
Bull. Iranian Math. Soc.
Vol. 40 (2014), No. 5, pp. 1119–1133
Online ISSN: 1735-8515

ON THE ELLIPTIC CURVES OF THE FORM

y2 = x3 − 3px

H. DAGHIGH∗ AND S. DIDARI

(Communicated by Rahim Zaare-Nahandi)

Abstract. By the Mordell-Weil theorem, the group of rational
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1. Introduction

Let E be an elliptic curve over Q and E(Q) be its Mordell-Weil group
over Q which is a finitely generated abelian group. The rank of the free
part of E(Q) as a Z-module is called the rank of E over Q. There does
not exist an algorithm which would be able to compute the rank of a
given elliptic curve. Many authors [3–7,11,19] have considered different
families of elliptic curves and compute their rank and integral points.
Elliptic curves of the form y2 = x3−pqx are considered by many authors.
For example Maenishi [13] constructed some elliptic curves of this form
with rank exactly four. Spearman [17] gives a condition on p, such that
the elliptic curve y2 = x3−2px has rank three. Later Walsh [19] provided
a sufficient condition for elliptic curves of the form y2 = x3 − 2px, to
have rank three.
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On the elliptic curves of the form y2 = x3 − 3px 1120

In this paper we consider the family of elliptic curves over Q given by
the equation

Ep : y2 = x3 − 3px,

where p is a prime ̸= 2, 3. First using Selmer groups we find an upper
bound for the rank of this family. Then using Parity conjecture, we
refine our result and we find infinite families of elliptic curves which
conjecturally have rank two. Finally we find integral points on curves in
the family, and provide a sufficient condition on p, such that the elliptic
curve y2 = x3−3px has rank two. We also show that conjecturally, there
exist infinitely many of such primes. Our main result is the following
theorem:

Main Theorem. Let p be a prime number and Ep be the elliptic curve
y2 = x3 − 3px and E′

p be the elliptic curve y2 = x3 + 12px. We have

(a1) S(φ̂)(E′
p/Q) ≃ (Z/2Z)2 for p ≡ 1, 7, 19, 23, 25, 35, 47 (mod 48);

(a2) S(φ̂)(E′
p/Q) ≃ Z/2Z for p ≡ 5, 11, 13, 17, 29, 31, 37, 41, 43 (mod 48);

(a3) S(φ)(Ep/Q) ≃ (Z/2Z)2 for p ≡ 1, 5, 13, 25, 29, 37, 47 (mod 48);
(a4) S(φ)(Ep/Q) ≃ Z/2Z for p ≡ 7, 11, 17, 19, 23, 31, 35, 41, 43 (mod 48),

where φ : Ep −→ E′
p is a 2-isogeny defined in Section 2. And we have

the:

(b1) If p ≡ 1, 25, 47 (mod 48), then rank(Ep(Q)) ≤ 2;
(b2) If p ≡ 5, 7, 13, 19, 23, 29, 35, 37 (mod 48) , then rank(Ep(Q)) ≤ 1;
(b3) In all other cases, rank(Ep(Q)) = 0.

Furthermore there exists an infinite family of primes p with rank(Ep) =
2.

2. Computing the Selmer group

In this section, first we recall some basic facts on the Selmer groups of
elliptic curves with at least one 2-torsion rational point and then obtain
an upper bound on the rank of elliptic curves in the family. Let E and
E′ be elliptic curves defined over Q, and φ : E −→ E′ be a non zero
2−isogeny. Then we have the exact sequence of Gal(Q/Q)-modules

0 −→ E[φ] −→ E
φ−→E′ −→ 0,

where E[φ] = ker φ. Taking Galois cohomology, for each place v of Q
we obtain the short exact sequence

0 −→ E′(Qv)/φ(E(Qv))
δ−→H1(Qv, E[φ]) −→ H1(Qv, E)[φ] −→ 0,
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1121 Daghigh and Didari

where H1(Qv,−) denotes H1(Gal(Qv/Qv),−) and δ is the connecting
homomorphism. Consider the following commutative diagram:

0 −→ E′(Q)/φ(E(Q))
δ−→H1(Gal(Q/Q, E[φ]) −→H1(Gal(Q/Q, E)[φ]−→ 0

↓ ↓ ↓
0 −→

∏
v E

′(Qv)/φ(E(Qv))
δ−→

∏
v H

1(Qv, E[φ]) −→
∏

v H
1(Qv, E)[φ] −→0.

