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1. Introduction

It is well known that the vector equilibrium problem provides a unified
model of several problems such as the vector optimization, the vector
variational inequalities and the vector complementarities. In the past
decades, various types of vector equilibrium problems have intensively
been considered (see, e.g., [2,6,8,12–15,18,26], etc.). Among many prop-
erties of vector equilibrium problems, the stability analysis of solution
mappings is of considerable interest. Recently, there have been many
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Lower semicontinuity for PSVEP 1196

results on the stability such as continuity, semicontinuity, lower semi-
continuity of the solution mapping for parametric optimization, para-
metric vector variational inequalities and parametric vector equilibrium
problems in the literature (see, e.g., [4, 9, 20,21,27–29], etc.).

In [16], Cheng and Zhu studied the lower semicontinuity of the solu-
tion mapping to weak vector variational inequalities in finite dimension
spaces by using the scalarization method. By applying a density re-
sult and scalarization approach, Gong and Yao [19] also explored the
lower semicontinuity of the set of efficient solutions to parametric vector
equilibrium problems under some conditions which involve some infor-
mation about the solution set. Khanh and Luu [23] studied paramet-
ric multi-valued quasi-variational inequalities and obtained the semi-
continuity of the solution sets and approximate solution sets. Zhong
and Huang [32] studied the lower semicontinuity of the solution map-
ping for the parametric weak vector variational inequalities and also
obtained the lower semicontinuity of the solution mapping by degree-
theoretic method. Zhao [31] derived a sufficient and necessary condition
(H1) for the Hausdorff lower semicontinuity of the solution mapping to
a parametric optimization problems. Under mild assumptions, Kien [24]
also proved the sufficient and necessary condition (H1) for the Hausdorff
lower semicontinuity of the solution mapping to a parametric optimiza-
tion problems. Later on, in order to obtain the sufficient or necessary
conditions for the lower semi-continuity of solution sets, many authors
introduced a key assumption (Hg) similar to what is given in [31] for
parametric variational inequalities, parametric vector equilibrium prob-
lems and parametric quasi-equilibrium problems (see, e.g., Agarwal et
al. [1], Chen et al. [10], Li and Chen [25], Zhong and Huang [32,33], etc.).
Very recently, by using a scalarization technique, Chen and Huang [7]
investigated sufficient conditions for the continuity of the solution map-
pings to the two kinds of parametric generalized vector equilibrium prob-
lems under suitable conditions. Xu and Li [30] discussed the lower semi-
continuity of solution mappings to a parametric generalized strong vec-
tor equilibrium problem without any information about its solution set.
It is worth noting that, many authors studied the stability of solution
sets for optimization problems, vector variational inequalities and vector
equilibrium problems involving the information about the solution set of
the considered problems such as the key assumption (Hg) or (H1)(see,
e.g., [1,7,10,16,19,23–25,31–33], etc.). However, we do not know ahead
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1197 Chen

of the information of the solutions including the existence in many prac-
tical problems.

Motivated and inspired by the results mentioned above, the aim of
this paper is devoted to study the lower semicontinuity of the solution
mapping to the parametric set-valued vector equilibrium-like problems
(for short, (PSVEP)), where the constraint set K and a set-valued map-
ping H are perturbed by different parameters. To this end, we intro-
duce a concept of weak f -property for set-valued mapping, and then the
existence results of f -efficient solutions and the behavior of f -efficient
solution set for (PSVEP) are established under some suitable conditions.
The density of the positive proper efficient solution set relative to the
solution set of a set-valued vector equilibrium-like problem are proved
without involving any information about the solution set. Finally, the
lower semicontinuity of the solution mapping to (PSVEP) are derived by
using a density result and scalarization method. The results presented
in this paper generalize and improve some main results of Xu and Li
(2013) [30].

2. Preliminaries

Let X, Y , Z and W be locally convex Hausdorff topological vector
spaces, and Y ∗ be the topological dual space of Y . Let K be a nonempty
subset of X, C be a pointed closed convex cone in Y with nonempty in-
terior intC ̸= ∅, Λ and Ξ be nonempty subsets of Z and W , respectively.
Let η : X ×X → X be a vector-valued mapping, and H : X ×X → 2X

be a set-valued mapping, where 2X means the family of all nonempty
subsets of X. The zero vector of X ( Y , Z or W ) is denoted by 0. The
dual cone (positive polar cone) of C is defined as

C∗ = {f ∈ Y ∗ : f(y) ≥ 0, ∀y ∈ C}.
The quasi-interior of C∗ is defined as

C♯ = {f ∈ Y ∗ : f(y) > 0, ∀y ∈ C \ {0}}.
It is well-known that intC∗ ⊆ C♯ and equality holds whenever intC∗ ̸=

∅ (see, e.g., [22]).

