_n + \mu_n) ||x_n - x^*|| + \mu_n M
$$

\n(2.5)
\n
$$
\leq (2\beta_n + \mu_n) ||x_n - x^*|| + \beta_n d_n + \mu_n M
$$

for all $n \geq n_1$.

For $j_p^{(i)}(x_n - x^*) \in J_p(x_n - x^*)$, $\forall n \geq 0$, we have from (1.3) and Lemma 1.5 that

$$
(2.5) \leq (2\beta_n + \mu_n) \|x_n - x^*\| + \beta_n d_n + \mu_n M
$$

\nfor all $n \geq n_1$.
\nFor $j_p^{(i)}(x_n - x^*) \in J_p(x_n - x^*)$, $\forall n \geq 0$, we have from (1.3) and
\nLemma 1.5 that
\n
$$
\left(\frac{\|x_n - x^*\|}{1 + \|x_{n-1} - x^*\|}\right)^p
$$
\n
$$
= \frac{\|((1 - \alpha_n - \gamma_n)(x_{n-1} - x^*) + \alpha_n (T_i^n y_n - x^*) + \gamma_n (u_n - x^*)\|^p}{(1 + \|x_{n-1} - x^*\|)^p}
$$
\n
$$
\leq \frac{(1 - \alpha_n)^p \|x_{n-1} - x^*\|^p + p\alpha_n \left\langle T_i^n x_n - x^*, j_p^{(i)}(x_n - x^*)\right\rangle}{(1 + \|x_{n-1} - x^*\|)^p}
$$
\n+
$$
\frac{p\alpha_n \left\langle T_i^n y_n - T_i^n x_n, j_p^{(i)}(x_n - x^*)\right\rangle}{(1 + \|x_{n-1} - x^*\|)^p}
$$

\nfor all $n \geq n_1, i = 1, 2, ..., n$.
\nNext we consider the second and third term on the right side of (2.6).
\nFrom (2.4) and (2.5), we obtain that
\n
$$
\frac{p\alpha_n \left\langle T_i^n y_n - T_i^n x_n, j_p^{(i)}(x_n - x^*)\right\rangle}{(1 + \|x_{n-1} - x^*\|)^p}
$$
\n
$$
\leq p\alpha_n \frac{\|T_i^n y_n - T_i^n x_n\| \|x_n - x^*\|^{p-1}}{(1 + \|x_{n-1} - x^*\|)^p}
$$

for all $n \ge n_1, i = 1, 2, \ldots, m$.

Next we consider the second and third term on the right side of (2.6). From (2.4) and (2.5) , we obtain that

$$
\frac{p\alpha_n \left\langle T_i^n y_n - T_i^n x_n, j_p^{(i)}(x_n - x^*) \right\rangle}{\left(1 + \|x_{n-1} - x^*\| \right)^p}
$$
\n
$$
\leq p\alpha_n \frac{\|T_i^n y_n - T_i^n x_n\| \|x_n - x^*\|^{p-1}}{\left(1 + \|x_{n-1} - x^*\| \right)^p}
$$
\n
$$
= p\alpha_n \frac{\left(\|T_i^n x_n - T_i^n y_n\| - \|x_n - y_n\| \right) + \|x_n - y_n\|}{1 + \|x_{n-1} - x^*\|}
$$
\n
$$
\cdot \left(\frac{\|x_n - x^*\|}{1 + \|x_{n-1} - x^*\|}\right)^{p-1}
$$

Implicit iteration approximation 272

$$
\leq p\alpha_n \left(\frac{d_n}{1 + \|x_{n-1} - x^*\|} + \frac{\|x_n - y_n\|}{1 + \|x_{n-1} - x^*\|} \right)
$$

$$
\cdot \left(\frac{\|x_n - x^*\|}{1 + \|x_{n-1} - x^*\|} \right)^{p-1}
$$

$$
\leq p\alpha_n \left(d_n + \frac{(2\beta_n + \mu_n) \|x_n - x^*\| + \beta_n d_n + \mu_n M}{1 + \|x_{n-1} - x^*\|} \right)
$$

$$
\cdot \left(\frac{\|x_n - x^*\|}{1 + \|x_{n-1} - x^*\|} \right)^{p-1}
$$

(2.7)
$$
\leq p\alpha_n (6 + 4M)^{p-1} [d_n + (2\beta_n + \mu_n)(6 + 4M) + \beta_n d_n + \mu_n M]
$$

for all $n \geq n_1$.