Then φ- Selmer group is defined as

S(φ)(E/Q) = Ker{H1(Gal(Q/Q), E[φ]) −→
∏
v

H1(Qv, E)},

and the Shafarevich-Tate group X(E/Q) is

X(E/Q) = Ker{H1(Gal(Q/Q), E) −→
∏
v

H1(Qv, E)}.

From the above commutative diagram and the definition of the Selmer
and Shafarevich-Tate groups, we immediately obtain the exact sequence

(2.1) 0 −→ E′(Q)/φ(E(Q)) −→ S(φ)(E/Q) −→ X(E/Q)[φ] −→ 0.

Let φ̂ : E′ −→ E be the dual isogeny of φ. Interchanging the role of E
and E′, we obtain another exact sequence

(2.2) 0 −→ E(Q)/φ̂(E′(Q)) −→ S(φ̂)(E′/Q) −→ X(E′/Q)[φ̂] −→ 0.

And there is the exact sequence

(2.3) 0 −→ E′(Q)[φ̂]

φ(E(Q[2]))
−→ E′(Q)

φ(E(Q))
−→ E(Q)

2(E(Q))
−→ E(Q)

φ̂(E′(Q))
−→ 0.

Hence, from above exact sequence we have

(2.4) dimF2

E(Q)

2(E(Q))
= dimF2

E(Q)

φ̂(E′(Q))
+dimF2

E′(Q)

φ(E(Q))
−dimF2

E′(Q)[φ̂]

φ(E(Q)[2])
.

On the other hand,

E(Q) ∼= Zr + E(Q)tors.(2.5)

Hence

E(Q)/2E(Q) ∼= (Z/2Z)r + E(Q)tors/2E(Q)tors,(2.6)

and therefore

rank E(Q) = dimF2E(Q)/2(E(Q))− dimF2E(Q)tors/2E(Q)tors.

From the above formulas we can see that, if φ is a 2-isogeny and E(Q)tors
= E[2], then the rank of the elliptic curve is given by

(2.7) rankE(Q) = dimF2E(Q)/φ̂(E′(Q)) + dimF2E(Q)/φ(E(Q))− 2.
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On the elliptic curves of the form y2 = x3 − 3px 1122

On the other hand from (2.1) and (2.2) we have

(2.8) dimF2E
′(Q)/φ(E(Q)) = dimF2S

(φ)(E/Q)− dimF2X(E/Q)[φ]

and

(2.9) dimF2E(Q)/φ̂(E′(Q)) = dimF2S
(φ̂)(E′/Q)− dimF2X(E′/Q)[φ̂].

Finally (2.7), (2.8) and (2.9) imply that

rankE(Q) = dimF2S
(φ̂)(E′/Q)− dimF2X(E′/Q)[φ̂] +

dimF2S
(φ)(E/Q)− dimF2X(E/Q)[φ]− 2.(2.10)

In our case, we use E′
p : y

2 = x3 + 12px and the 2-isogeny φ : Ep −→
E′

p defined by

φ(x, y) = (y2/x2,−y(3p+ x2)/x2).

To compute Selmer groups, we use proposition X.4.9 in [16]. Thus letting
S = {∞, 2, 3, p} ⊆ MQ,

Q(S, 2) = {b ∈ Q∗/(Q∗)2; ordv(b) ≡ 0(mod 2) for all v /∈ S},
and

Cd : dy2 = d2 + 12px4,
C ′
d : dy2 = d2 − 3px4,

we have the following identifications:

S(φ)(Ep/Q) ≃ {d ∈ Q(S, 2) : Cd(Ql) ̸= ϕ for all l ∈ S},
S(φ̂)(Ep/Q) ≃ {d ∈ Q(S, 2) : C ′

d(Ql) ̸= ϕ for all l ∈ S}.
Note that {±1,±2,±3,±p,±6,±2p,±3p,±6p} is a complete set of rep-
resentatives for Q(S, 2). We identify this set with Q(S, 2).

Proposition 2.1. We have

(1) S(φ)(Ep/Q) ≃ (Z/2Z)2 for p ≡ 1, 5, 13, 25, 29, 37, 47 (mod 48);

(2) S(φ)(Ep/Q) ≃ Z/2Z in all other cases.

