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Abstract. Motivated by the intensive and powerful works con-
cerning additive mappings of operator algebras, we mainly study
Lie-type higher derivations on operator algebras in the current work.
It is shown that every Lie (triple-)higher derivation on some clas-
sical operator algebras is of standard form. The definition of Lie
n-higher derivations on operator algebras and related potential re-
search topics are properly-posed at the end of this article.
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1. Introduction

For many years, there has been increasing interest on the study of
Lie-type mappings of associative rings and operator algebras, such as
Lie isomorphisms, Lie derivations and Lie triple derivations. Many
works are contributed to describe the structures of the aforementioned
mappings and tremendous progress has been made over the past few
years. In particular, Lie derivations and Lie triple derivations on op-
erator algebras draw related researchers’ attention and they can be re-
garded to some extent as one class of more entangled problems. Let A
be a unital algebra over a commutative ring R. An R-linear mapping
D : A −→ A is called a derivation ifD(theconvexy) = D(x)y+xD(y) for
all x, y ∈ A. An R-linear mapping D : A −→ A is called a Lie deriva-
tion if D([x, y]) = [D(x), y] + [x,D(y)] for all x, y ∈ A. An R-linear
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Lie-type higher derivations 1170

mapping D : A −→ A is called a Lie triple derivation if D([[x, y], z]) =
[[D(x), y], z] + [[x,D(y)], z] + [[x, y], D(z)] for all x, y, z ∈ A. Obviously,
every derivation on A is a Lie derivation and every Lie derivation is a
Lie triple derivation. But the converse statements are usually not true
(see the counterexamples in [40]).

Miers initially studied Lie-type mappings of operator algebras in his
seminal works [28–30]. He proved that every Lie derivation D on a von
Neumann algebra A can be uniquely written as the sum D = d + τ ,
where d is an inner derivation of A and τ is a linear mapping from A
into its center Z(A) vanishing on each commutator [29]. Furthermore,
Miers obtained an analogous decomposition for Lie triple derivations
of von Neumann algebras with no abelian summands [30]. Johnson
showed in [15] that every continuous Lie derivation from a symmetrically
amenable Banach algebra A into a Banach A-bimodule X decomposes
into a sum of an ordinary derivation from A into X and a linear mapping
from A into the center of X . Alaminos et al [2] jointly proved that every
Lie derivation on a symmetrically amenable semisimple Banach algebra
also has the same decomposition. Mathieu and Villena obtained that
every (not necessarily bounded) Lie derivation D on a C∗-algebra A can
be uniquely decomposed into the sum of a derivation d of A and a linear
mapping τ from A into its center Z(A) vanishing on all commutators
[27]. In addition, the decomposition problem of Lie triple derivations on
various triangular operator algebras are considered in [13,22,36,40,41].
The aforesaid Miers’ result about Lie triple derivations was extended
to different contexts, such as triangular uniformly hyperfinite algebras,
nest algebras, triangular matrix algebras. However, people pay much
less attention to the structure of Lie-type higher derivations on operator
algebras. To the best of our knowledge, there are no other articles
dealing with Lie-type higher derivations of operator algebras except for
[35]. The objective of this article is to describe the structure of Lie-type
higher derivations on some classical operator algebras.

Let us first recall some basic facts related to Lie higher derivations of
associative algebras. Various higher derivations, which consist of a fam-
ily of some additive mappings, have been widely studied in commutative
and noncommutative contexts (see [8,10–12,16,20,31–33,35,37,38] and
the references therein). Let A be a uintal associative algebra over a
commutative ring R. Let N be the set of all non-negative integers and
D = {dn}n∈N be a family of R-linear mappings of A such that d0 = idA.
D is called:
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1171 Han

(i) a higher derivation if

dn(xy) =
∑

i+j=n

di(x)dj(y)

for all x, y ∈ A and for each n ∈ N;
(ii) a Lie higher derivation if

dn([x, y]) =
∑

i+j=n

[di(x), dj(y)]

for all x, y ∈ A and for each n ∈ N;
(iii) a Lie triple higher derivation if

dn([[x, y], z]) =
∑

i+j+k=n

[[di(x), dj(y)], dk(z)]

for all x, y, z ∈ A and for each n ∈ N.
Note that d1 is always a Lie derivation (respectively, Lie triple deriva-
tion) if D = {dn}n∈N is a Lie higher derivation (respectively, Lie triple
higher derivation). Obviously, every higher derivation is a Lie higher
derivation and every Lie higher derivation is a Lie triple higher deriva-
tion. But the converse statements are generaly not true. Assume that
G = {gn}n∈N is a higher derivation of A. We can construct a sequence
of R-linear mappings

(1.1) dn = gn + fn, ∀n ∈ N,

where {fn}n∈N is a sequence of R-linear mappings from A into its center
Z(A) and each fn vanishes on all commutators of A. It is not difficult
to see that {dn}n∈N is a Lie higher derivation of A, but not a higher
derivation of A if fn ̸= 0 for some n ∈ N. A Lie higher derivation
D = {dn}n∈N is said to be standard if it has the property 1.1. Likewise,
if we have a sequence {f ′

n}n∈N of R-linear mappings from A into its
center Z(A) and each f ′

n vanishes on all second commutator of A, then
we can establish a sequence of R-linear mappings

(1.2) d′n = gn + f ′
n, ∀n ∈ N.

It is easy to check {d′n}n∈N is a Lie triple higher derivation of A, but
not a higher derivation of A if f ′

n ̸= 0 for some n ∈ N. A Lie triple
higher derivation D′ = {d′n}n∈N is said to be standard if it has the
decomposition 1.2.

This article is devoted to the study of Lie-type higher derivations
on some classical operator algebras and its framework is as follows. In
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Lie-type higher derivations 1172

the second section we give a new characterization of Lie (triple-)higher
derivation on associative algebras, which admit us to transfer the prob-
lems of Lie (triple-)higher derivations into the same problems concerning
Lie (triple-)derivations. We establish a one-to-one correspondence be-
tween the set of all Lie (triple-)higher derivations and the set of all
sequences of Lie (triple-)derivations. Then we apply the correspond-
ing relation to study Lie (triple-)higher derivations on some classical
operator algebras in the third section. The involved operator algebras
include the algebras of bounded linear operators, amenable semisimple
Banach algebras, C∗-algebras, von Neumann algebras, reflexive algebras,
J -subspace lattice algebras, CSL algebras, triangular operator algebras.