We consider the following set-valued vector equilibrium-like problem
(SVEP): find x ∈ K such that

H(x, η(y, x)) ∩ (−C \ {0}) = ∅, ∀y ∈ K.(2.1)

Denote the solution set of this (SVEP) by S.
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Lower semicontinuity for PSVEP 1198

If the mappings K and H are perturbed by parameters λ ∈ Λ and
µ ∈ Ξ, respectively, then for any given (λ, µ) ∈ Λ × Ξ, we define the
parametric set-valued vector equilibrium-like problem (PSVEP): find x ∈
K(λ) such that

H(µ, x, η(y, x)) ∩ (−C \ {0}) = ∅, ∀y ∈ K(λ),(2.2)

whereH : Ξ×X×X → 2Y andK : Λ → 2X are two set-valued mappings
such that for some (λ̄, µ̄) ∈ Λ × Ξ,K(λ̄) = K and H(µ̄, x, η(y, x)) =
H(x, η(y, x)) for any x, y ∈ K. For each (λ, µ) ∈ Λ × Ξ, denote the
solution set of (PSVEP) by S(λ, µ), i.e.,

S(λ, µ) = {x ∈ K(λ) : H(µ, x, η(y, x)) ∩ (−C \ {0}) = ∅, ∀y ∈ K(λ)}.

So, S : Λ×Ξ → 2X is a set-valued mapping, which is called the solution
mapping of (2.2).

We also consider the following weak set-valued vector equilibrium-like
problem (WSVEP): find x ∈ K such that

H(x, η(y, x)) ∩ (−intC) = ∅, ∀y ∈ K.

For each (λ, µ) ∈ Λ×Ξ, the corresponding parametric weak set-valued
vector equilibrium-like problem (PWSVEP) defined as follows: find x ∈
K(λ) such that

H(µ, x, η(y, x)) ∩ (−intC) = ∅, ∀y ∈ K(λ).

Denote the solution sets of these (WSVEP) and (PWSVEP) by Sw

and Sw(λ, µ), respectively.

Similar to [19, 30], we define the f -efficient solution of (SVEP) and
(PSVEP), respectively, i.e.,

for each f ∈ C∗ \{0}, the f -efficient solution set of (SVEP) is defined
by

Sf = {x ∈ K : inf
v∈H(x,η(y,x))

f(v) ≥ 0, ∀y ∈ K}

and for each (λ, µ) ∈ Λ × Ξ, the f -efficient solutions set of (PSVEP) is
defined by

Sf (λ, µ) = {x ∈ K(λ) : inf
v∈H(µ,x,η(y,x))

f(v) ≥ 0, ∀y ∈ K(λ)}.

It is worth noting that if f = 0, then Sf = K and Sf (λ, µ) = K(λ)
for each (λ, µ) ∈ Λ× Ξ.

Special cases of the problem (2.2) are as follows:
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1199 Chen

(I) If Λ = Ξ,λ = µ, η(y, x) = y and H(µ, x, η(y, x)) = F (x, y, µ) for all
x, y ∈ X and µ ∈ Ξ, then the problem (2.2) is reduced to the following
generalized strong vector equilibrium problem: find x ∈ K(µ) such that

F (x, y, µ) ∩ (−C \ {0}) = ∅, ∀y ∈ K(µ),

which has been studied by Gong and Yao [19], Xu and Li [30] and the
references therein.

(II) If Λ = Ξ,λ = µ and H : Ξ × X × X → Y is vector-valued,
F (x, y, µ) = H(µ, x, η(y, x)) for all x, y ∈ X and µ ∈ Ξ, then the problem
(2.2) is reduced to the following generalized strong vector equilibrium
problem: find x ∈ K(µ) such that

F (x, y, µ) ̸∈ −C \ {0}, ∀y ∈ K(µ),

which has been studied by Ansari, Oettli and Schlaer [2], Bianchi, Had-
jisavvas and Schaible [6] and the references therein.

We firstly recall some basic concepts and well-known results.

Definition 2.1. [19] A point x ∈ K is called a positive proper efficient
solution to (SVEP) if there exists f ∈ C♯ such that

inf
v∈H(x,η(y,x))

f(v) ≥ 0, ∀y ∈ K.