Proof. Using the above identification we have {1, 3p} ⊆ S(φ)(Ep/Q). On
the other hand Cd(R) = ϕ for d < 0, and Cd(R) ̸= ϕ for d > 0.

For d = 2, C2(Q3) = ϕ, so 2 /∈ S(φ)(Ep/Q). For d = p,we have:

Cp(Q2) ̸= ϕ ⇐⇒ p ≡ 1(mod 4),

Cp(Q3) ̸= ϕ ⇐⇒ p ≡ 1(mod 3),

Cp(Qp) ̸= ϕ ⇐⇒ (3p) = 1.
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1123 Daghigh and Didari

Therefore, 3 ∈ S(φ)(Ep/Q) if and only if p ≡ 1(mod 12).
For d = 6, we have:

C6(Q2) ̸= ϕ ⇐⇒ p ≡ 5, 13, 15(mod 16),

C6(Q3) ̸= ϕ ⇐⇒ (2p3 ) = 1 ⇐⇒ p ≡ 2(mod 3),

C6(Qp) ̸= ϕ ⇐⇒ (6p) = 1.

Thus 6 ∈ S(φ)(Ep/Q) if and only if p ≡ 5, 29, 47(mod 48).

Since 3p ∈ S(φ)(Ep/Q) we conclude that

3 ∈ S(φ)(Ep/Q) ⇐⇒ p ∈ S(φ)(Ep/Q) ⇐⇒ p ≡ 1(mod 12),

6p ∈ S(φ)(Ep/Q) ⇐⇒ 2 ∈ S(φ)(Ep/Q), which is impossible,

2p ∈ S(φ)(Ep/Q) ⇐⇒ 6 ∈ S(φ)(Ep/Q) ⇐⇒ p ≡ 5, 29, 47(mod 48).

Finally we have:

If p ≡ 1, 13, 25, 37 (mod 48), then S(φ)(Ep/Q) = {1, 3, p, 3p}.
If p ≡ 5, 29, 47 (mod 48), then S(φ)(Ep/Q) = {1, 6, 2p, 3p}.
In all other cases, S(φ)(Ep/Q) = {1, 3p}.

This completes the proof. □

Proposition 2.2. We have

(1) S(φ̂)(E′
p/Q) ≃ (Z/2Z)2 for p ≡ 1, 7, 19, 23, 25, 35, 47 (mod 48);

(2) S(φ̂)(E′
p/Q) ≃ Z/2Z in all other cases.

Proof. It is clear from the definition that {1,−3p} ⊆ S(φ̂)(E′
p/Q). Sup-

pose that d=2k with k = ±1,±3,±p and C ′
2k(Q2) ̸= ϕ. Taking the

valuation v2 at 2 of both sides, we obtain a contradiction.
For d = −1, we have C ′

−1(Q3) = ϕ, so −1 /∈ S(φ̂)(E′
p/Q).

For d = 3 we have:

C ′
3(Q2) ̸= ϕ ⇐⇒ p ≡ 3, 7, 15(mod 16),

C ′
3(Q3) ̸= ϕ ⇐⇒ p ≡ 2(mod 3),

C ′
3(Qp) ̸= ϕ ⇐⇒ (3p) = 1 ⇐⇒ p ≡ 1, 11(mod 12).

For d = −3, we have
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On the elliptic curves of the form y2 = x3 − 3px 1124

C ′
−3(Q2) ̸= ϕ ⇐⇒ p ≡ 1, 3, 7, 9(mod 16),

C ′
−3(Q3) ̸= ϕ ⇐⇒ (p3) = 1 ⇐⇒ p ≡ 1(mod 3),

C ′
−3(Qp) ̸= ϕ ⇐⇒ (−3

p ) = 1 ⇐⇒ p ≡ 1, 7(mod 12).

So

±2,±2p,±6 /∈ S(φ̂)(E′
p/Q),

3 ∈ S(φ̂)(E′
p/Q) ⇐⇒ p ≡ 23, 35, 47(mod 48),

−3 ∈ S(φ̂)(E′
p/Q) ⇐⇒ p ≡ 1, 7, 19, 25(mod 48).

