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Abstract. In this paper, we show the stability of Gustafson, Wei-
dmann, Kato, Wolf, Schechter and Browder essential spectrum of
bounded linear operators on Banach spaces which remain invari-
ant under additive perturbations belonging to a broad classes of
operators U such that γ(Um) < 1 where γ(.) is a measure of non-
compactness.
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1. Introduction

Let X and Y be two Banach spaces. We denote by L(X,Y ) the set of
all bounded linear operators from X into Y. The subspace of all compact
(respectively, finite rank) operators of L(X,Y ) is denoted by K(X,Y )(
respectively, F0(X,Y )

)
. For U ∈ L(X,Y ), we write D(U) ⊂ X for the

domain, N (U) ⊂ X for the null space and R(U) ⊂ Y for the range of
U. The nullity, α(U), of U is defined as the dimension of N (U) and the
deficiency, β(U), of U is defined as the codimension of R(U) in Y. The
spectrum of U will be denoted by σ(U). The resolvent set ρ(U) of U is
the complement of σ(U) in the complex plane.

An operator U ∈ L(X,Y ) is called an upper (respectively, a lower)
semi-Fredholm operator, if the range R(U) of U is closed and α(U) <
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Stability of essential spectra 1058

∞ (respectively, β(U) < ∞). We denote by Φ+(X,Y )
(
respectively,

Φ−(X,Y )
)
the set of upper (respectively, lower) semi-Fredholm oper-

ators. The set of semi-Fredholm operators is define by Φ±(X,Y ) :=
Φ+(X,Y )∪Φ−(X,Y ) and Φ(X,Y ) := Φ+(X,Y )∩Φ−(X,Y ) is called a
set of Fredholm operators. A complex number λ is in ΦU , Φ+U , Φ−U

or Φ±U , if λ − U is in Φ(X,Y ), Φ+(X,Y ), Φ−(X,Y ) or Φ±(X,Y ), re-
spectively. For an operator U ∈ Φ±(X,Y ) we define the index of U
by i(U) = α(U) − β(U). If X = Y then L(X,Y ), K(X,Y ), F0(X,Y ),
Φ(X,Y ), Φ+(X,Y ), Φ−(X,Y ) and Φ±(X,Y ) are replaced respectively,
by L(X), K(X), F0(X), Φ(X), Φ+(X), Φ−(X) and Φ±(X).

In this paper, we are concerned with the following essential spectra

σe1(U) := {λ ∈ C such that λ− U ̸∈ Φ+(X)} := C\Φ+U ,

σe2(U) := {λ ∈ C such that λ− U ̸∈ Φ−(X)} := C\Φ−U ,

σe3(U) := {λ ∈ C such that λ− U ̸∈ Φ±(X)} := C\Φ±U ,

σe4(U) := {λ ∈ C such that λ− U ̸∈ Φ(X)} := C\ΦU ,

σe5(U) :=
∩

K∈K(X)

σ(U +K),

σe6(U) :=
∩

UK=KU
K∈K(X)

σ(U +K).

They can be ordered as

σe3(U) := σe1(U) ∩ σe2(U) ⊆ σe4(U) ⊆ σe5(U) ⊆ σe6(U).

The subsets σe1(.) and σe2(.) are the Gustafson and Weidmann essential
spectra [5], σe3(.) is the Kato essential spectrum [10], σe4(.) is the Wolf
essential spectrum [5, 16], σe5(.) is the Schechter essential spectrum [6,
7, 13, 15], and σe6(.) denotes the Browder essential spectrum [9, 12].
Note that all these sets are closed and if X is a Hilbert space and U is
a self-adjoint operator on X, then all these sets coincide.

Definition 1.1. Let X and Y be two Banach spaces and let F ∈ L(X,Y ).

(i) The operator F is called a Fredholm perturbation if U + F ∈
Φ(X,Y ) whenever U ∈ Φ(X,Y ). The set of Fredholm perturbations
denote by F(X,Y ).

(ii) The operator F is called an upper semi-Fredholm perturbation
if U + F ∈ Φ+(X,Y ) whenever U ∈ Φ+(X,Y ). The set of upper semi-
Fredholm perturbations is denoted by F+(X,Y ).
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1059 Abdmouleh

(iii) The operator F is called an lower semi-Fredholm perturbation
if U + F ∈ Φ−(X,Y ) whenever U ∈ Φ−(X,Y ). The set of lower semi-
Fredholm perturbations is denoted by F−(X,Y ).

In general we have

K(X,Y ) ⊆ F+(X,Y ) ⊆ F(X,Y ) and K(X,Y ) ⊆ F−(X,Y ) ⊆ F(X,Y ).