In view of (2.4), we deduce that

$$
\frac{p\gamma_n \left\langle u_n - x^*, j_p^{(i)}(x_n - x^*) \right\rangle}{(1 + \|x_{n-1} - x^*\|)^p} \leq \frac{p\gamma_n \|u_n - x^*\| \|x_n - x^*\|^{p-1}}{(1 + \|x_{n-1} - x^*\|)^p}
$$
\n
$$
\leq p\gamma_n M (6 + 4M)^{p-1}.
$$

Substituting (2.2) , (2.7) and (2.8) into (2.6) yields that

$$
(1 + ||x_{n-1} - x^*||)
$$
\n
$$
(2.7) \leq p\alpha_n(6 + 4M)^{p-1}[d_n + (2\beta_n + \mu_n)(6 + 4M) + \beta_n d_n + \mu_n M]
$$
\nfor all $n \geq n_1$.\nIn view of (2.4), we deduce that\n
$$
\frac{p\gamma_n \langle u_n - x^*, j_p^{(i)}(x_n - x^*) \rangle}{(1 + ||x_{n-1} - x^*||)^p} \leq \frac{p\gamma_n ||u_n - x^*||x_n - x^*||^{p-1}}{(1 + ||x_{n-1} - x^*||)^p}
$$
\n
$$
(2.8) \leq p\gamma_n M(6 + 4M)^{p-1}.
$$
\nSubstituting (2.2), (2.7) and (2.8) into (2.6) yields that\n
$$
\left(\frac{||x_n - x^*||}{1 + ||x_{n-1} - x^*||}\right)^p \leq \frac{(1 - \alpha_n)^p ||x_{n-1} - x^*||^p + p\alpha_n \xi_n}{(1 + ||x_{n-1} - x^*||)^p}
$$
\n
$$
+ \frac{p\alpha_n (k_n ||x_n - x^*||^p - \varphi_i (||x_n - x^*||))}{(1 + ||x_{n-1} - x^*||)^p}
$$
\nfor all $n \geq n_1, i = 1, 2, ..., m$.\nSince $1 - p\alpha_n k_n \to 1$ ($n \to \infty$), there exists $n_2 \geq n_1$ such that\n
$$
0 < \frac{1}{2} < 1 - p\alpha_n k_n < 1
$$
 for all $n \geq n_2$. It follows from (2.9) that\n
$$
||x_n - x^*||^p \leq \frac{(1 - \alpha_n)^p ||x_{n-1} - x^*||^p + p\alpha_n \xi_n - p\alpha_n \varphi_i (||x_n - x^*||)}{1 - p\alpha_n k_n}
$$

for all $n \ge n_1, i = 1, 2, \dots, m$.

Since $1 - p\alpha_n k_n \to 1$ ($n \to \infty$), there exists $n_2 \geq n_1$ such that $0 < \frac{1}{2} < 1 - p\alpha_n k_n < 1$ for all $n \geq n_2$. It follows from (2.9) that

$$
||x_n - x^*||^p \le \frac{(1 - \alpha_n)^p ||x_{n-1} - x^*||^p + p\alpha_n \xi_n - p\alpha_n \varphi_i(||x_n - x^*||)}{1 - p\alpha_n k_n}
$$

(2.10)
$$
+ \frac{(p\alpha_n A_n + p\gamma_n M (6 + 4M)^{p-1}) (1 + ||x_{n-1} - x^*||)^p}{1 - p\alpha_n k_n}
$$

for all $n \ge n_2, i = 1, 2, \dots, m$, where $A_n = (6 + 4M)^{p-1}[d_n + (2\beta_n + \mu_n)(6 + 4M) + \beta_n d_n + \mu_n M] \rightarrow$

$$
0(n \to \infty).
$$
 Note that $(1 + ||x_{n-1} - x^*||)^p \le 2^{p-1}(1 + ||x_{n-1} - x^*||^p),$

$$
(1 - \alpha_n)^p = 1 - p\alpha_n + \frac{p(p-1)\alpha_n^2}{2!} - \frac{p(p-1)(p-2)\alpha_n^3}{3!} + \dots + (-\alpha_n)^p
$$

= 1 - p\alpha_n + \alpha_n B_n,

where

$$
B_n = \frac{p(p-1)\alpha_n}{2!} - \frac{p(p-1)(p-2)\alpha_n^2}{3!} + \dots + (-\alpha_n)^{p-1} \to 0(n \to \infty).
$$