Since −3p ∈ S(φ̂)(E′
p/Q) we conclude that

p ∈ S(φ̂)(E′
p/Q) ⇐⇒ −3 ∈ S(φ̂)(E′

p/Q) ⇐⇒ p ≡ 1, 7, 19, 25(mod 48),

−p ∈ S(φ̂)(E′
p/Q) ⇐⇒ 3 ∈ S(φ̂)(E′

p/Q) ⇐⇒ p ≡ 23, 35, 47(mod 48),

3p ∈ S(φ̂)(E′
p/Q) ⇐⇒ −1 ∈ S(φ̂)(E′

p/Q), which is impossible.

Finally we have:

If p ≡ 1, 7, 19, 25 (mod 12), then S(φ̂)(E′
p/Q) = {1,−3, p,−3p},

If p ≡ 23, 35, 47 (mod 12), then S(φ̂)(E′
p/Q) = {1, 3,−p,−3p},

In the other cases, then S(φ̂)(E′
p/Q) = {1,−3p}.

This completes the proof. □

Theorem 2.3. Following statements hold:
If p ≡ 1, 25, 47 (mod 48), then rank(Ep(Q)) ≤ 2;
If p ≡ 5, 7, 13, 19, 23, 29, 35, 37 (mod 48) , then rank(Ep(Q)) ≤ 1;
In all other cases, rank(Ep(Q)) = 0.

Proof. This follows from propositions 2.1, 2.2 and (2.10). □
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1125 Daghigh and Didari

3. Calculation of the root number

In this section, first we recall the concept of the root number and
then using Parity conjecture refine our results in the previous section.
Let E be an elliptic curve over Q and np be the number of points in the
reduction of curve modulo p. Also let ap = p+1−np. Local part of the
L-series of E at p is defined as

Lp(T ) =


1− apT + pT 2 if E has good reduction at p,

1− T if E has split multiplicative reduction at p,

1 + T if E has non- split multiplicative reduction at p,

1 if E has additive reduction at p.

Definition 3.1. The L-series of E is defined to be

L(E, s) =
∏

p
1

Lp(p−s)
,

where the product is over all primes.

Theorem 3.2. The L-series L(E, s) has an analytic continuation to the
entire complex plane, and it satisfies the functional equation

Λ(E, s) = ϵ(E)Λ(E, 2− s),

where

Λ(E, s) = (NE/Q)
s/2(2π)−sΓ(s)L(E, s),

NE/Q is the conductor of E and Γ is the Gamma function. Here ϵ(E) =
±1 is called the global root number of E.

The Parity conjecture states that

(3.1) ϵ(E) = (−1)rE ,

where rE denotes the rank of Mordell-Weil group of E. On the other
hand, ϵ(E) can be expressed as a product

∏
l ϵl(E) taken over all places of

Q, each local root number ϵl(E) being defined in terms of representations
of Weil-Deligne group of Ql. We recall some facts from [14].

Proposition 3.3. Let l be a prime. Then

(1) If E is any elliptic curve over R, then ϵ∞(E) = −1.
(2) If E/Ql has good reduction, then ϵl(E) = 1.
(3) If E/Ql has multiplicative reduction, ϵl(E) = −1 if and only if

the reduction is split.
(4) If E/Ql has additive, potentially multiplicative reduction then for

l > 2, ϵl(E) = (−1/l) and for l = 2, ϵ2(E) ≡ −c6/2
v2(c6) mod 4.

(5) If E/Ql has additive, potentially good reduction with l > 3 and
e = 12/gcd(vl(∆), 12). then
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On the elliptic curves of the form y2 = x3 − 3px 1126

ϵl(E) =


(−1/l) if e = 2 or 6

(−3/l) if e = 3

(−2/l) if e = 4

(6) If E/Ql has additive, potentially good reduction with l = 3 (re-
spectively l=2) and E is given in minimal form, then ϵl(E) de-
pends only on the l-adic expansion of c4, c6 and ∆; if E is given
in minimal Weirestrass form, ϵl(E) can be read from table II
of [9].

Proposition 3.4. For any prime l, if E/Ql is in minimal Weierstrass
form, then its reduction is: good if and only if vl(∆) = 0, multiplicative
if and only if vl(∆) > 0 and vl(c4) = 0, additive if and only if vl(∆) > 0
and vl(c4) > 0. In the last case, the reduction is potentially multiplicative
if and only if vl(∆) > 3vl(c4).