2. Lie (triple-)higher derivations on associative algebras

In this section we will give a new characterization concerning Lie
(triple-)higher derivations of associative algebras. These new properties
easily enable us to transfer the problems of Lie higher derivations (re-
spectively, Lie triple higher derivations) into the same problems related
to Lie derivations (respectively, Lie triple derivations). We establish a
one to one correspondence between the set of all Lie higher derivations
(respectively, Lie triple higher derivations) and the set of all sequences
of Lie derivations (respectively, Lie triple derivations).

A Lie higher derivation D = {di}mi=0 (respectively, D = {di}∞i=0) on
A is said to be order m (respectively, infinite order) if

dn([x, y]) =
∑

i+j=n

[di(x), dj(y)]

for all x, y ∈ A and for each n = 0, 1, 2, · · · ,m (respectively, n =
0, 1, 2, · · · ). Similarly, a Lie triple higher derivation D = {di}mi=0 (respec-
tively, D = {di}∞i=0) on A is said to be order m (respectively, infinite
order) if

dn([[x, y], z]) =
∑

i+j+k=n

[[di(x), dj(x)], dk(z)]

for all x ∈ A and for each n = 0, 1, 2, · · · ,m (respectively, n = 0, 1, 2, · · · ).
Throughout this paper, all involved Lie higher derivations and Lie triple
higher derivations are of infinite order and all obtained results still hold
for the case of finite order.

Proposition 2.1. Let A be an associative algebra over a field of char-
acteristic zero and D = {dn}∞n=0 be a Lie higher derivation of A. Then
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1173 Han

there is a sequence ∆ = {δn}∞n=0 of Lie derivations of A such that

(2.1) (n+ 1)dn+1 =

n∑
k=0

δk+1dn−k

for each non-negative integer n.

Proof. Let us take an inductive approach for the index n. If n = 0, then

d1([x, y]) = [d1(x), d0(y)] + [d0(x), d1(y)] = [d1(x), y] + [x, d1(y)]

for all x, y ∈ A. If we put δ1 = d1, then δ1 is a Lie derivation of A.
We now suppose that δk is a well-established linear mapping of A and

a Lie derivation of A for each k ≤ n. Let us define

δn+1 = (n+ 1)dn+1 −
n−1∑
k=0

δk+1dn−k.

It is sufficient for us to show that δn+1 is a Lie derivation of A.
For arbitrary elements x, y ∈ A, we have

δn+1([x, y]) = (n+ 1)dn+1([x, y])−
n−1∑
k=0

δk+1dn−k([x, y])

= (n+ 1)

n+1∑
k=0

[dk(x), dn+1−k(y)]−
n−1∑
k=0

δk+1

(
n−k∑
i=0

[di(x), dn−k−i(y)]

)
.

Therefore

δn+1([x, y]) =
n+1∑
k=0

(k + n+ 1− k)[dk(x), dn+1−k(y)]−

n−1∑
k=0

δk+1

(
n−k∑
i=0

[di(x), dn−k−i(y)]

)

=

n+1∑
k=0

k[dk(x), dn+1−k(y)]−
n−1∑
k=0

n−k∑
i=0

[δk+1(di(x)), dn−k−i(y)]

+
n+1∑
k=0

(n+ 1− k)[dk(x), dn+1−k(y)]−
n−1∑
k=0

n−k∑
i=0

[di(x), δk+1(dn−k−i(y))]
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Lie-type higher derivations 1174

for all x, y ∈ A. For convenience, let us write

P =

n+1∑
k=0

k[dk(x), dn+1−k(y)]−
n−1∑
k=0

n−k∑
i=0

[δk+1(di(x)), dn−k−i(y)],

Q =

n+1∑
k=0

(n+ 1− k)[dk(x), dn+1−k(y)]−
n−1∑
k=0

n−k∑
i=0

[di(x), δk+1(dn−k−i(y))].

Thus δn+1([x, y]) = P+Q. In the expression of summation
∑n−1

k=0

∑n−k
i=0 ,

we know that k ̸= n and 0 ≤ k + i ≤ n. If we set r = k + i, then

P =

n+1∑
k=0

k[dk(x), dn+1−k(y)]−
n∑

r=0

∑
0≤k≤r,k ̸=n

[δk+1(dr−k(x)), dn−r(y)]

=

n+1∑
k=0

k[dk(x), dn+1−k(y)]−
n−1∑
r=0

r∑
k=0

[δk+1(dr−k(x)), dn−r(y)]

−
n−1∑
k=0

[δk+1(dn−k(x)), y]

=
n∑

r=0

(r + 1)[dr+1(x), dn−r(y)]−
n−1∑
r=0

r∑
k=0

[δk+1(dr−k(x)), dn−r(y)]

−
n−1∑
k=0

[δk+1(dn−k(x)), y]

=

n−1∑
r=0

[(r + 1)dr+1(x)−
r∑

k=0

δk+1(dr−k(x)), dn−r(y)]

+ (n+ 1)[dn+1(x), y]−
n−1∑
k=0

[δk+1(dn−k(x)), y].

By the induction hypothesis we obtain

(r + 1)dr+1(x) =
r∑

k=0

δk+1(dr−k(x))

for each r = 0, · · · , n− 1. This shows that

P = [(n+ 1)dn+1(x)−
n−1∑
k=0

δk+1(dn−k(x)), y] = [δn+1(x), y].
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1175 Han

On the other hand, we can compute that

Q =
n+1∑
k=0

[dk(x), (n+ 1− k)dn+1−k(y)]

−
n−1∑
k=0

n−k∑
i=0

[di(x), δk+1(dn−k−i(y))]

=

n+1∑
k=0

[dk(x), (n+ 1− k)dn+1−k(y)]

−
n∑

i=0

n−i∑
k=0

[di(x), δk+1(dn−k−i(y))] + [x, δn+1(y)]

=
n∑

i=0

[di(x), (n+ 1− i)dn+1−i(y)]

−
n∑

i=0

n−i∑
k=0

[di(x), δk+1(dn−k−i(y))] + [x, δn+1(y)]

=
n∑

i=0

[di(x), (n+ 1− i)dn+1−i(y)−
n−i∑
k=0

δk+1(dn−k−i(y))] + [x, δn+1(y)].