Definition 2.2. [3,5] Let Γ be a Hausdorff topological space and X be a
locally convex Hausdorff topological vector space. A set-valued mapping
F : Γ → 2X is said to be:

(1) upper semicontinuous in the sense of Berge at γ0 ∈ Γ if, for each
open set V with F (γ0) ⊂ V , there exists δ > 0 such that

F (γ) ⊂ V, ∀γ ∈ B(γ0, δ);

(2) lower semicontinuous in the sense of Berge at γ0 ∈ Γ if, for each
open set V with F (γ0) ∩ V ̸= ∅, there exists δ > 0 such that

F (γ) ∩ V ̸= ∅, ∀γ ∈ B(γ0, δ).

We say that F is upper semicontinuous (resp., lower semicontinuous)
on Γ if it is upper semicontinuous (resp., lower semicontinuous) at each
γ ∈ Γ. F is called continuous on Γ if it is both upper semicontinuous
and lower semi-continuous on Γ.

Definition 2.3. Let E be a nonempty convex subset of X. A set-valued
mapping F : E → 2Y is said to be C-convex on E if for any x1, x2 ∈ E
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Lower semicontinuity for PSVEP 1200

and l ∈ [0, 1],

lF (x1) + (1− l)F (x2) ⊆ F (lx1 + (1− l)x2) + C.

Definition 2.4. [17] Let K be a nonempty subset of a Hausdorff
topological vector space X. A set-valued mapping F : K → 2X is
called a KKM mapping if, for each finite subset {x1, x2, · · · , xm} of K,
co{x1, · · · , xm} ⊆

∪m
i=1 F (xi), where co denotes the convex hull.

Definition 2.5. Let f ∈ C∗ \ {0} be given and D be a nonempty subset
of X. A set-valued mapping Π : D → 2Y is said to have the weak f -

property at x̄ ∈ D if, for all xα
D→ x̄ with xα ̸= x̄ and infv∈Π(x̄) f(v) ≥ 0

implies that there exists an index α0 such that

inf
v∈Π(xα)

f(v) ≥ 0, ∀α ≥ α0,(2.3)

where the notation xα
D→ x̄ means that xα → x̄, xα ∈ D.

We say that Π : D → 2Y is said to have the weak f -property on D if
it has the weak f-property at every point x ∈ D.

Remark 2.6. If D = X, and the inequality (2.3) is replaced by

inf
v∈Π(xα)

f(v) > 0, ∀α ≥ α0,

then the weak f-property is reduced to the f -property of Xu and Li [30].
That is, the f -property implies the weak f -property. But the converse is
not true.

Example 2.7. [30] Let X = R, Y = R2, C = R2
+, x̄ = 0, f = (1, 1) ∈

C∗ \ {0} and let

Π(x) =

{
[−1, 1]× [1, 2], if x = 0,
(−1, 1)× [1, 3], otherwise.

Then Π has the f-property at x̄ = 0, moreover, Π also has the weak
f -property at x̄ = 0.

Example 2.8. Let X,Y,C be the same as Example 2.7, x̄ = 0 and
f = (1, 1) ∈ C∗ \ {0}, and let

Π(x) =

{
[−1, 1]× [1, 2], if x = 0,
[−1, 1)× [1, 3], otherwise.

Then, for any net {xα} ⊆ R, xα → x̄ with xα ̸= 0 for all index α,
infv∈Π(0) f(v) = 0 ≥ 0. Simple computation shows that, for all index α,
infv∈Π(xα) f(v) = 0 ≥ 0. Therefore, Π has the weak f -property at x̄ = 0.
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1201 Chen

Particularly, taking up xn = 1
n . Then xn → 0 and xn ̸= 0. However,

there exists a positive integer number n0 such that

0 = inf
v∈Π(xn)

f(v) ̸> 0, ∀n ≥ n0.

So, Π dose not have the f-property at x̄ = 0.

Lemma 2.9. [17] Let K be a nonempty subset of a Hausdorff topological
vector space X and F : K → 2X be a KKM mapping such that, for all
y ∈ K, F (y) is closed and F (y∗) is compact for some y∗ ∈ K. Then∩

y∈K F (y) ̸= ∅.