These classes of operators are introduced and investigated in [4]. In
particular, it is shown that F(X,Y ) is a closed subset of L(X,Y ). If
X = Y, we write F(X), F+(X) and F−(X) for F(X,X), F+(X,X) and
F−(X,X) respectively.

We recall the following results established in [8].

Lemma 1.2. ([8, Lemma 2.1]) Let U ∈ L(X,Y ) and F ∈ L(X,Y ).
Then

(i) If U ∈ Φ(X,Y ) and F ∈ F(X,Y ), then U + F ∈ Φ(X,Y ) and
i(U + F ) = i(U).

(ii) If U ∈ Φ+(X,Y ) and F ∈ F+(X,Y ), then U + F ∈ Φ+(X,Y ) and
i(U + F ) = i(U).

(iii) If U ∈ Φ−(X,Y ) and F ∈ F−(X,Y ), then U + F ∈ Φ−(X,Y ) and
i(U + F ) = i(U).

The following proposition provides a characterization of the Schechter
by means of Fredholm operators.

Proposition 1.3. ([15, Theorem 7.27, p. 172]) Let X be a Banach
space and let U ∈ L(X). Then

λ ̸∈ σe5(U) if and only if λ ∈ Φ0
U ,

where Φ0
U = {λ ∈ ΦU such that i(λ− U) = 0}.

The notion of a measure of noncompactness is used in some problems
of topology, functional analysis, and operator theory

(
see [3]

)
. To recall

the measure of noncompactness, we denote by MX the family of all
nonempty and bounded subsets of X while NX denotes its subfamily
consisting of all relatively compact sets. Moreover, let conv(A) denote
the convex hull of a set A ⊂ X. In [3], a mapping γ : MX −→ [0,+∞[
is said to be a measure of noncompactness in the space X, if it satisfies
the following conditions:
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Stability of essential spectra 1060

(1) The family N (γ) = {D ∈ MX ; γ(D) = 0} is nonempty and N (γ) ⊂
NX . The family N (γ) is called the kernel of the measure of noncompact-
ness γ.

For S, T ∈ MX , we have the following:

(2) γ
(
λS + (1− λ)T

)
≤ λγ(S) + (1− λ)γ(T ), for all λ ∈ [0, 1].

(3) If S ⊂ T then γ(S) ≤ γ(T ).

(4) γ(S) = γ(S).

(5) γ(conv(S)) = γ(S).

(6) If (Sn)n∈N is a sequence of sets from MX such that Sn+1 ⊂ Sn,

Sn = Sn, n ∈ {1, 2, ...} and lim
n→+∞

γ(Sn) = 0, then S∞ =

∞∩
n=1

Sn ̸= ∅

and S∞ ∈ N (γ).

Definition 1.4. (i) A measure of noncompactness γ is said to be sub-
linear if for all S, T ∈ MX , it satisfies the following two conditions:

(1) γ(λS) = |λ|γ(S) for λ ∈ R (γ is said to be homogenous).

(2) γ(S + T ) ≤ γ(S) + γ(T ) (γ is said to be subadditive).

(ii) A measure of noncompactness γ is referred to as a measure with
maximum property if max(γ(S), γ(T )) = γ(S ∪ T ).

(iii) A measure of noncompactness γ is said to be regular if N (γ) =
NX , it is sublinear and has maximum property.

For S ∈ MX , the most important examples of measures of noncom-
pactness [14] are:

• Kuratowski measure of noncompactness

γ(S) = inf{ε > 0 : Smay be covered by finitely many of sets of diameter ≤ ε}.

Remark 1.5. The Kuratowski measure of noncompactness γ(.) is reg-
ular.

Let U ∈ L(X). We say that U is k-set-contraction if for every set
S ∈ MX , we have γ(U(S)) ≤ kγ(S). We define γ(U) by

γ(U) := inf{k : U is k-set-contraction}.
We use the following proposition
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1061 Abdmouleh

Proposition 1.6. ([1, Corollary 2.3]) Let X be a Banach space and
U ∈ L(X). If γ(Um) < 1 for some m > 0 then I + U is a Fredholm
operator with i(I + U) = 0.

We denote by Pγ(.) the set defined by

Pγ(X) = {U ∈ L(X) such that γ(Um) < 1, for some m > 0}.

Definition 1.7. Let X and Y be two Banach spaces.

(i) An operator U ∈ L(X,Y ) is said to have a left Fredholm inverse if
there are maps Rl ∈ L(Y,X) and K ∈ K(X) such that IX +K extends
RlU. The operator Rl is called a left Fredholm inverse of U .