For the elliptic curve E in the family, we have ∆E = 26 × 33 × p3. In
particular, y2 = x3 − 3px is in global minimal Weierstrass form. In this
case the reduction of Ep is additive, potentially good at 2,3 and p, and
good at all other primes.

Proposition 3.5. For elliptic curve E : y2 = x3 − 3px, we have

ϵ(Ep) =

{
+1 if p ≡ 1, 9, 11, 15 (mod 16)

−1 if p ≡ 3, 5, 7, 13 (mod 16).

Proof. Let ϵl(Ep) denote the local root number at l. From proposition
3.3 and above discussion, we have

ϵ2(Ep) =

{
+1 if p ≡ 3, 15 (mod 16)

−1 if p ≡ 1, 5, 7, 9, 11, 13 (mod 16),

and

ϵ3(Ep) = 1,

and, finally

ϵp(Ep) = (−2
p ) =

{
+1 if p ≡ 1, 3 (mod 8)

−1 if p ≡ 5, 7 (mod 8).

The assertion follows. □
Corollary 3.6. Assume the Parity conjecture holds for the family Ep.
Then
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1127 Daghigh and Didari

(1) if p ≡ 5, 7, 13, 19, 23, 29, 35, 37 (mod 48), then rp = 1;
(2) if p ≡ 11, 17, 31, 41, 43 (mod 48), then rp = 0;
(3) if p ≡ 1, 25, 47 (mod 48), the Parity conjecture implies rp =

0 or 2.

Remark 3.7. Recall that Kolyvagin’s work [10] proves that if E is a
modular elliptic curve over Q and if analytic rank of E is 0 or 1, then
the analytic rank equals the algebraic rank. Thanks to Wiles we can
remove modularity hypothesis from these results. Actually, in (3) both
cases appear: r191 = r197 = r313 = 0 and r47 = r337 = r3529 = 2.

4. Integer points and independent points

In this section, first we find integral points on the elliptic curve, and
using Weil-Châtelet group we give a condition on p, such that y2 =
x3 − 3px has maximal rank.
If (x, y) is an integer point on Ep, then the equation y2 = x(x2 − 3p)
implies that x = du2 and x2−3p = dv2 for some squarefree integer d and
positive integers u,v. Combining these two equations yields d2u4− 3p =
dv2; hence, d is a divisor of 3p, and

du4 − (3p/d) = v2.(4.1)

We examine each cases separately.

(1) d=1.In this case (4.1) can be rewritten as 3p = u4−v2, therefore
p = 2u2 − 3, and (u2, u(p− 3)/2) is on the curve.

(2) d=-1. In this case (4.1) can be rewritten as 3p = u4+v2, which
is impossible modulo 3.

(3) d=3. In this case (4.1) can be rewritten as p = 3u4 − v2, and
(3u2, 3uv) is on the curve.

(4) d=-3. In this case (4.1) can be rewritten as p = 3u4 + v2, and
(−3u2,−3uv) is on the curve.

(5) d=p. In this case (4.1) can be rewritten as pu4 = v2 + 3 and
(pu2, puv) is on the curve.

(6) d=-p. In this case (4.1) can be rewritten as −pu4 = v2 − 3,
which is impossible, since p ̸= 2, 3.

(7) d=3p. In this case (4.1) can be rewritten as 3pu4 = v2 + 1,
which is impossible modulo 3.

(8) d=-3p. In this case (4.1) can be rewritten as −3pu4 = v2 − 1,
which is impossible.
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On the elliptic curves of the form y2 = x3 − 3px 1128

Remark 4.1. From above discussion, if p satisfies any two cases of
(1),(3),(4),(5) above, then we can find two integer points on the elliptic
curve. For example, 47 = 2×52−3 and 47 = 3×24−1, then P = (25, 110)
and Q = (12, 6) are on E47 : y2 = x3 − 141x. On the other hand, we
have

⟨P, P ⟩ = 3.05926,
⟨P,Q⟩ = −1.38191,
⟨Q,Q⟩ = 2.27932.

Where as [21]

⟨R1, R2⟩ = ĥ(R1 +R2)− ĥ(R1)− ĥ(R2),

is the height pairing. Therefore

det

[
⟨P, P ⟩ ⟨P,Q⟩
⟨P,Q⟩ ⟨Q,Q⟩

]
= det

[
3.05926 −1.38191
−1.38191 2.27932

]
= 5.0633 ̸= 0.