Lemma 2.10. [3] Let Γ be a Hausdorff topological space, X be a locally
convex Hausdorff topological vector space and F : Γ → 2X be a set-valued
mapping. Then the following hold:

(1) F is lower semicontinuous at γ0 ∈ Γ if and only if, for any net
{γα} ⊆ Γ with γα → γ0 and x0 ∈ F (γ0), there exists a net
{xα} ⊆ X with xα ∈ F (γα) for all α such that xα → x0;

(2) If F is compact-valued, then F is upper semicontinuous at γ0 ∈ Γ
if and only if, for any net {γα} ⊆ Γ with γα → γ0 and {xα} ⊆ X
with xα ∈ F (γα) for all α, there exists x0 ∈ F (γ0) and a subnet
{xβ} of {xα} such that xβ → x0;

(3) If F is upper semicontinuous and closed-valued, then F is closed.
Conversely, if F is closed and X is compact, then F is upper
semicontinuous.

Lemma 2.11. [3] The union Υ =
∪

j∈J Υj of a family of lower semi-
continuous set-valued mappings Υj from a topological space X into a
topological space Y is also an lower semicontinuous set-valued mapping
from X into Y , where J is an index set.

Lemma 2.12. [3, 26] Let X and Y be two topological spaces. Let
F : X × Y → R = (−∞,+∞) be a bifunction and G : X → 2Y be a set-
valued mapping with nonempty values and let g(x) = supy∈G(x) F (x, y).
The following statements hold:

(1) if F and G are both lower semicontinuous, then g is also lower
semicontinuous;

(2) if F is upper semicontinuous and G is upper semicontinuous with
compact values, then g is also upper semicontinuous.
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Lower semicontinuity for PSVEP 1202

3. Main results

In this section, we shall investigate the lower semi-continuity of the
solution mapping S(λ, µ) for (PSVEP) corresponding to a pair (λ, µ) of
parameters under some suitable assumptions which do not involve the
information of solution to (PSVEP).

Lemma 3.1. Let η : X×X → X be continuous. For each (λ, µ) ∈ Λ×Ξ,
K(λ) is a nonempty compact convex subset of X, and assume that the
following conditions hold:

(i) for each y ∈ K(λ),H(µ, ·, η(y, ·)) is lower semicontinuous on K(λ),
and for each x ∈ K(λ), H(µ, x, η(·, x)) is nonempty compact-valued and
C-convex on K(λ);

(ii) H(µ, x, η(x, x)) ⊆ C for all x ∈ K(λ).
Then, for each f ∈ C∗ \ {0}, Sf (λ, µ) is a nonempty compact set.

Proof. Let f ∈ C∗ \{0}. Define a set-valued mapping Θ : K(λ) → 2K(λ)

by

Θ(y) = {x ∈ K(λ) : inf
v∈H(µ,x,η(y,x))

f(v) ≥ 0}, ∀y ∈ K(λ).

Clearly, Sf (λ, µ) =
∩

y∈K(λ)Θ(y). To prove that Sf (λ, µ) ̸= ∅, we only

need to prove that
∩

y∈K(λ)Θ(y) ̸= ∅. By condition (ii), one has

inf
v∈H(µ,y,η(y,y))

f(v) ≥ 0,

which shows that y ∈ Θ(y) for each y ∈ K(λ).
Let us firstly show that, for each y ∈ K(λ),Θ(y) is a closed set.

Taking any sequence {xn} ⊆ Θ(y) such that xn → x̄ ∈ K(λ) as n → ∞.
Then

inf
v∈H(µ,xn,η(y,xn))

f(v) ≥ 0.(3.1)

Set gy(x) = infv∈H(µ,x,η(y,x)) f(v) = − supv∈H(µ,x,η(y,x))−f(v). Accord-

ing to (i) and Proposition 19 of [3, CH.3,SEC.1,P.118], it follows that gy
is upper semicontinuous on K(λ). By (3.1), we have gy(xn) ≥ 0 and so,

inf
v∈H(µ,x̄,η(y,x̄))

f(v) = gy(x̄) ≥ lim sup
n→∞

gy(xn) ≥ 0.

Namely, x̄ ∈ Θ(y). Hence, for each y ∈ K(λ),Θ(y) is a closed set.
Taking into account the compactness of K(λ) and Θ(y) ⊆ K(λ), for
each y ∈ K(λ),Θ(y) is a compact set.

Arc
hive

 of
 S

ID

www.SID.ir



1203 Chen

Secondly, let us prove that Θ is a KKM mapping. Suppose to the
contrary that there exists a finite subset {y1, y2, · · · , ym} ⊆ K(λ) such
that co{y1, y2, · · · , ym} ̸⊆

∪m
j=1Θ(yj). That is, there exist tj ∈ [0, 1], j =

1, 2, · · · ,m with
∑m

j=1 tj = 1 such that ỹ =
∑m

j=1 tjyj ̸∈ Θ(yj), for j =

1, 2, · · · ,m. Then, for each j ∈ {1, 2, · · · ,m}, infv∈H(µ,ỹ,η(yj ,ỹ)) f(v) < 0.