In virtue of (2.10), we conclude that

In virtue of (2.10), we conclude that
\n
$$
||x_n - x^*||^p \le \left[1 + \frac{p\alpha_n(k_n - 1) + \alpha_n B_n + p2^{p-1}\alpha_n A_n}{1 - p\alpha_n k_n} + \frac{pM2^{p-1}(6 + 4M)^{p-1}\gamma_n}{1 - p\alpha_n k_n}\right] ||x_{n-1} - x^*||^p + \frac{p\alpha_n(\xi_n + 2^{p-1}A_n) + pM2^{p-1}(6 + 4M)^{p-1}\gamma_n}{1 - p\alpha_n k_n} - \frac{p\alpha_n\varphi_i(||x_n - x^*||)}{1 - p\alpha_n k_n} + pM2^p(6 + 4M)^{p-1}\gamma_n||x_{n-1} - x^*||^p + 2p\alpha_n(\xi_n + 2^{p-1}A_n) + pM2^p(6 + 4M)^{p-1}\gamma_n
$$
\n(2.11)
$$
- p\alpha_n\varphi_i(||x_n - x^*||)
$$
\nfor all $n \ge n_2, i = 1, 2, ..., m$.
\nNow we take a nonnegative integer $n_3 \ge n_2$ such that $x_{n_3} \ne x^*$ (if not, $x_n = x^*$ for all $n \ge n_2$, then $x_n \rightarrow x^*(n \rightarrow \infty)$, and so we have done). Since $k_n \rightarrow 1, \xi_n \rightarrow 0, B_n \rightarrow 0, A_n \rightarrow 0$ ($n \rightarrow \infty$), $\sum_{n=0}^{\infty} \gamma_n < \infty$, there exists a positive integer $N > n_3$ such that, for all $n \ge N$, $(k_n - 1 + \frac{1}{p}B_n)(2G)^p + (\xi_n + 2^{p-1}A_n(1 + (2G)^p)) < \frac{\min\{\varphi_i(G)\}}{4}$ and $\sum_{n=0}^{\infty} \gamma_n <$

for all $n \ge n_2, i = 1, 2, \ldots, m$.

Now we take a nonnegative integer $n_3 \geq n_2$ such that $x_{n_3} \neq x^*$ (if not, $x_n = x^*$ for all $n \geq n_2$, then $x_n \to x^*(n \to \infty)$, and so we have done). Since $k_n \to 1, \xi_n \to 0, B_n \to 0, A_n \to 0 \ (n \to \infty), \ \sum_{n=1}^{\infty}$ *n*=0 *γⁿ < ∞*, there exists a positive integer $N > n_3$ such that, for all $n \ge N$, $(k_n - 1 +$ 1 $\frac{1}{p}B_n)(2G)^p + (\xi_n + 2^{p-1}A_n(1 + (2G)^p))$ (2^{*g*}) *k* $\min_{1 \leq i \leq m} {\varphi_i(G)}$ $\frac{1}{4}$ and $\sum_{n=N}^{\infty} \gamma_n$ *G^p* $\frac{G^p}{pM2^p(6+4M)^{p-1}(1+(2G)^p)}$, where $G = \max\left\{\|x_{n_3} - x^*\|, \|x_{n_3+1} - x^*\|, \ldots\right\}$ *∤ µ*_{*N*} −*1 − x*^{*}*|, }*, *x*^{*}*|}*, and obviously 0 < *G* < ∞.

Next we proceed by induction to show $||x_{N+k}-x^*|| \leq 2G$ for all $k \geq 1$. To see this consider two possible cases.

Case III: $||x_{N+1} - x^*|| \le G$.

In this case, $||x_{N+1} - x^*||^p \le G^2 + pM2^p (6 + 4M)^{p-1} (1 + (2G)^p)\gamma_{N+1}$ and so we have the desired result.

Case IV: $||x_{N+1} - x^*|| > G$.