Hence, P and Q are independent points on E47 : y
2 = x3 − 141x.

Now, following [12, 22] we try to find elliptic curves with maximal rank
in the family. Using the homomorphism

α : Ep(Q) −→ Q×/Q×2,

which is defined by

α(P ) =


Q×2 if P = O
−3pQ×2 if P = (0, 0)

xQ×2 if P = (x, y) ̸= (0, 0), P ̸= O.

We have the following exact sequence

0 −→ φ̂(E′
p(Q)) −→ Ep(Q)

α−→Q×/Q×2,

as well as the corresponding result for the dual isogeny:

0 −→ φ(Ep(Q)) −→ E′
p(Q)

β−→Q×/Q×2.

So imα ≃ Ep(Q)

φ̂(E′
p(Q))

and imβ ≃
E′

p(Q)

φ(Ep(Q))
. As mentioned in [12], The

images of α and β can be described as follows: WC(E′
p/Q) := imα

consists of all classes b1Q×2, where b1 is a squarefree integer such that

N2 = b1M
4 + b2e

4, b1b2 = −3p(4.2)

has a nontrivial solution N,M, e ∈ N with (M, e) = (N, e) = 1. The

equation (4.2) is called a torsor of E/Q and is denoted by T (φ̂)(b1).
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1129 Daghigh and Didari

Similarly, WC(Ep/Q) := imβ consists of all classes b1Q×2, where b1 is
a squarefree integer such that

T (φ)(b1) : N
2 = b1M

4 + b2e
4, b1b2 = 12p(4.3)

has a nontrivial solution in integer N,M, e ∈ N. It is easy to see that
every rational point P ̸= O on Ep has the form P = (m/e2, n/e3) for
integers n,m, e ∈ Z such that (m, e) = (n, e) = 1, and by definition we
have α(P ) = mQ×2. Moreover, it can be shown that the corresponding

torsor T (φ̂)(m) is solvable. Conversely, if (N,M, e) is a nontrivial prim-

itive solution of T ˆ(φ)(b1), then (b1M
2/e2, b1MN/e3) is a rational point

on E. Finally from (2.1) and (2.2) we have the following exact sequences

0 → WC(Ep/Q) → S(φ)(Ep/Q) → X(Ep/Q)[φ] → 0,(4.4)

0 → WC(E′
p/Q) → S(φ̂)(E′

p/Q) → X(E′
p/Q)[φ̂] → 0.(4.5)

Proposition 4.2. If the parity conjecture holds for the family Ep, then

(1) if p = 48a4 + n2, and n2 ≡ 1, 25, 47 (mod 48) then rp = 2.
(2) if p = 48a4 − n2 and n2 ≡ 1, 23, 47 (mod 48), then rp = 2.

Proof. If p = 48a4+n2 then (2a, n, 1) is a nontrivial solution of −3M4+

pe4 = N2, then T (φ̂)(−3) ̸= ϕ and so {1,−3p,−3, p} ⊆ WC(E′
p/Q).

Thus (4.5) and proposition 2.2 imply that dimF2X(E′/Q)[φ̂] = 0. On
the other hand, {1, 3p} ⊆ WC(Ep/Q), and therefore (4.4) and proposi-
tion 2.1 imply dimF2X(E/Q)[φ] ≤ 1. Now (2.10) implies rp ≥ 1. Thus
from parity conjecture we conclude that rp = 2. Proof of part (2) is
similar. □

Corollary 4.3. If p = 48a4 + (4a4 + m4 − 3)2 or p = 48a4 + (12a4 +
3m4 − 1)2, then rp = 2.

Proof. As we see in the proof of last proposition, in these cases
dimF2X(E′/Q)[φ̂] = 0. If p = 48a4 + (4a4 +m4 − 3)2, then p = (4a4 +
m4+3)2−12m4 and therefore (M,N, e) = (m, 4a4+m4+3, 1) is a solution

of T (φ)(12). So 12 ∈ WC(Ep/Q), and thus {1, 3p, 3, p} ⊆ WC(Ep/Q).
Therefore, (4.4) and proposition 2.1 imply dimF2X(E/Q)[φ] = 0. Now,
(2.10) implies rp ≥ 2, and we conclude that rp = 2. For p = 48a4 +
(12a4 + 3m4 − 1)2 we have a similar argument. □

The following conjecture due to Schinzel and Sierpinski [15] implies
that there exist infinitely many such primes.
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Conjecture 4.4. Let f1(x), f2(x), . . . , fm(x) ∈ Z[x] be irreducible poly-
nomials with positive leading coefficients. Assume that there exists no
integer n > 1 dividing f1(k), f2(k), . . . , fm(k) for all integers k. Then
there exist infinitely many positive integers l such that each of the num-
bers f1(l), f2(l), . . . , fm(l) is prime.