By the induction hypothesis we get (n+1−i)dn+1−i(y) =
∑n−i

k=0 δk+1(dn−k−i(y))

for i = 1, · · · , n. Thus we immediately arrive at

Q =

n∑
i=0

[di(x), (n+ 1− i)dn+1−i(y)−
n−i∑
k=0

δk+1(dn−k−i(y))] + [x, δn+1(y)]

= [x, (n+ 1)dn+1(y)−
n∑

k=0

δk+1(dn−k(y))] + [x, δn+1(y)]

= [x, (n+ 1)dn+1(y)−
n−1∑
k=0

δk+1(dn−k(y))− δn+1(d0(y))] + [x, δn+1(y)]

= [x, δn+1(y)− δn+1(y)] + [x, δn+1(y)]

= [x, δn+1(y)].

Finally, we conclude

δn+1([x, y]) = P +Q = [δn+1(x), y] + [x, δn+1(y)]

for all x, y ∈ A. This implies that δn+1 is a Lie derivation of A, which
is the admired result. □
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Lie-type higher derivations 1176

We can extract a tedious but intuitive algorithm from the above
proposition, which will be used in the sequel.

Algorithm 1. By the formula 2.1 we can compute each component of
{dn}.
d0 = I,

d1 = δ1,

d2 =
1

2
δ21 +

1

2
δ2,

d3 =
1

6
δ31 +

1

6
δ1δ2 +

1

3
δ2δ1 +

1

3
δ3,

d4 =
1

24
δ41 +

1

24
δ21δ2 +

1

12
δ1δ2δ1 +

1

12
δ1δ3 +

1

8
δ2δ

2
1 +

1

8
δ22 +

1

4
δ3δ1 +

1

4
δ4,

d5 =
1

120
δ51+

1

120
δ31δ2+

1

60
δ21δ2δ1+

1

60
δ21δ3+

1

40
δ1δ2δ

2
1 +

1

40
δ1δ

2
2 +

1

20
δ1δ3δ1

+
1

20
δ1δ4+

1

30
δ2δ

3
1 +

1

30
δ2δ1δ2+

1

15
δ22δ1+

1

15
δ2δ3 +

1

10
δ3δ

2
1 +

1

10
δ3δ2

+
1

5
δ4δ1 +

1

5
δ5.

By an inductive approach we obtain(see [33])

dn =
∑

r1+r2+···+rm=n(rj∈N,rj ̸=0)

cr1,r2,··· ,rmδr1δr2 · · · δrm ,

where

cr1,r2,··· ,rm =
1

r1 + r2 + · · ·+ rm
· 1

r2 + · · ·+ rm
· · · · · 1

rm−1 + rm
· 1

rm
.

Recall that an algebra A is said to be torsion free if nx = 0 implies
that x = 0 for all x ∈ A and for each positive integer n. Clearly, an
arbitrary associative algebra over a field of characteristic 0 is always
torsion free. Now we are in a position to state the main theorem of this
section.

Theorem 2.2. Let A be a torsion free algebra, D be the set of all Lie
higher derivations on A and H be the set of all consequences of Lie
derivations on A with first component zero. Then there is a one-to-one
correspondence between D and H.

Proof. It follows from Proposition 2.1 that for arbitrary Lie higher deriva-
tion D = {dn}∞n=0 ∈ D, there is a sequence ∆ = {δn}∞n=0 ∈ H of Lie

Arc
hive

 of
 S

ID

www.SID.ir



1177 Han

derivations with δ0 = 0 such that

(n+ 1)dn+1 =

n∑
k=0

δk+1dn−k

for each non-negative integer n. Hence the following mapping

φ : D −→ H
{dn}∞n=0 = D 7−→ ∆ = {δn}∞n=0

is well-defined, where (n + 1)dn+1 =
∑n

k=0 δk+1dn−k. Note that the
solution of the recursive relation of Proposition 2.1 is unique. Therefore
φ is injective.

We next prove that φ is also surjective. For a given sequence ∆ =
{δn}∞n=0 of Lie derivations with δ0 = 0, we define d0 = I and

(n+ 1)dn+1 =

n∑
k=0

δk+1dn−k

for each no-negative integer n. It is sufficient for us to prove that D =
{dn}∞n=0 is a Lie higher derivation of A. Obviously, d1 = δ1 is a Lie

derivation of A. Assume that dk([x, y]) =
∑k

i=0[di(x), dk−i(y)] for all
x, y ∈ A and for each k ≤ n. Note that

(n+ 1)dn+1([x, y]) =

n∑
k=0

δk+1dn−k([x, y])

=

n∑
k=0

δk+1

(
n−k∑
i=0

[di(x), dn−k−i(y)]

)
.
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Lie-type higher derivations 1178

Applying the induction hypothesis we get

(n+ 1)dn+1([x, y]) =

n∑
k=0

n−k∑
i=0

{[δk+1(di(x)), dn−k−i(y)]

+[di(x), δk+1(dn−k−i(y))]}

=
n∑

i=0

[
n−i∑
k=0

δk+1dn−i−k(x), di(y)]

+

n∑
i=0

[di(x),

n−i∑
k=0

δk+1dn−i−k(y)]

=

n∑
i=0

[(n− i+ 1)dn−i+1(x), di(y)]

+

n∑
i=0

[di(x), (n− i+ 1)dn−i+1(y)]

=
n+1∑
i=1

i[di(x), dn+1−i(y)]

+
n∑

i=0

(n+ 1− i)[di(x), dn−i+1(y)]