By condition (i), H(µ, ỹ, η(yj , ỹ)) is a compact set and so, there exists
vj ∈ H(µ, ỹ, η(yj , ỹ)) such that f(vj) = minv∈H(µ,ỹ,η(yj ,ỹ)) f(v) < 0.

Since for each y ∈ K(λ), H(µ, y, η(·, y)) is C-convex on K(λ), we have

m∑
j=1

tjvj ∈
m∑
j=1

tjH(µ, ỹ, η(yj , ỹ)) ⊆ H(µ, ỹ, η(ỹ, ỹ)) + C ⊆ C + C ⊆ C.

Noting that to f is linear continuous and f ∈ C∗ \ {0}, by the above
inclusion, we get

0 ≤ f(

m∑
j=1

tjvj) =

m∑
j=1

tjf(vj) < 0,

which is a contradiction. Therefore, Θ is a KKM mapping. This follows
from Lemma 2.9 that

∩
y∈K(λ)Θ(y) ̸= ∅. So, Sf (λ, µ) =

∩
y∈K(λ)Θ(y) ̸=

∅. By the compactness of Theta(y) for yinK(lambda), we have that
Sf (lambda,mu) is compact. □

The following result is a direct consequence of Lemma 3.1.

Corollary 3.2. Let K be a nonempty compact convex subset of X and
η : X × X → X be continuous. Assume that the following conditions
hold:

(i) for each y ∈ K,H(·, η(y, ·)) is lower semicontinuous on K, and
for each x ∈ K, H(x, η(·, x)) is nonempty compact-valued and C-convex
on K;

(ii) H(x, η(x, x)) ⊆ C for all x ∈ K.
Then, for each f ∈ C∗ \ {0}, Sf is nonempty and compact.

Theorem 3.3. Let f ∈ C∗ \ {0} be given. Assume that all assumptions
of Lemma 3.1 are satisfied, and the following conditions hold:

(i) K(·) is continuous on Λ;
(ii) H(·, ·, ·) has the weak f-property on Ξ×X ×X.

Then, Sf (·, ·) is lower semicontinuous on Λ× Ξ.

Proof. By Lemma 3.1, we have Sf (λ, µ) ̸= ∅ for (λ, µ) ∈ Λ × Ξ. Sup-

pose that there exists (λ̂, µ̂) ∈ Λ × Ξ such that Sf (·, ·) is not lower
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Lower semicontinuity for PSVEP 1204

semicontinuous at (λ̂, µ̂). Therefore there exist x̂ ∈ Sf (λ̂, µ̂) and a net

{(λα, µα)} ⊆ Λ × Ξ with (λα, µα) → (λ̂, µ̂) satisfying xα ̸→ x̂ for all

xα ∈ Sf (λα, µα), x̂ ∈ K(λ̂) and so

inf
v∈H(µ̂,x̂,η(y,x̂))

f(v) ≥ 0, ∀y ∈ K(λ̂).(3.2)

By (i), there exists a net {x̃α} ⊆ K(λα) such that x̃α → x̂. Moreover,
one can conclude that there exists a subnet {x̃ι} ⊆ {x̃α} such that
x̃ι ̸∈ Sf (λι, µι) . This follows that there exists some yι ∈ K(λι) such
that

inf
vι∈H(µι,x̃ι,η(yι,x̃ι))

f(vι) < 0.(3.3)

It follows from (i) that there exists ŷ ∈ K(λ̂) such that yι → ŷ (taking a

subnet if necessary). Consequently, one has (x̃ι, yι, λι, µι) → (x̂, ŷ, λ̂, µ̂).
Since η : X ×X → X is continuous, we obtain η(yι, x̃ι) → η(ŷ, x̂). This,
together with (3.2) and (ii), yields that there exists an index ι0 such
that

inf
vι∈H(µι,x̃ι,η(yι,x̃ι))

f(vι) ≥ 0, ι ≥ ι0,

which contradicts (3.3). □

Next, we give the following two examples to illustrate Theorem 3.3.

Example 3.4. Let X = Z = W = R, Y = R2, C = R2
+,Λ = [0, 1],Ξ =

[−1, 1], and for each x, y ∈ X,λ ∈ Λ, µ ∈ Ξ, let K(λ) = [λ, 1], η(y, x) =
y − 2x and

H(µ, x, y) =

{
[0, 2 + µ]× [1, 2], if µ ∈ [−1, 1] \ {0},
(y + x+ 1, 2), if µ = 0.