We can see that f(x) = 48x4+(4x4+13)2 and g(x) = 48x4+(12x4+
47)2 satisfy the assumption of the conjecture with m = 1. So there
exist infinitely many positive integers l1 and l2, such that f(l1) and
g(l2) are prime numbers. So there exist infinitely many elliptic curves
y2 = x3 − 3px with rank two. Some examples of such primes are: 337,
1087657, 27071017, 3529, 243391009, 832957129, 61941751969.

5. Numerical calculations related to the rank

As we see in corollary 3.6, if p ≡ 1, 25, 47 (mod 48), then parity
conjecture implies rp = 0 or 2. Now, using Magma [1], we have some
examples in table 1.

Table 1.

p ≡ 1 (mod 48) rp p ≡ 25 (mod 48) rp p ≡ 47 (mod 48) rp

1249 0 4969 0 4943 0

3889 2 5449 0 5711 0

4177 2 5737 2 15647 0

4657 0 5881 2 16223 0

5281 0 39241 0 17903 2

5521 0 39769 0 17903 2

6529 0 42841 0 34319 2

28513 2 44617 2 47087 2

33409 2 47017 2 47903 0

34897 2 47977 0 47951 0

Let Nk(x, r) denote the number of elliptic curves Ep with p = 48i+ k

and i ≤ x, such that rp = r, and set nk(x, 0) := Nk(x,0)
Nk(x,0)+Nk(x,2)

and

nk(x, 2) :=
Nk(x,2)

Nk(x,0)+Nk(x,2)
. Tables 2, 3, 4 suggest that the elliptic curves

Ep, with rank 2 thin out. Therefore considering corollary 3.6 and the
Dirichlet theorem on arithmetic progressions, it seems that half of the
curves in the family have rank1 and the other half have rank 0.
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Table 2.

x N1(x, 2) N1(x, 0) n1(x, 2) n1(x, 0)

10000 577 1905 0.2325 0.7675

20000 945 3725 0.2024 0.7976

30000 1293 5513 0.19 0.81

40000 1596 7317 0.1791 0.8901

50000 2151 8830 0.1959 0.8041

60000 2400 10613 0.1844 0.8156

70000 2646 12376 0.1761 0.8239

80000 2855 14137 0.168 0.832

90000 3060 15894 0.1614 0.8386

100000 3239 17676 0.1549 0.8451

Table 3.

x N25(x, 2) N25(x, 0) n25(x, 2) n25(x, 0)

10000 627 1845 0.2617 0.7383

20000 1000 3697 0.2129 0.7871

30000 1318 5513 0.1929 0.8071

40000 1605 7282 0.1806 0.8194

50000 1855 9089 0.1695 0.8305

60000 2116 10855 0.1631 0.8369

70000 2340 12652 0.1561 0.8439

80000 2549 14420 0.1502 0.8498

90000 2755 16192 0.1454 0.8546

100000 2961 17939 0.1417 0.8583

6. Acknowledgement

We would like to thank Professor Henri Darmon for reading the initial
version of this paper and for his interest in our work and useful advices.
This research was in part supported by University of Kashan under grant
number 159037/1.

References

[1] J. Cannon, MAGMA Computational Algebra System, http://magma.maths.
usyd.edu.au/magma/handbook/.

Arc
hive

 of
 S

ID

www.SID.ir



On the elliptic curves of the form y2 = x3 − 3px 1132

Table 4.

x N47(x, 2) N47(x, 0) n47(x, 2) n47(x, 0)

10000 895 1639 0.3532 0.6468

20000 1495 3248 0.3152 0.6848

30000 1990 4886 0.2894 0.7106

40000 2455 6481 0.2747 0.7253

50000 2860 8140 0.26 0.74

60000 3260 9779 0.25 0.75

70000 3643 11381 0.2425 0.7575

80000 3958 13019 0.2331 0.7669

90000 4310 14640 0.2274 0.7726

100000 4646 16290 0.2219 0.7781

[2] D. Andrzej and M. Wieczorek, On the equation y2 = x(x − 2m)(x + q − 2m).J.
Number Theory 124(2) (2007) 364–379.