In this case, $\varphi_i(\|x_{N+1} - x^*\|) > \varphi_i(G) \ge \min_{1 \le i \le m} {\varphi_i(G)} > 0$ since for each $i = 1, 2, \dots, m, \varphi_i$ is a strictly increasing function. From (2.11), we also have

$$
||x_{N+1} - x^*||^2 \le ||x_N - x^*||^p
$$

+ $[2p\alpha_{N+1}(k_{N+1} - 1) + 2\alpha_{N+1}B_{N+1} + pM2^p(6 + 4M)^{p-1}\gamma_{N+1}$
+ $p2^p\alpha_{N+1}A_{N+1}](2G)^p + 2p\alpha_{N+1}(\xi_{N+1} + 2^{p-1}A_{N+1})$
+ $pM2^p(6 + 4M)^{p-1}\gamma_{N+1} - p\alpha_{N+1} \min_{1 \le i \le m} \{\varphi_i(G)\}$
= $||x_N - x^*||^p$
- $p\alpha_{N+1} \left[\min_{1 \le i \le m} \{\varphi_i(G)\} - 2(\xi_{N+1} + 2^{p-1}A_{N+1}(1 + (2G)^p))$
- $2(k_{N+1} - 1 + \frac{1}{p}B_{N+1})(2G)^p \right] + pM2^p(6 + 4M)^{p-1}(1 + (2G)^p)\gamma_{N+1}$
 $\le ||x_N - x^*||^p - p\alpha_{N+1} \left(\min_{1 \le i \le m} \{\varphi_i(G)\} - \frac{\min_{1 \le i \le m} \{\varphi_i(G)\}}{4} \right)$
+ $pM2^p(6 + 4M)^{p-1}(1 + (2G)^p)\gamma_{N+1}$
 $\le |x_N - x^*||^p + pM2^p(6 + 4M)(1 + (2G)^p)\gamma_{N+1}$
By using induction, we get that
 $||x_N + k - x^*||^2 \le G^p + pM2^p(6 + 4M)^{p-1}(1 + (2G)^p) \sum_{i=N+1}^{N+k} \gamma_i$
 $\le G^p + G^p = 2G^p \le (2G)^p$
for all $k \ge 1$.

By using induction, we get that

$$
||x_{N+k} - x^*||^2 \le G^p + pM2^p(6+4M)^{p-1}(1+(2G)^p) \sum_{i=N+1}^{N+k} \gamma_i
$$

$$
\le G^p + G^p = 2G^p \le (2G)^p
$$

for all $k \geq 1$.

This shows $||x_n - x^*|| \leq 2G$ for all $n \geq N$. Therefore, it follows from (2,11) that

$$
||x_n - x^*||^p \le ||x_{n-1} - x^*||^p + 2p\alpha_n \left[\left(k_n - 1 + \frac{B_n}{p} + 2^{p-1}A_n \right) (2G)^p \right]
$$

[www.SID.ir](www.sid.ir)

+
$$
\xi_n + 2^{p-1}A_n
$$
 + $pM2^p(6+4M)^{p-1}(1+(2G)^p)\gamma_n$

− pαnφⁱ (*∥xⁿ − x ∗ ∥*) (2.12)

for all $n \ge N, i = 1, 2, \cdots, m$.

Taking $\delta_n = p\alpha_n$, $c_n = pM2^p(6+4M)^{p-1}(1+(2G)^p)\gamma_n$, $a_n = ||x_n-x^*||$ and $b_n = 2p\alpha_n \left[\left(k_n - 1 + \frac{B_n}{p} + 2^{p-1}A_n \right) (2G)^p + \xi_n + 2^{p-1}A_n \right]$ for all $n \geq N$. By (2.12) and Lemma 1.6 ensures that $||x_n - x^*|| \to 0$ as $n \to \infty$, that is, $x_n \to x^*$ as $n \to \infty$. This completes the proof.

Remark 2.2. *Theorem 2.1 improves and extends Theorem 1.2 (i.e., Theorem 2.1 of Yang [16]) in the following aspects:*

(1) Extend asymptotically pseudocontractive mapping to asymptotically quasi-pseudocontractive type mappings.

(2) It abolishes the condition that [∑]*[∞] n*=0 $\alpha_n(k_n-1) < \infty$.

(3) The proof of sequence {xn} boundedness is entirely different from what it was before.

(4) Extend implicit iterative scheme (1.2) to Ishikawa type implicit iteration process (1.3).