= (n+ 1)

n+1∑
k=0

[dk(x), dn+1−k(y)]

for all x, y ∈ A. Since A is torsion free, we get

dn+1([x, y]) =

n+1∑
k=0

[dk(x), dn+1−k(y)]

for all x, y ∈ A. This shows that D = {dn}∞n=0 is a Lie higher derivation
of A. □

With the same proving techniques in Proposition 2.1 we have

Proposition 2.3. Let A be an associative algebra over a field of char-
acteristic zero and G = {gn}∞n=0 be a higher derivation (respectively, Lie
triple higher derivation) of A. Then there is a sequence Γ = {γn}∞n=0 of
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1179 Han

derivations (respectively, Lie triple derivations) on A such that

(n+ 1)gn+1 =

n∑
k=0

γk+1gn−k

for each non-negative integer n. Moreover, the Algorithm 1 still holds
for the higher derivation (respectively, Lie triple higher derivation) G =
{gn}∞n=0 and the sequence Γ = {γn}∞n=0 of derivations (respectively, Lie
triple derivations).

In view of Proposition 2.3, we can get another one-to-one correspon-
dence, which is completely parallel to Theorem 2.2.

Theorem 2.4. Let A be a torsion free algebra, G be the set of all higher
derivations (respectively, Lie triple higher derivations) on A, and E be
the set of all sequences of derivations (respectively, Lie triple derivations)
on A with first component zero. Then there is a one-to-one correspon-
dence between G and E.

Remark 2.5. We must point out that the above one-to-one correspon-
dence between higher derivations and derivations on other algebras was
also obtained in [11,33].

3. Lie-type higher derivations on operator algebras

Let A be a unital associative algebra over a commutative ring R and
δ be a Lie derivation of A. We shall say that δ is of standard form if it
can be expressed as the sum

(3.1) δ = h+ τ,

where h is a derivation of A and τ is a linear mapping from A into
its center Z(A) vanishing on all commutators. Similarly, a Lie triple
derivation δ′ of A is called standard if it has the decomposition

(3.2) δ′ = h+ τ ′,

where h is a derivation of A and τ ′ is a linear mapping from A into its
center Z(A) vanishing on all second commutators. It has been proved
that every Lie derivation (respectively, Lie triple derivation) on certain
operator algebras has the standard form 3.1 (respectively, 3.2 ). It is
natural to ask whether Lie (triple-)higher derivations on these operator
algebras are of the standard form 1.1 or 1.2. We will study Lie-type
higher derivations on some classical operator algebras in this section.
The involved operator algebras include the algebras of bounded linear
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Lie-type higher derivations 1180

operators, C∗-algebras, von Neumann algebras, amenable semisimple
Banach algebras, reflexive algebras, J -subspace lattice algebras, CSL
algebras and triangular operator algebras.

Let us first give a general result which admits us to transfer the stan-
dard form problem of Lie higher derivations to that of Lie derivations.

Proposition 3.1. Let A be an associative algebra over a field of char-
acteristic zero. If every Lie derivation of A has the standard form 3.1,
then every Lie higher derivation of A has the standard form 1.1.

Proof. We will give the proof of this proposition via the Algorithm 1.
Let D = {dn}∞n=0 be a Lie higher derivation of A. By the formula 2.1
there exists a sequence {δn}∞n=0 of Lie derivations such that

dn =
∑

r1+r2+···+rm=n(rj∈N,rj ̸=0)

cr1,r2,··· ,rmδr1δr2 · · · δrm ,

cr1,r2,··· ,rm =
1

r1 + r2 + · · ·+ rm
· 1

r2 + · · ·+ rm
· · · · · 1

rm−1 + rm
· 1

rm
.

According to the assumption we know that each Lie derivation δi(i ∈
N) of the sequence {δn}∞n=0 is of standard form 3.1. This implies that
each δi(i ∈ N) can be written as δi = hi+ τi(i ∈ N), where hi(i ∈ N) is a
derivation of A and τi(i ∈ N) is a linear mapping from A into its center
Z(A) vanishing on all commutators. Therefore

d1 = h1 + τ1

≜ H1 + S1,

d2 =
1

2
δ21 +

1

2
δ2

=
1

2
(h1 + τ1)

2 +
1

2
(h2 + τ2)

= (
1

2
h2
1 +

1

2
h2) + (

1

2
h1τ1 +

1

2
τ1h1 +

1

2
τ21 +

1

2
τ2)

≜ H2 + S2,

d3 =
1

6
δ31 +

1

6
δ1δ2 +

1

3
δ2δ1 +

1

3
δ3

=
1

6
(h1 + τ1)

3 +
1

6
(h1 + τ1)(h2 + τ2) +

1

3
(h2 + τ2)(h1 + τ1) +

1

3
(h3 + τ3)

= (
1

6
h3
1 +

1

6
h1h2 +

1

3
h2h1 +

1

3
h3) +

1

6
(h2

1τ1 + h1τ1h1 + h1τ
2
1 + τ1h

2
1 + τ1h1τ1

+ τ21h1 + τ31 + h1τ2 + τ1h2 + τ1τ2) +
1

3
(h2τ1 + τ2h1 + τ2τ1) +

1

3
τ3

≜ H3 + S3.
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1181 Han

Now suppose that Hk and Sk are well-established. Then

dk+1 =
1

k + 1
(δ1dk + δ2dk−1 + · · ·+ δkd1 + δk+1d0)

=
1

k + 1
[(h1 + τ1)(Hk + Sk) + (h2 + τ2)(Hk−1 + Sk−1) + · · ·

+ (hk + τk)(H1 + S1) + (hk+1 + τk+1)]

=
1

k + 1
[h1Hk + h2Hk−1 + · · ·+ hkH1 + hk+1 + S′

k+1]

≜ Hk+1 + Sk+1.