Then

H(µ, x, η(y, x)) =

{
[0, 2 + µ]× [1, 2], if µ ∈ [−1, 1] \ {0},
(y − x+ 1, 2), if µ = 0.

It is easy to verify that all conditions of Lemma 3.1 and conditions
(i),(ii) are satisfied. For each f = (f1, f2) ∈ C∗ \ {0}, simple computa-
tion shows that, for each (λ, µ) ∈ Λ × Ξ, Sf (λ, µ) = [λ, 1]. Therefore,
Sf (·, ·) is lower semicontinuous on Λ× Ξ.
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1205 Chen

Example 3.5. Let X = Z = W = R, Y = R2, C = R2
+,Λ = [0, 12 ],Ξ =

[−1, 1], and for each x, y ∈ X,λ ∈ Λ, µ ∈ Ξ, let K(λ) = [λ,−λ +
2], η(y, x) = y + 2x and

H(µ, x, y) =

{
[0, 2 + µ]× [1, 2], if µ = 0,
(−y + x+ 1, 2), if µ ∈ [−1, 1] \ {0}.

Then

H(µ, x, η(y, x)) =

{
[0, 2 + µ]× [1, 2], if µ = 0,
(−y − x+ 1, 2), if µ ∈ [−1, 1] \ {0}.

It is easy to verify that all conditions of Lemma 3.1 and condition (i) are
satisfied. For f = (1, 0) ∈ C∗ \ {0}, simple computation shows that, for
(λ, µ) ∈ Λ×{0}, Sf (λ, µ) = [λ,−λ+2] and for each (λ, µ) ∈ Λ×(Ξ\{0}),
Sf (λ, µ) = ∅. Therefore, Sf (·, ·) is not lower semicontinuous at (λ, µ) ∈
Λ×{0}. Indeed, let λ = µ = x = 0, y = 1, H(0, 0, 1) = [0, 2+µ]× [1, 2],
one has

inf
v∈H(0,0,1)

f(v) = 0.

But, there exist λn = µn = xn = 1
n , yn = 1 + 3

n with (λn, µn, xn, yn) →
(0, 0, 0, 1) such that H( 1n ,

1
n , 1+

3
n) = − 2

n and so, for any positive integer
numbers n0, n ≥ n0,

inf
v∈H( 1

n
, 1
n
,1+ 3

n
)
f(v) = − 2

n
< 0.

Remark 3.6. Examples 3.4 and 3.5 show that the f-efficient solution
set Sf (·, ·) of (PSVEP) is not a singleton, but a general set. Moreover,
when Sf (·, ·) is lower semicontinuous on Λ × Ξ, there is no need to
impose the continuity on the set-valued mapping H(·, ·, ·). Example 3.5
also illustrates that the weak f-property of H in Theorem 3.3 is essential.
The advantage of the weak f -property does not include the information
of solution to (PSVEP).

Motivated by the works of [19, 30], we shall prove that, under some
appropriate assumptions, the set of positive proper efficient solutions
to (SVEP) is dense in relative to the solutions set of (SVEP). For this
purpose, we define a set-valued mapping Ω : C∗ → 2K as follows:

Ω(f) =

{
Sf , if f ∈ C∗ \ {0},
K, if f = 0.
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Lemma 3.7. Let K be a nonempty compact subset of X and η : X ×
X → X be continuous. Assume that the following conditions hold:

(i) H(·, η(·, ·))(K) is a compact subset of Y , where H(·, η(·, ·))(K) =
{H(x, η(y, x)) : x, y ∈ K};

(ii) for each f ∈ C∗ \ {0},H(·, ·) has the weak f-property on X ×X.
Then, Ω(f) is lower semicontinuous on C∗ with respect to the strong
topology B(Y ∗, Y ) in Y .

Proof. The proof is similar to the one of [30, Lemma 3.2] and so it is
omitted here. □
Lemma 3.8. Assume that for each x ∈ K,H(x, η(K,x)) is a convex
set. Then

Sw =
∪

f∈C∗\{0}

Sf .

Proof. The proof is similar to the one of [11, Lemma 3.1, p.313] and so
it is omitted here. □
Theorem 3.9. Assume that all assumptions of Lemma 3.1 are satisfied,
and the following conditions hold:

(i) K(·) is continuous on Λ;
(ii) for each f ∈ C∗ \ {0},H(·, ·, ·) has the weak f -property on Ξ ×

X ×X;
(iii) for each (λ, µ) ∈ Λ×Ξ, x ∈ K(λ),H(µ, x, η(K(λ), x)) is a convex

set.
Then, for each (λ, µ) ∈ Λ× Ξ, Sw(λ, µ) is nonempty. Moreover, Sw(·, ·)
is lower semicontinuous on Λ× Ξ.