(5) Condition

Remark 2.2. Theorem 2.1 improves and extends Theorem 1.2 (i.e., Theorem 2.1 of Yang [16]) in the following aspects:

\n\n- (1) Extend asymptotically pseudocotractive mapping to asymptotically quasi-pseudocotractive mapping.
\n- (2) It also is the condition that
$$
\sum_{n=0}^{\infty} \alpha_n(k_n-1) < \infty
$$
.
\n- (3) The proof of sequence $\{x_n\}$ boundedness is entirely different from what it was before.
\n- (4) Extend implicit iterative scheme (1.2) to Ishikawa type implicit iteration process (1.3).
\n- (5) Condition
\n- \n $\limsup_{n \to \infty} \left\{ \langle T^n_i x_n - x^*, j(x_n - x^*) \rangle - k_n \|x_n - x^*\|^2 + \varphi(\|x_n - x^*\|) \right\} \leq 0$ is replaced by the condition
\n- \n $\limsup_{n \to \infty} \left\{ \langle T^n_i x_n - x^*, j(x_n - x^*) \rangle - k_n \|x_n - x^*\|^2 + \varphi(\|x_n - x^*)\| \right\} \leq 0$.
\n
\nFrom Theorem 2.1, we obtain the following result immediately.

$$
\limsup_{n \to \infty} \left\{ \inf_{j_p(x_n - x^*) \in J_p(x_n - x^*)} \langle T_i^n x_n - x^*, j_p(x_n - x^*) \rangle -k_n \|x_n - x^*\|^p + \varphi_i(\|x_n - x^*\|) \right\} \le 0.
$$

From Theorem 2.1, we obtain the following result immediately.

Theorem 2.3. *Let E be a real normed linear space, K a nonempty bounded convex subset of* E *and* $T_i: K \to K(i = 1, 2, \dots, m)$ *a finite* $family of asymptotically nonexpansive mappings with ${k_n^{(i)}} \subset [1, \infty)$$ *such that* $\lim_{n\to\infty} k_n = 1$, where $k_n = \max_{1 \le i \le m} \{k_n^{(i)}\}$. Assume that $F =$

 $\bigcap_{i=1}^{m} F(T_i) \neq \emptyset$ denotes the set of common fixed points of $\{T_i\}_{i=1}^{m}$. Let ${x_n}$ *be the sequence defined by (1.3). Suppose that* ${u_n}$ *and* ${v_n}$ are bounded sequences in K and that $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ and $\{\mu_n\}$ are *sequences in [0, 1] satisfying the following conditions:*

(i)
$$
\sum_{n=0}^{\infty} \alpha_n = \infty,
$$

\n(ii)
$$
\alpha_n \to 0, \beta_n \to 0 \quad (n \to \infty),
$$

\n(iii)
$$
\sum_{n=0}^{\infty} \gamma_n < \infty, \mu_n \to 0 \quad (n \to \infty).
$$

Assume that there exist strict increasing functions $\varphi_i : [0, \infty) \to [0, \infty)$ *with* $\varphi_i(0) = 0$ *such that*

$$
\limsup_{n \to \infty} \left\{ \inf_{j_p(x_n - x^*) \in J_p(x_n - x^*)} \langle T_i^n x_n - x^*, j_p(x_n - x^*) \rangle - k_n \|x_n - x^*\|^p + \varphi_i(\|x_n - x^*\|) \right\} \le 0
$$

 $for x^* \in F$ and $i = 1, 2, \cdots, m$ *. Then* $\{x_n\}$ *converges strongly to a common fixed point* x^* *of* $\{T_i\}_{i=1}^m$.

Proof. Since *Tⁱ* is an asymptotically nonexpansive mapping with ${k_n} \subset [1, \infty)$ such that $\lim_{n \to \infty} k_n = 1$, we have

$$
\limsup_{n \to \infty} \left\{ \sup_{x,y \in K} \left(\|T_i^n x - T_i^n y\| - \|x - y\| \right) \right\}
$$

\n
$$
\leq \limsup_{n \to \infty} \left[(k_n - 1) \operatorname{diam}(K) \right] = 0,
$$

Assume that there exist strict increasing functions $\varphi_i : [0, \infty) \rightarrow [0, \infty)$

with $\varphi_i(0) = 0$ such that
 $\limsup_{n \to \infty} \left\{ \inf_{j_p(x_n - x^*) \in J_p(x_n - x^*)} \langle T_i^n x_n - x^*, j_p(x_n - x^*) \rangle \right\}$
 $-\frac{1}{n} \left\| x_n - x^* \right\|^p + \varphi_i(\|x_n - x^*\|) \leq 0$

for where diam(K) = $\sup_{x,y\in K} ||x - y||$. This implies that every asymptotically nonexpansive mapping is asymptotically nonexpansive in the intermediate sense. Also since every asymptotically nonexpansive mapping is asymptotically pseudo-contractive mapping. The conclusion now follows easily from Theorem 2.1.