[3] K. A. Draziotis and D. Poulakis, Practical solution of the Diophantine equation
y2 = x(x+ 2apb)(x− 2apb), Math. Comp. 75 (2006), no. 255, 1585–1593.

[4] K. A. Draziotis, Integer points on the curve Y 2 = X3 ± pkX, Math. Comp. 75
(2006), no. 255, 1493–1505.

[5] K. Feng and M. Xiong, On elliptic curves y2 = x3 − n2x with rank zero, J.
Number Theory 109 (2004), no. 1, 1–26.

[6] Y. Fujita and N. Terai, Integer Points and Independent points on the elliptic
curve y2 = x3 − pkx. Tokyo J. Math. 34 (2011), no. 2, 367–381.

[7] Y. Fujita and T. Nara, On the MordellWeil group of the elliptic curve, J. Number
Theory 132 (2012), no. 3, 448–466.

[8] T. Goto, A study on the Selmer groups of the elliptic curves with a rational
2-torsion, Ph.D Thesis, Kyushu Univ., (2002).

[9] E. Halberstadt, Signes locaux des courbes elliptiques en 2 et 3, C. R. Acad. Sci.
Paris Ser. I Math 326 (1998), no. 9, 1047–1052.

[10] V. A. Kolyvagin, Finiteness of E(Q) and Sha(E,Q) for a subclass of Weil curves,
Izv. Akad. Nauk SSSR Ser. Mat. 52 (1998), no. 3, 522–540, translation in: Math.
USSR-Izv 32 (1989), no. 3, 523–541.

[11] F. Lemmermeyer and R. Mollin, On Tate-Shafarevich groups of y2 = x(x2−k2),
Acta Math. Univ. Comenian. (N.S.) 72 (2003), no. 1, 73–80.

[12] F. Lemmermeyer, On Tate-Shafarevich Groups of Some Elliptic Curves, Alge-
braic Number Theory and Diophantine Analysis, (1998), 277–291, de Gruyter,
Berlin, 2000.

[13] M. Maenishi, On the rank of elliptic curves y2 = x3 − pqx, Kumamoto J. Math.
15 (2002) 1–5.

[14] O. G. Rizzo, Average root numbers for a nonconstant family of elliptic curves,
Compositio Math. 136 (2003), no. 1, 1–23.

Arc
hive

 of
 S

ID

www.SID.ir



1133 Daghigh and Didari

[15] A. Schinzel and W. Sierpinski, Sur certaines hypotheses concernant les nombres
premiers, Acta Arith. 4 (1958) 185–208.

[16] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathemat-
ics, 106, Springer, Dordrecht, 2009.

[17] B. K. Spearman, On the group structure of elliptic curves y2 = x3 − 2px, Int. J.
Algebra. 1 (2007), no. 5-8, 247–250.

[18] P. Walsh, Maximal ranks and integer points on a family of elliptic curves II,
Rocky Mountain J. Math. 41 (2011), no. 1, 311–317.

[19] P. Walsh, Maximal ranks and integer points on a family of elliptic curves, Glas.
Mat. Ser. III 44(64) (2009), no. 1, 83–87.

[20] P. Walsh, Integer solutions to the equation y2 = x(x2 ± pk), Rocky Mountain J.
Math. 38 (2008), no. 4, 1285–1302.

[21] L. C. Washington, Elliptic Curves: Number Theory and Cryptography, Chap-
man & Hall, Boca Raton, 2008.

[22] A. Weil, Sur un theoreme de mordell, Bull. Sci. Math. 54 (1930), no. 2, 182–191.

(Hassan Daghigh) Department of Mathematics, University of Kashan,
P.O. Box 87317-51167, Kashan, Iran

E-mail address: hassan@kashanu.ac.ir

(Somayeh Didari) Department of Mathematics, University of Kashan,
P.O. Box 87317-51167, Kashan, Iran

E-mail address: s.didari@grad.kashanu.ac.ir

Arc
hive

 of
 S

ID

www.SID.ir