Proof. By Lemma 3.8, for each (λ, µ) ∈ Λ× Ξ, we have

Sw(λ, µ) =
∪

f∈C∗\{0}

Sf (λ, µ).

In view of Lemma 3.1, one has Sw(λ, µ) ̸= ∅. It follows from Theorem 3.3
that for each f ∈ C∗ \ {0}, Sf is lower semicontinuous on Λ×Ξ. There-
fore, by Lemma 2.11, we derive that Sw(·, ·) is lower semicontinuous on
Λ× Ξ. □
Example 3.10. Let X,Z,W, Y,C,Λ,Ξ,K(·), η(·, ·) and H(·, ·, ·) be the
same as Example 3.4. Then

H(µ, x, η(y, x)) =

{
[0, 2 + µ]× [1, 2], if µ ∈ [−1, 1] \ {0},
(y − x+ 1, 2), if µ = 0.

Arc
hive

 of
 S

ID

www.SID.ir



1207 Chen

It is easy to verify that all conditions of Lemma 3.1 and conditions
(i),(ii) and (iii) of Theorem 3.9 are satisfied. Simple computation allows
that, for each (λ, µ) ∈ Λ × Ξ, Sw(λ, µ) =

∪
f∈C∗\{0} Sf (λ, µ) = [λ, 1].

Therefore, Sw(·, ·) is lower semicontinuous on Λ× Ξ.

Theorem 3.11. Let C♯ ̸= ∅. Assume that all assumptions of Corollary
3.2 are satisfied, and the following conditions hold:

(i) H(·, η(·, ·))(K) is a compact subset of Y , where H(·, η(·, ·))(K) =
{H(x, η(y, x)) : x, y ∈ K};

(ii) for each f ∈ C∗ \ {0},H(·, ·) has the weak f-property on X ×X;
(iii) for each x ∈ K,H(x, η(K,x)) is a convex set.

Then, ∪
f∈C♯

Sf ⊆ S ⊆ cl(
∪

f∈C♯

Sf ).

Proof. By Corollary 3.2, for each f ∈ C∗ \ {0}, Sf ̸= ∅. By definition,
one has ∪

f∈C♯

Sf ⊆ S ⊆ Sw.

This, together with Lemma 3.8, implies that∪
f∈C♯

Sf ⊆ S ⊆
∪

f∈C∗\{0}

Sf .

Let us show that ∪
f∈C∗\{0}

Sf ⊆ cl(
∪

f∈C♯

Sf ).

Let x ∈
∪

f∈C∗\{0} Sf . Then there exists f̄ ∈ C∗ \ {0} such that x ∈ Sf̄ .

By the definition of Ω(f̄), we get x ∈ Sf̄ = Ω(f̄). In view of C♯ ̸= ∅, let
g ∈ C♯ and set fm = f̄ + g

m . Then fm ∈ C♯. By the similar method of

proof in [19, Theorem 2.1], we show that fm converges to f̄ with respect
to the topology β(Y ∗, Y ).

For any neighborhood V of 0 with respect to β(Y ∗, Y ), there exist
bounded subsets Bj ⊆ Y (j = 1, 2, · · · , n) and ϵ > 0 such that

n∩
j=1

{f ∈ Y ∗ : sup
y∈Bj

|f(y)| < ϵ} ⊆ V.

Arc
hive

 of
 S

ID

www.SID.ir



Lower semicontinuity for PSVEP 1208

By the boundedness of Bj and g ∈ Y ∗, |g(Bj)| is bounded for j =
1, 2, · · · , n. Therefore, there exists N such that

sup
y∈Bj

|g(y)
m

| < ϵ, j = 1, 2, · · · , n,m ≥ N.

This implies that g
m ∈ V , i.e., fm − f̄ ∈ V . So, fm converges to f̄ with

respect to the topology β(Y ∗, Y ). From Lemma 3.7, it follows that Ω(·)
is lower semicontinuous at f̄ . Then, for fm → f̄ and any x ∈ Ω(f̄) = Sf̄ ,

there exists xm ∈ Ω(fm) = Sfm ⊆
∪

f∈C♯ Sf such that xm → x. It is
easy to see that

x ∈ cl(
∪

f∈C♯

Sf ).