(ii) An operator U ∈ L(X,Y ) is said to have a right Fredholm inverse
if there is a map Rr ∈ L(Y,X) such that Rr(Y ) ⊂ D(U) and URr−IY ∈
K(Y ). The operator Rr is called a right Fredholm inverse of U .

(iii) An operator U ∈ L(X,Y ) is said to have a Fredholm inverse if
we shall refer to a map which is both a left and a right Fredholm inverse
of U.

Definition 1.8. Let U and V be two operators in L(X,Y ). We de-
note by F±

UV (Y,X) the set of left or right inverses R± of U satisfy-
ing V R± ∈ Pγ(X) or R±V ∈ Pγ(X) following that U ∈ Φ+(X,Y ) or
U ∈ Φ−(X,Y ).

The purpose of this work is to extend the main result of Theorem
5.1 in [2] to Gustafson, Weidmann, Kato, Wolf, Schechter and Browder
essential spectra of bounded linear operators on Banach spaces by means
of Kuratowski measure of noncompactness where we use the set Pγ(.) as
the set of perturbation operators. More precisely, let U and V be two
operators in L(X,Y ). If U ∈ Φ(X,Y ) and R is a Fredholm inverse of U
such that RV ∈ Pγ(X), then U + V ∈ Φ(X,Y ) and i(U + V ) = i(U).
In the same way, if U ∈ Φ+(X,Y )

(
respectively, Φ−(X,Y )

)
and Rl

(respectively, Rr) is a left (respectively, right) Fredholm inverse of U
such that V Rl ∈ Pγ(Y )

(
respectively, RrV ∈ Pγ(X)

)
, then U + V ∈

Φ+(X,Y )
(
respectively, Φ−(X,Y )

)
and i(U +V ) = i(U). Moreover, we

prove σei(U+V ) ⊂ σei(U), for all i = 1, 2, 3, 4, 5, 6 under conditions UλV ,
V Uλl and UλrV ∈ Pγ(X) where Uλ, Uλl and Uλr are inverse Fredholm,
left Fredholm inverse and right Fredholm inverse of λ− U respectively.

The organization of the paper is as follows: In Section 2, we present
the main results.
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Stability of essential spectra 1062

2. Mains results

Theorem 2.1. Let X and Y be two Banach spaces and let U and V be
two operators in L(X,Y ). Then

(i) If U ∈ Φ(X,Y ) and R ∈ L(Y,X) is a Fredholm inverse of U , such
that RV ∈ Pγ(X), then U + V ∈ Φ(X,Y ) and i(U + V ) = i(U).

(ii) If U ∈ Φ+(X,Y ) and Rl ∈ L(Y,X) is a left Fredholm inverse of
U , such that V Rl ∈ Pγ(Y ), then U+V ∈ Φ+(X,Y ) and i(U+V ) = i(U).

(iii) If U ∈ Φ−(X,Y ) and Rr ∈ L(Y,X) is a right Fredholm inverse
of U , such that RrV ∈ Pγ(X), then U + V ∈ Φ−(X,Y ) and i(U + V ) =
i(U).

(iv) If U ∈ Φ±(X,Y ) and F±
UV (Y,X) ̸= ∅, then U + V ∈ Φ±(X,Y ).

Proof. (i) Since R is a Fredholm inverse of U , there exists K ∈ K(Y )
such that

(2.1) UR = I −K on Y.

It follows from Eq. (2.1) that the operator U + V can be written in the
form

(2.2) U + V = U + (UR+K)V = U(IX +RV ) +KV.

Using the fact that RV ∈ Pγ(X) together with Proposition 1.6 one gets

(2.3) IX +RV ∈ Φ(X) and i(IX +RV ) = 0.

Since U ∈ Φ(X,Y ), applying [11, Theorem 5 (i), p. 159], we have
U(IX +RV ) ∈ Φ(X,Y ). Moreover, since KV ∈ K(X,Y ), using Lemma
1.2 (i) and Eq. (2.2) , we infer

U + V ∈ Φ(X,Y ) and i(U + V ) = i
(
U(IX +RV )

)
= i(U).

(ii) If Rl is a left Fredholm inverse of U , then there exists K ∈ K(X)
such that

(2.4) RlU = I −K on X.

It follows from Eq. (2.4) that the operator U + V can be written in the
form

(2.5) U + V = U + V (RlU +K) = (V Rl + IY )U + V K.

Using the fact that V Rl ∈ Pγ(Y ), and applying Proposition 1.6 we have
V Rl+ IY ∈ Φ(Y ) and i(V Rl+ IY ) = 0. Moreover, U ∈ Φ+(X,Y ), using
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1063 Abdmouleh

[11, Theorem 5 (ii), p. 156], we obtain (V Rl + IY )U ∈ Φ+(X,Y ). Since
V K ∈ K(X,Y ), applying Lemma 1.2 (ii) and Eq. (2.5), we get

U + V ∈ Φ+(X,Y ) and i(U + V ) = i(U).