By Proposition 2.3 it is easy to verify that each Hi(i = 1, 2, · · · , k+1)
in the above collections is a higher derivation of A and that each Si(i =
1, 2, · · · , k + 1) in the above collections is a linear mapping from A into
its center Z(A) vanishing on all commutators. This shows that the Lie
higher derivation D = {dn}∞n=0 has the standard form 1.1. □

Similarly, we obtain

Proposition 3.2. Let A be an associative algebra over a field of char-
acteristic zero. If every Lie triple derivation of A is of standard form
3.2, then every Lie triple higher derivation of A is of standard form 1.2.

We next apply Proposition 3.1 and Proposition 3.2 to some classical
operator algebras. It turns out that every Lie higher derivation on these
operator algebras is of standard form 1.1 and that every Lie triple higher
derivation on these operator algebras is of standard form 1.2. Let us first
see the best common operator algebras.

3.1. Algebras of bounded linear operators. Let X be a Banach
space over the real or complex field F with dimX > 1. We denote the
algebra of all bounded linear operators on X by B(X). Lu and Liu
in [25] proved that every Lie derivation on B(X) is of standard form 3.1.
By Proposition 3.1 we have

Corollary 3.3. Let X be a Banach space over the real or complex field
F with dimX > 1 and B(X) be the algebra of all bounded linear operators
on X. Then every Lie higher derivation on B(X) has the standard form
1.1.

In view of the structure of algebras of bounded linear operators, the
following conjecture is at our hand.
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Conjecture 3.4. Let X be a Banach space over the real or complex field
F with dimX > 1 and B(X) be the algebra of all bounded linear operators
on X. Then every Lie triple derivation on B(X) has the standard 3.2
and every Lie triple higher derivation on B(X) has the standard form
1.2.

3.2. Symmetrically amenable Banach algebras. Let A be a Ba-
nach algebra, X be a Banach A-bimodule and X∗ be the dual Banach
A-bimodule of X. Recall that a Banach algebra A is said to be amenable
if every continuous derivation from A into X∗ is inner, whenever X
is a Banach A-bimodule. It was shown in [14] that a Banach alge-
bra is amenable if and only if A has a bounded approximate diagonal.
The flip mapping on the projective tensor product A⊗̂A is defined by
(a⊗b)◦ = b⊗a for all a, b ∈ A. An element t of A⊗̂A is called symmetric
if t◦ = t. Suppose that A has a bounded approximate diagonal consist-
ing of symmetric tensors; then it is called symmetrically amenable. Let
A be a symmetrically amenable semisimple Banach algebra, then every
Lie derivation on A is of standard form 3.1 [2]. Applying Proposition
3.1 yields

Corollary 3.5. Let A be a symmetrically amenable semisimple Banach
algebra. Then every Lie higher derivation on A has the standard form
1.1.

3.3. C∗-algebras. Let us consider Lie-type higher derivations on C∗-
algebras. Let A be a C∗-algebra. Mathieu and Villena showed us that
every Lie derivation on A is of standard form 3.1 [27]. It follows from
Proposition 3.1 that

Corollary 3.6. Let A be a C∗-algebra. Then every Lie higher derivation
on A has the standard form 1.1.

Furthermore, it was proved that if A is a unital C∗-algebra without
tracial states, then each Lie derivation on A is a derivation [27]. Conse-
quently, we obtain the following corollary.

Corollary 3.7. Let A be a unital C∗-algebra without tracial states, then
every Lie higher derivation on A is a higher derivation.

One embarrassing question is the lack of our knowledge about lie triple
derivations of C∗-algebras. To the best of our knowledge there is no any
article dealing with lie triple derivations of C∗-algebras. This suggests
the following properly-posed question.
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Question 3.8. Let A be a C∗-algebra. Is any Lie triple derivation on
A of standard form 3.2? Does any Lie triple higher derivation has the
standard form 1.2?

3.4. von Neumann algebras. LetA be a von Neumann algebra. Then
every Lie derivation on A is of standard form 3.1. This result belongs
to Miers [29] and was also obtained by Mathieu and Villena in a far
more conceptual approach [27]. In particular, it shows that every Lie
derivation on a properly infinite von Neumann algebra is a derivation
indeed [27]. By Proposition 3.1 we arrive at

Corollary 3.9. Let A be a von Neumann algebra. Then every Lie
higher derivation on A has the standard form 1.1. In particular, every
Lie higher derivation on a properly infinite von Neumann algebra is a
higher derivation indeed.

In addition, we know that if A is a von Neumann algebra with no
abelian summands, then every Lie triple derivation on A has the stan-
dard form 3.2 [30]. Combining this result with Proposition 3.2 leads
to

Corollary 3.10. Let A be a von Neumann algebra with no abelian sum-
mands. Then every Lie triple higher derivation on A is of standard form
1.2.

3.5. Reflexive algebras. Given a Banach space X with topological
dual X∗, by B(X) we denote the algebra of all bounded linear operators
on X. The terms operator on X and subspace of X will mean“bounded
linear mapping of X into itself” and “norm closed linear manifold of
X”, respectively. For any A ∈ B(X), A∗ is the adjoint of A. For any
non-empty subset L ⊆ X, L⊥ denotes its annihilator, that is, L⊥ = {f ∈
X∗|f(x) = 0 for all x ∈ L}. A family L of subspaces of X is a subspace
lattice if it contains {0} and X, and is complete in the sense that it is
closed under the formation of arbitrary closed linear spans (denoted by∨
) and intersections (denoted by

∧
).

For a given subspace lattice L on X, the associated subspace lattice
algebra AlgL is the set of operators on X leaving every subspace in L
invariant, that is

AlgL = {A ∈ B(X) |A(x) ∈ E for all x ∈ E and for every E ∈ L }.
Dually, if A is a subalgebra of B(X), by LatA we denote the lattice
of subspaces of X that are left invariant by each operator in A. An
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algebra A is said to be reflexive if A = AlgLatA, and a lattice L is
called reflexive if L = LatAlgL. Clearly, every reflexive algebra is of the
form AlgL for some subspace lattice L and vice versa.

For arbitrary subspace E in L, Longstaff [18] defined the following
related subspaces:

E− =
∨

{F ∈ L |F ⊉ E }, E ̸= 0,

E+ =
∧

{F ∈ L |F ⊈ E }, E ̸= X.