If $\gamma_n = \mu_n = 0$ ($\forall n \ge 1$) in Theorem 2.1 and Theorem 2.3, then we have the following results.

Theorem 2.4. *Let E be a real normed linear space, K a nonempty convex subset of E* and $T_i: K \to K(i = 1, 2, \dots, m)$ *a finite family of asymptotically nonexpansive in the intermediate sense and asymptotically quasi-pseudocontractive type mappings with* $\{k_n^{(i)}\} \subset [1,\infty)$ *such that* $\lim_{n\to\infty} k_n = 1$, where $k_n = \max_{1 \le i \le m} \{k_n^{(i)}\}$. Assume that $F =$

 $\bigcap_{i=1}^{m} F(T_i) \neq \emptyset$ denotes the set of common fixed points of $\{T_i\}_{i=1}^{m}$. Let *{xn} be the sequence defined by*

$$
\begin{cases}\nx_n = (1 - \alpha_n)x_{n-1} + \alpha_n T_{i(n)}^n y_n \\
y_n = (1 - \beta)x_n + \beta_n T_{i(n)}^n x_n, \quad (n \ge 0).\n\end{cases}
$$

Suppose that $\{\alpha_n\}$, $\{\beta_n\}$ *are sequences in [0, 1] satisfying the following conditions:*

(i)
$$
\sum_{n=0}^{\infty} \alpha_n = \infty
$$
,
\n(ii) $\alpha_n \to 0$, $\beta_n \to 0$ ($n \to \infty$).
\nAssume that there exist strict increasing functions $\varphi_i : [0, \infty) \to [0, \infty)$
\nwith $\varphi_i(0) = 0$ such that

$$
\limsup_{n \to \infty} \left\{ \inf_{j_p(x_n - x^*) \in J_p(x_n - x^*)} \langle T_i^n x_n - x^*, j_p(x_n - x^*) \rangle -k_n \|x_n - x^*\|^p + \varphi_i(\|x_n - x^*\|) \right\} \le 0
$$

for $x^* \in F$ *and* $i = 1, 2, \dots, m$ *. Then* $\{x_n\}$ *converges strongly to a common fixed point* x^* *of* $\{T_i\}_{i=1}^m$.

*A*_c = 0² \overline{A} = 0² (*A*), α + 0*(n* + ∞).
 Arch β (*A*) = 0*8* (*A*), α + *A*), α = *A* (*A*) = **Theorem 2.5.** *Let E be a real normed linear space, K a nonempty bounded convex subset of* E *and* $T_i: K \to K(i = 1, 2, \dots, m)$ *a finite* $family of asymptotically nonexpansive mappings with $\{k_n^{(i)}\} \subset [1,\infty)$$ *such that* $\lim_{n\to\infty} k_n = 1$, where $k_n = \max_{1 \le i \le m} \{k_n^{(i)}\}$. Assume that $F =$ $\bigcap_{i=1}^{m} F(T_i) \neq \emptyset$ denotes the set of common fixed points of $\{T_i\}_{i=1}^m$. Let *{xn} be the sequence defined by*

$$
\begin{cases}\nx_n = (1 - \alpha_n)x_{n-1} + \alpha_n T_{i(n)}^n y_n \\
y_n = (1 - \beta)x_n + \beta_n T_{i(n)}^n x_n, \quad (n \ge 0).\n\end{cases}
$$

Suppose that $\{\alpha_n\}$, $\{\beta_n\}$ *are sequences in [0, 1] satisfying the following conditions:*

(i)
$$
\sum_{n=0}^{\infty} \alpha_n = \infty
$$
,
\n(ii) $\alpha_n \to 0$, $\beta_n \to 0$ ($n \to \infty$).
\nAssume that there exist strict increasing functions $\varphi_i : [0, \infty) \to [0, \infty)$
\nwith $\varphi_i(0) = 0$ such that

$$
\limsup_{n \to \infty} \left\{ \inf_{j_p(x_n - x^*) \in J_p(x_n - x^*)} \langle T_i^n x_n - x^*, j_p(x_n - x^*) \rangle -k_n \|x_n - x^*\|^p + \varphi_i(\|x_n - x^*\|) \right\} \le 0
$$

for $x^* \in F$ *and* $i = 1, 2, \dots, m$ *. Then* $\{x_n\}$ *converges strongly to a common fixed point* x^* *of* $\{T_i\}_{i=1}^m$.