(iii) If Rr is a right Fredholm inverse of U , then there exists K ∈ K(Y )
such that

URr = I −K on Y,

and consequently,

U + V = U + V (URr +K) = U(URr + IX) +KV.

Now, arguing as in (ii) we get

U + V ∈ Φ−(X,Y ) and i(U + V ) = i(U).

(iv) The statement (iv) is an immediate consequence of the items (ii)
and (iii). □

Theorem 2.2. Let X be a Banach space and let U and V be two oper-
ators in L(X). Then the following statements hold:

(i) Assume that for each λ ∈ ΦU , there exists a Fredholm inverse Uλ

of λ− U such that UλV ∈ Pγ(X), then

σe4(U + V ) ⊆ σe4(U) and σe5(U + V ) ⊆ σe5(U).

(ii) If the hypotheses of (i) is satisfied and if Cσe5(U) and Cσe5(U+V )
are connected, then

σe6(U + V ) ⊆ σe6(U).

(iii) Assume that for each λ ∈ Φ+U , there exists a left Fredholm
inverse Uλl of λ− U such that V Uλl ∈ Pγ(X), then

σe1(U + V ) ⊆ σe1(U).

(iv) Assume that for each λ ∈ Φ−U , there exists a right Fredholm
inverse Uλr of λ− U such that UλrV ∈ Pγ(X), then

σe2(U + V ) ⊆ σe2(U).

(v) Assume that for each λ ∈ Φ±U , the set F±
(λ−U)V (X) ̸= ∅, then

σe3(U + V ) ⊆ σe3(U).
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Stability of essential spectra 1064

Proof. (i) Suppose that λ ̸∈ σe4(U)
(
respectively, λ ̸∈ σe5(U)

)
, then λ ∈

ΦU

(
respectively, by Proposition 1.3, we have λ ∈ ΦU and i(λ−U) = 0).

Applying Theorem 2.1 (i) to the operators λ − U and −V , we prove
that λ ∈ ΦU+V and i(λ− U) = i(λ− U − V ). Therefore λ ̸∈ σe4U + V )(
respectively, λ ̸∈ σe5(U + V )

)
. We obtain

σe4U + V ) ⊆ σe4(U)

and

(2.6) σe5(U + V ) ⊆ σe5(U).

(ii) The sets Cσe5(U + V ) and Cσe5(U) are connected. Since U and V
are bounded operators, we have ρ(U) and ρ(U + V ) are not empty sets.
So, using [7, Lemma 3.1], we deduce that

σe5(U + V ) = σe6(U + V ) and σe5(U) = σe6(U).

So, Eq. (2.6) gives

σe6(U + V ) ⊆ σe6(U).

(iii) Suppose that λ ̸∈ σe1(U) then λ ∈ Φ+U . Using Theorem 2.1 (ii) to
the operators λ− U and −V , we prove that λ ∈ Φ+(U+V ). This proves
that λ ̸∈ σe1(U + V ). We find

σe1(U + V ) ⊆ σe1(U).

(iv) By a similar proof as in (iii), we replace σe1(.) and Φ+(.) by σe2(.)
and Φ−(.) respectively, and using Theorem 2.1 (iii) we obtain

σe2(U + V ) ⊆ σe2(U).

(v) Let λ ̸∈ σe3(U) then λ ∈ Φ±U . Since F±
(λ−U)V (X) ̸= ∅, applying

Theorem 2.1 (iv) to the operators λ−U and −V we have λ ∈ Φ±(U+V ).
Therefore

σe3(U + V ) ⊆ σe3(U).

□

Remark 2.3. (i) The results of the Theorem 2.1 remains valid if we
suppose that U ∈ C(X) and V is a U -bounded operator on X. Clearly,

applying Theorem 2.1, we prove the statements for Û ∈ L(XU , X) and

V̂ ∈ L(XU , X) and applying Eq. (2.7) we conclude the desired results.
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1065 Abdmouleh

Let V be an arbitrary U -bounded operator, hence we can regard U and
V as operators from XU into X, denoted by Û and V̂ respectively, that
belong to L(XU , X). Furthermore, we have the obvious relations

(2.7)


α(Û) = α(U), β(Û) = β(U), R(Û) = R(U),

α(Û + V̂ ) = α(U + V ),

β(Û + V̂ ) = β(U + V ) and R(Û + V̂ ) = R(U + V ).

(ii) similarly, as in Theorem 2.2, one may show that the same results
hold if we suppose that U ∈ C(X) and assume that V is an U -bounded
operator on X.
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