Although Lu and Liu [24] pointed that the problem of describing Lie
derivations of algebras on Banach spaces is much more difficult than
that of characterizing Lie derivations of algebras on Hilbert spaces, they
proved that

Theorem 3.11. [24, Theorem 2.1] Let X be a Banach space over the
real or complex field F with dimX > 1 and L be a subspace lattice of X
with X− ̸= X. If δ : AlgL → B(X) is a Lie derivation, then δ is of
standard form 3.1.

In view of Proposition 3.1 we get the corresponding higher version of
the above theorem.

Corollary 3.12. Let X be a Banach space over the real or complex field
F with dimX > 1 and L be a subspace lattice of X with X− ̸= X. Then
every Lie higher derivation from AlgL into B(X) has the standard form
1.1.

3.6. J -subspace lattice algebras. Let X be a Banach space over
the real or complex field F. A family L of subspaces of X is a subspace
lattice ofX which contains {0} andX, and is closed under the operations
closed linear span

∨
and intersection

∧
in the sense that

∨
γ∈Γ Lγ ∈ L

and
∧

γ∈Γ Lγ ∈ L for every family {Lγ : γ ∈ Γ} of elements in L. For
a subspace lattice L of X, the associated subspace lattice algebra AlgL
is the collection of all bounded operators leaving each subspace in L
invariant. As the above definition, for arbitrary subspace K in L we
establish

K− =
∨

{L ∈ L : K ⊈ L}.

The class of J -subspace lattices was defined by Panaia in his disser-
tation [34] and covers atomic Boolean subspace lattices and pentagon
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subspace lattices. J -subspace lattices are a particular sort of comple-
mented lattice, satisfying certain other criteria. To be precise, define

J (L) = {K ∈ L : K ̸= 0 and K− ̸= X}.

Then L is called a J -subspace lattice on X, provided all of the following
conditions are satisfied:

(1)
∨
{K : K ∈ J (L)} = X;

(2)
∩
{K− : K ∈ J (L)} = 0;

(3)K
∨

K− = X for each K in J (L);
(4)K

∩
K− = 0 for each K in J (L).

If L is a J -subspace lattice, the associated subspace lattice algebra
AlgL is called a J -subspace lattice algebra. It should be remarked that
both atomic Boolean subspace lattices and pentagon subspace lattices
are members of the class of J -subspace lattices [19]. Lu in [23] described
the structure of Lie derivations of J -subspace lattice algebras and ob-
served that every Lie derivation on AlgL has the standard form 3.1. In
light of Proposition 3.1 we have

Corollary 3.13. Let X be a Banach space over the real or complex field
F and AlgL be the J -subspace lattice algebra associated with X. Then
every Lie higher derivation on AlgL is of standard form 1.1.

3.7. CSL algebras. Let H be a complex Hilbert space, B(H) be the
algebra of all bounded linear operators on H and I be the identity op-
erator. The term projection on H means that “self-adjoint idempotent
operator on H”. A subspace lattice L of H is a strongly closed collection
of projections on H that is closed under the usual lattice operations

∨
and

∧
, and contains the zero operator 0 and the identity operator I.

A commutative subspace lattice (in brief, CSL) is a subspace lattice in
which each pair of projections in L commute. A subspace lattice L is
called completely distributive if P =

∨
{Q ∈ L |Q− ⊉ P } for all P ∈ L

with P ̸= 0, where Q− =
∨
{E ∈ L |E ⊉ Q }. Lu [21] investigated Lie

derivations of certain CSL algebras and proved that if AlgL is a reflexive
algebra on a separable Hilbert space H with completely distributive and
commutative lattice, then every Lie derivation on AlgL is of standard
form 3.1. While Zhang and Du [42] studied Lie derivation on an inde-
pendent finite-width CSL algebra of a complex separable Hilbert space
H (we refer the readers to [9] about the basic properties of finite-width
CSL algebras). They proved that if H is a complex separable Hilbert
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space with dimH ≥ 3 and AlgL is an independent finite-width CSL al-
gebra on H, then every Lie derivation on AlgL has the standard form
3.1. By Proposition 3.1 we get the following two results.

Corollary 3.14. Let AlgL be a reflexive algebra on a separable Hilbert
space H with completely distributive and commutative lattice. Then ev-
ery Lie higher derivation on AlgL has the standard form 1.1.

Corollary 3.15. Let H be a complex separable Hilbert space with dimH ≥
3 and AlgL be an independent finite-width CSL algebra on H. Then ev-
ery Lie higher derivation on AlgL is of standard form 1.1.

3.8. Triangular uniformly hyperfinite algebras. Let A be an as-
sociative algebra over the complex field C and {pn} be an increasing
sequence of positive integers such that pn|pn+1 for each n ≥ 1. Con-
sider a sequence of C∗-algebras An

∼=∗ Mpn×pn(C) and ∗-homorphisms
ϕn : An −→ An+1. The C∗-algebra inductive limit A of the system
{(An, ϕn)} is called a uniformly hyperfinite or UHF algebra. Alterna-
tively, A is a UHF algebra if there exists an increasing sequence {An}n
of full matrix algebras whose union is dense in A. Since An is simple
and finite-dimensional, it is ∗-isomorphic to some full matrix algebra
Mpn×pn(C). Let D be a maximal abelian self-adjoint subalgebra (i.e. a
masa) of a UHF algebra A, and let C be any subset of A. The normalizer
of D in C is the set

ND(C) =
{w ∈ C |w is a partial isometry such that w∗Dw ⊆ D and wDw∗ ⊆ D}.