REFERENCES

- [1] E. Aspiund, Positivity of duality mappings, *Bull. Amer. Math. Soc.* **73** (1967) 200-203.
- [2] R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, *Colloq. Math.* **65** (1993), no. 2, 169–179.
- [3] S. S. Chang, K. K. Tanc, H. W. J. Lee and C. K. Chan, On the convergence of implicit iteration process with errors for a finite family of asymptotically nonexpansive mappings, *J. Math. Anal. Appl.* **313** (2006), no. 1, 273–283.
- [4] C. E. Chidume, H. Zegeye, Strong convergence theorems for common fixed points of uniformly *L*-Lipschitzian pseudocontractive semi-groups, *Appl. Anal.* **86** (2007), no. 3, 353–366.
- [5] K. Goebel, W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, *Proc. Amer. Math. Soc.* **35** (1972) 171–174.
- [6] F. Gu, The new composite implicit iterative process with errors for common fixed points of a finite family of strictly pseudocontractive mappings, *J. Math. Anal. Appl.* **329** (2007), no. 2, 766–776.
- [7] S. H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, *Sci. Math. Jpn.* **53** (2001), no. 1, 143– 148.
- [8] E. U. Ofoedu, Strong convergence theorem for uniformly *L*-Lipschitzian asymptotically pseudocontractive mapping in a real Banach space, *J. Math. Anal. Appl.* **321** (2006), no. 2, 722–728.
- (2) R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of a
symptotically nonexpansive mappings in Banach spaces with the uniform Opial property,
Colloq. Math. 65 (1993), no. 2, 169–179.

[3] S. S. Chang, K. K [9] M. O. Osilike, Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, *J. Math. Anal. Appl.* **294** (2004), no. 1, 73–81.
- [10] S. Plubtieng, K. Ungchittrakool and R. Wangkeeree, Implicit iterations of two finite families for nonexpansive mappings in Banach spaces, *Numer. Funct. Anal. Optim.* **28** (2007), no. 5-6, 737–749.
- [11] B. E. Rhoades, A comparison of various definition of contractive mappings, *Trans. Amer. Math. Soc.* **226** (1977) 257–290.
- [12] J. Schu, Iterative construction of fixed point of asymptotically nonexpansive mappings, *J. Math. Anal. Appl.* **158** (1991), no. 2, 407–413.
- [13] Z. H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, *J. Math. Anal. Appl.* **286** (2003), no. 1, 351–358.
- [14] H. K. Xu and R. G. Ori, An implicit iteration process for nonexpansive mappings, *Numer. Funct. Anal. Optim.* **22** (2001), no. 5, 767–773.
- [15] L. P. Yang and G. Hu, Convergence of implicit iteration process with random errors, *Acta Math. Sinica (Chin. Ser.)* **51** (2008), no. 1, 11–22.

- [16] L. P. Yang, Convergence theorems of an implicit iteration process for asymptotically pseudo-contractive mappings, *Bull. Iranian Math. Soc.* **38** (2012), no. 3, 699–713.
- [17] S. Y. Zhang, Modified generalized Ishikawa iterative approximations of fixed point for asymptotically quasi pseudocontractive type mappings in normed linear spaces. *Acta Math. Appl. Sin. (Chinese Series)* **34** (2011), no. 5, 886–894.
- [18] S. Y. Zhang, Iterative solution of strongly accretive operator equation in normed linear spaces, *Acta Anal. Funct. Appl.* **12** (2010), no. 12, 75–78.
- [19] H. Y. Zhou, S. S. Chang, Convergence of implicit iterative process for a finite family of asymptotically nonexpansive mappigs in Banach spaces, *Numer. Funct. Anal. Optim.* **23** (2002), no. 7-8, 911–921.
- [20] H. Y. Zhou, Y. J. Cho, Ishikawa and Mann iterative processes with errors for nonlinear Φ-strongly quasi-accretive mappings in normed linear spaces. *J. Korean Math. Soc.* **36** (1999), no. 6, 1061–1073

(Shuyi Zhang) Department of Mathematics, BoHai University, Jinzhou 121013 China

E-mail address: jzzhangshuyi@126.com *E-mail address*: jzzhangshuyi@126.com