Again, from x ∈
∪

f∈C∗\{0} Sf , one has∪
f∈C∗\{0}

Sf ⊆ cl(
∪

f∈C♯

Sf ).

Therefore ∪
f∈C♯

Sf ⊆ S ⊆ cl(
∪

f∈C♯

Sf ).

□

Theorem 3.12. Let C♯ ̸= ∅. Assume that all assumptions of Lemma
3.1 are satisfied, and the following conditions hold:

(i) K(·) is continuous on Λ;
(ii) for each f ∈ C∗ \ {0},H(·, ·, ·) has the weak f -property on Ξ ×

X ×X;
(iii) for each (λ, µ) ∈ Λ×Ξ, x ∈ K(λ),H(µ, x, η(K(λ), x)) is a convex

set;
(iv) for each (λ, µ) ∈ Λ×Ξ, H(µ, ·, η(·, ·))(K(λ)) is a compact subset

of Y , where

H(µ, ·, η(·, ·))(K(λ)) = {H(µ, x, η(y, x)) : x, y ∈ K(λ)}.

Then, S(·, ·) is lower semicontinuous on Λ× Ξ.

Proof. Let (λ̄, µ̄) ∈ Λ × Ξ be any given. For each f ∈ C∗ \ {0}, it
follows from Theorem 3.3 that Sf is lower semicontinuous at (λ̄, µ̄). In
the light of Lemma 3.1 and Theorem 3.11, for each (λ, µ) ∈ Λ× Ξ, one
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has Sf (λ, µ) ̸= ∅ and∪
f∈C♯

Sf (λ, µ) ⊆ S(λ, µ) ⊆ cl(
∪

f∈C♯

Sf (λ, µ)).(3.4)

For any x ∈ S(λ̄, µ̄) and any neighborhood V (x) of x, by (3.4), x ∈
cl(

∪
f∈C♯ Sf (λ̄, µ̄)). Moreover, one has

V (x)
∩

(
∪

f∈C♯

Sf (λ̄, µ̄)) ̸= ∅.

Hence, there exists f ∈ C♯ such that

V (x)
∩

Sf (λ̄, µ̄) ̸= ∅.

By the lower semicontinuity of Sf at (λ̄, µ̄), there exists a neighborhood
V (λ̄, µ̄) of (λ̄, µ̄) such that

Sf (λ, µ)
∩

V (x) ̸= ∅, ∀(λ, µ) ∈ V (λ̄, µ̄).(3.5)

Again from (3.4), one has Sf (λ, µ) ⊆ S(λ, µ). This, together with (3.5),
shows that

S(λ, µ)
∩

V (x) ̸= ∅, ∀(λ, µ) ∈ V (λ̄, µ̄).

By Definition 2.2, S(·, ·) is lower semicontinuous at (λ̄, µ̄). By the ran-
domicity of (λ̄, µ̄), we can obtain that S(·, ·) is lower semicontinuous on
Λ× Ξ. □

Example 3.13. Let X,Z,W, Y,C,Λ,Ξ,K(·), η(·, ·) and H(·, ·, ·) be the
same as Example 3.4. It is easy to verify that all conditions of Lemma
3.1 and conditions (i)-(iv) of Theorem 3.12 are satisfied. Simple compu-
tation allows that, for each (λ, µ) ∈ Λ × Ξ, S(λ, µ) = [λ, 1]. Therefore,
S(·, ·) is lower semicontinuous on Λ× Ξ.

Example 3.14. Let us consider Example 3.5. Easily verify that all
conditions of Lemma 3.1 and conditions (i),(iii) and (iv) of Theorem
3.12 are satisfied. From Example 3.5, the condition (ii) does not hold.
Simple computation allows that, for (λ, µ) ∈ Λ×{0}, S(λ, µ) = [λ,−λ+
2] and for each (λ, µ) ∈ Λ × (Ξ \ {0}), S(λ, µ) = ∅. Therefore, S(·, ·)
is not lower semicontinuous at (λ, µ) ∈ Λ × {0}. That is, the weak f -
property of H is necessary to the lower semicontinuity for the solution
mapping S(·, ·) in Theorem 3.12.
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Remark 3.15. Lemma 3.7 and Theorems 3.3, 3.11 and 3.12 improve
and generalize Lemma 3.2, Lemma 3.1, Lemma 3.3 and Theorem 3.1
of Xu and Li [30], respectively. Particularly, we may assume that Λ is
the same as Ξ, λ = µ, η(y, x) = y for all x, y ∈ X. Then, if we replace
the weak f -property by the f-property, one can easily obtain the results
presented by Xu and Li [30].
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