A triangular UHF (TUHF) algebra Q is the Banach algebra direct limit
of a system

Q1
φ1 // Q2

φ2 // Q3
φ3 // Q4

φ4 // · · · ,

where Qn is isometrically isomorphic to some full upper triangular ma-
trix algebra Tpn and φn : Qn −→ Qn+1 is an embedding, i.e. the restric-
tion of a C∗-isomorphism, so that the extension of φn carries NDn(An)
into NDn+1(An+1). It was shown in [13] that every continuous Lie triple
derivation on a triangular UHF algebra is of standard form 3.2. So we
have the following

Corollary 3.16. Every continuous Lie triple higher derivation on a
triangular UHF algebra has the standard form 1.2.
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3.9. Nest algebras. Let X be a Banach space over the real or complex
field F and B(X) be the algebra of all bounded linear operators on X.
Let I be an index set. A nest is a set N of closed subspaces of X
satisfying the following conditions:

(a) 0, X ∈ N ;
(b) If N1, N2 ∈ N , then either N1 ⊆ N2 or N2 ⊆ N1;
(c) If {Ni}i∈I ⊆ N , then

∩
i∈I Ni ∈ N ;

(d) If {Ni}i∈I ⊆ N , then the norm closure of the linear span of∪
i∈I Ni also lies in N .

If N = {0, X}, then N is called a trivial nest, otherwise it is called a
non-trivial nest.

The nest algebra associated with N , denoted by T (N ), is the weakly
closed operator algebra consisting of all bounded linear operators that
leave N invariant, i.e.,

T (N ) = { T ∈ B(X) | T (N) ⊆ N for all N ∈ N}.
If X is a Hilbert space, then every nontrivial nest algebra is a triangular
algebra. Indeed, if N ∈ N\{0, X} and E is the orthogonal projection
onto N , then N1 = E(N ) and N2 = (1−E)(N ) are nests of N and N⊥,
respectively. Moreover, T (N1) = ET (N )E, T (N2) = (1− E)T (N )(1−
E) are nest algebras and

T (N ) =

[
T (N1) ET (N )(1− E)

O T (N2)

](
or T ′(N ) =

[
T (N1) O

(1− E)T (N )E T (N2)

])
.

However, it is not always the case for a nest N on a general Banach
space X, since N ∈ N may be not complemented. We refer the readers
to [7] for the theory of nest algebras.

It is clear that every nontrivial nest algebra on a finite dimensional
Banach space is isomorphic to a complex (or real) block upper (or lower)
triangular matrix algebra. Let X be an infinite dimensional Banach
space over the real or complex field F and N be a nest on X. Suppose
that there exists a non-trivial element N ∈ N which is complemented
in X. Then X = N ∔ M for some closed subspace M . Let N1 =
{N ′ ∩N |N ′ ∈ N} and N2 = {N ′ ∩M |N ′ ∈ N}. It follows that

T (N ) =

[
T (N1) B(M,N)

O T (N2)

]
is an upper triangular algebra and that

T ′(N ) =

[
T (N1) O

B(N,M) T (N2)

]
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is a lower triangular algebra. Benkovič in [4] obtained the following
results. Let X be an infinite dimensional Banach space over the real or
complex field F, N be a nest on X and T (N ) the nest algebra associated
with N . If N = {0, X} or if there exists N ∈ N\{0, X} which is
complemented in X, then every Lie derivation on T (N ) is of standard
form 3.1. In particular, if X = H is a Hilbert space over the real or
complex field F and T (N ) is a nest algebra associated with the nontrivial
nest N , then every Lie derivation on T (N ) has the standard form 3.1.
The corresponding higher version of the two results are easily obtained
by Proposition 3.1.

Corollary 3.17. Let X be an infinite dimensional Banach space over
the real or complex field F, N be a nest on X and T (N ) the nest algebra
associated with N . If N = {0, X} or if there exists N ∈ N\{0, X} which
is complemented in X, then every Lie higher derivation on T (N ) is of
standard form 1.1.

Corollary 3.18. Let H be a Hilbert space over the real or complex field
F, N be a nontrivial nest on H and T (N ) be the nest algebra associated
with N . Then every Lie higher derivation on T (N ) has the standard
form 1.1.

The following corollary is due to Lu [22], Sun and Ma [36] and Zhang
et al [41]. They independently characterized Lie triple derivations of nest
algebras via completely different approaches. More recently, roughly
speaking, they both showed that every Lie triple derivation on the nest
algebra T (N ) is of standard form 3.2.

Corollary 3.19. Let X be a Banach space over the real or complex
field F, N be a nontrivial nest on X and T (N ) be the nest algebra
associated with N . Then every Lie triple higher derivation on T (N )
has the standard form 1.2.

Let Tn(C) be the algebra consisting of all n × n upper triangular
matrices over the complex field C. Then Tn(C) can be looked on as a
nest algebra. So we assert

Corollary 3.20. Every Lie higher derivation on Tn(C) is of standard
from 1.1, and every Lie triple higher derivation on Tn(C) has the stan-
dard form 1.2.

3.10. Full matrix algebras. Let n be an arbitrary positive integer,
F be a field with char(F) = 0 and Mn(F) be the full matrix algebra
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consisting of all n×n matrices over F. Alaminos et al in [3] showed that
every Lie derivation on Mn(F) has the standard form 3.1. As a direct
consequence of Proposition 3.1 we have

Corollary 3.21. Every Lie higher derivation on Mn(F) has the standard
form 1.1.

However, to the best of our knowledge there is no any article deal-
ing with Lie triple derivations of Mn(F). This suggests the following
question.

Question 3.22. Does any Lie triple higher derivation on Mn(F) is of
standard form 1.2?

3.11. Block upper and lower triangular matrix algebras. Let C
be the complex field. Let N be the set of all positive integers and let
n ∈ N. For any positive integer m with m ≤ n, we denote by d̄ =
(d1, · · · , di, · · · , dm) ∈ Nm an ordered m-vector of positive integers such
that n = d1 + · · · + di + · · · + dm. The block upper triangular matrix

algebra Bd̄
n(C) is a subalgebra of Mn(C) with form

Bd̄
n(C) =


Md1(C) · · · Md1×di(C) · · · Md1×dm(C)

. . .
...

...
Mdi(C) · · · Mdi×dm(C)

O
. . .

...
Mdm(C)

 .

Likewise, the block lower triangular matrix algebra B′d̄
n (C) is a subalge-

bra of Mn(C) with form

B′d̄
n (C) =


Md1(C)

...
. . . O

Mdi×d1(C) · · · Mdi(C)
...

...
. . .

Mdm×d1(C) . . . Mdm×di(C) . . . Mdm(C)

 .

Note that the full matrix algebra Mn(C) of all n × n matrices over C
and the upper(respectively, lower) triangular matrix algebra Tn(C) of
all n×n upper triangular matrices over C are two special cases of block
upper(respectively, lower) triangular matrix algebras. If n ≥ 2 and

Bd̄
n(C) ̸= Mn(C), then Bd̄

n(C) is an upper triangular algebra and can be
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written as

Bd̄
n(C) =

[
Bd̄1

j (C) Mj×(n−j)(C)
O(n−j)×j Bd̄2

n−j(C)

]
,

where 1 ≤ j < m and d̄1 ∈ Nj , d̄2 ∈ Nm−j . Similarly, if n ≥ 2 and

B′d̄
n (C) ̸= Mn(C), then B′d̄

n (C) is a lower triangular algebra and can be
represented as

B′d̄
n (C) =

[
B′d̄1

j (C) Oj×(n−j)

M(n−j)×j(C) B′d̄2
n−j(C)

]
,

where 1 ≤ j < m and d̄1 ∈ Nj , d̄2 ∈ Nm−j . Cheung in [6] proved that
every Lie derivation on the block upper (respectively, lower) triangu-

lar matrix algebra Bd̄
n(C) (respectively, B′d̄

n (C)) is of standard form 3.1.
Xiao and Wei in [40] extended Cheung’s result to the case of Lie triple
derivations and showed that every Lie triple derivation on the block up-

per (respectively, lower) triangular matrix algebra Bd̄
n(C) (respectively,

B′d̄
n (C)) has the standard form 3.2. So we have

Corollary 3.23. Every Lie higher derivation on Bd̄
n(C) or B′d̄

n (C) has

the standard form 1.1, and every Lie triple higher derivation on Bd̄
n(C)

or B′d̄
n (C) is of standard form 1.2.

4. Future research topics

We will end this article with a potential future research topic. Taking
into account the definitions of Lie derivations and Lie triple derivations,
we can extend them in a much more general way. Let n be a positive
integer with n ≥ 2. Let us first see a sequence of polynomials

p1(x1) = x1,

p2(x1, x2) = [p1(x1), x2] = [x1, x2],

p3(x1, x2, x3) = [p2(x1, x2), x3] = [[x1, x2], x3],

p4(x1, x2, x3, x4) = [p3(x1, x2, x3), x4] = [[[x1, x2], x3], x4],

· · · · · · · · · · · · · · · · · · · · · · · · ,
pn(x1, x2, · · · , xn) = [pn−1(x1, x2, · · · , xn−1), xn].
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Let A be a unital associative algebra over a commutative ring R. An
R-linear mapping D : A −→ A is called a Lie n-derivation if

D(pn(x1, x2, · · · , xn)) =
n∑

i=1

pn(x1, · · · , xi−1, D(xi), xi+1, · · · , xn)

for all x1, x2, · · · , xn ∈ A. Obviously, arbitrary Lie derivation is a Lie
2-derivation and any Lie triple derivation is a Lie 3-derivation. Let A be
a unital associative algebra over a commutative ring R and D be a Lie
n-derivation on A. D is said to be standard form if it can be expressed
as the sum

(4.1) D = d+ τ,

where d is a derivation of A and τ is a linear mapping from A into its
center Z(A) vanishing on each (n− 1)-th commutator of type

[· · · [[︸ ︷︷ ︸
n−1

x1, x2], x3], · · · , xn].

This concept is due to Abdullaev, who proved that every Lie n-derivation
on a von Neumann algebra is of standard form 4.1 [1].

Let N be the set of all non-negative integers and D = {dm}m∈N be a
family of R-linear mappings of A such that d0 = idA. D is called a Lie
n-higher derivation if

dm(pn(x1, x2, · · · , xn)) =
∑

i1+i2+···+in=m

pn(di1(x1), di2(x2), · · · , din(xn))

for all x1, x2, · · · , xn ∈ A and for each m ∈ N. Thus every Lie higher
derivation is a Lie 2-higher derivation, every Lie triple higher derivation
is a Lie 3-higher derivation. Like what we have discussed in the Section
3, we should pay much attention to one class of Lie n-higher derivations
on A. Suppose that G = {gm}m∈N is a higher derivation of A. If
{f ′′

m}m∈N is a sequence of R-linear mappings from A into its center
Z(A) and each f ′′

m vanishes on each (n − 1)-th commutator of type
[· · · [[︸ ︷︷ ︸
n−1

a1, a2], a3], · · · , an], then we can establish a sequence of R-linear

mappings

(4.2) d′′m = gm + f ′′
m, ∀m ∈ N.

It is easy to verify that {d′′m}m∈N is a Lie n-higher derivation of A, but
not a higher derivation of A if f ′′

m ̸= 0 for some m ∈ N. A Lie n-higher
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derivation D = {d′′m}m∈N is said to be standard if it has the property
4.2.

In light of the systematic works [1–6, 13, 15, 17, 21–27, 29, 30, 35, 36,
38–42], it has considerable interests to study Lie n-derivations and Lie
n-higher derivations on operator algebras. Of course, we hope that all
existing results about Lie (triple-)derivations could be extended to the
case of Lie n-derivations and that the results related to Lie (triple-)higher
derivations could be correspondingly generalized to the case of Lie n-
higher derivations. This suggests the following questions, which will
form a large and long-standing project.

Question 4.1. Let A be an associative algebra over a field of charac-
teristic zero. Are the Proposition 3.1 and Proposition 3.2 also true for
Lie n-derivations and Lie n-higher derivations of A?

Question 4.2. Does any Lie n-derivation on the aforementioned opera-
tor algebras has the standard form 4.1? Is any Lie n-higher derivation on
the aforementioned operator algebras of standard form 4.2? The involved
operator algebras include various operator algebras, such as algebras of
bounded linear operator, C∗-algebras, von Neumann algebras, reflexive
algebras, J -subspace lattice algebras, CSL algebras, triangular operator
algebras.
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