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ABSTRACT. In the present paper we investigate the Li-weak ergod-
icity of nonhomogeneous continuous-time Markov processes with
general state spaces. We provide a necessary and sufficient condi-
tion for such processes to satisfy the L;-weak ergodicity. Moreover,
we apply the obtained results to establish L;-weak ergodicity of
quadratic stochastic processes.

Keywords: Weak ergodicity; Li-weak ergodicity; nonhomogeneous
Markov process, quadratic stochastic process.

MSC(2010): Primary: 60J10, Secondary: 15A51.

1. Introduction

The main aim of the present paper is to establish necessary and suf-
ficient conditions for nonhomogeneous continuous-time Markov process
to satisfy the Li-weak ergodicity. Here we are going to employ measure-
theoretic methods to get the desired assertions. Note that a similar con-
dition was studied for homogeneous Markov processes in [18]. We recall
that the ergodicity of Markov process means the tendency for a chain to
forget the distant past. There is a huge number of investigations devoted
to the ergodicity of such processes with countable state spaces (see for
example, [1-6,8,9,19,20]). For example, in [7] it was studied weak er-
godicity of nonhomogeneous Markov processes. In [13] weak and strong
ergodicity of nonhomogeneous Markov processes were studied in terms
of the Dobrushun’s ergodic coefficient [1]. In [10,21,22] using methods
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of differential equations, some sufficient conditions for weak and strong
ergodicity of nonhomogeneous continuous-time Markov processes were
given.

The paper is organized as follows. In Section 2 we provide neces-
sary notions. In Section 3 we prove our main result, i.e., necessary and
sufficient conditions for nonhomogeneous continuous-time Markov pro-
cess to satisfy the Li-weak ergodicity. Finally, in Section 4 we provide
some applications of the main result to Li-weak ergodicity of quadratic
stochastic processes which improves the result of [17]. Note that such
processes relate to quadratic operators [11,12] as Markov processes re-
late to linear operators. For the recent review on quadratic operator we
refer to [5].

2. Li-Weak ergodicity

Let (X, F, i) be a probability space. In what follows, we consider the
standard L'(X, F,u) and L>(X,F, ) spaces. Note that L'(X,F,p)
can be identified with the space of finite signed measures on X which
are absolutely continuous with respect 'to u. By 9 we denote the set
of all probability measures on X which are absolutely continuous w.r.t.
. We recall that a set.of tramsition probabilities P51 (x,A), z € X,
A € F (s,t € Ry) forms a non-homogeneous continuous-time Markov
process (NHCTMP) if the following conditions are satisfied:

1. for each s,t (s < t) the function of two variables Pl (z, A) is
a Markov kernel, and it is g-measurable, i.e., u(A) = 0 implies
Pll(z, A) =0 ae. on X,

2. Kolmogorov-Chapman equation: for every s < h <t
(2.) P, 4) = [ P (o dy) PPy, )

In the sequel, we will deal with p-measurable NHCTMP. In this case,
for each s and ¢ one can define a positive linear contraction operator on
L' (respectively L>°) denoted by pf (respectively Pl*!). Namely,
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(2.2) P (A) = / Pil(z, Adv(z), ve L'
(23) (P @) = [ Py i), f e L.
It is clear that HP*[S’ﬂl/]h = ||v||; for every positive measure v € L.

From (2.2) it follows that (2.1) can be rewritten as follows
plstl _ plhtl plsh

where s < h <.

Recall that if for a NHCTMP Pl*#)(z, A) one has P = (P17
then such a process becomes homogeneous and, therefore, it is denoted
by P!(x, A).

Definition 2.1. A NHCTMP P! (x, A) is'said to satisfy:
(i) the weak ergodicity if for any s € Ryone has

tim sup [Pz, )~ PRI (g, )1 = 0
n—o00 z,yEX
(i) the Ly-weak ergodicity if for any probability measures \,v € M
and s € Ry one has

lim P n= P, = 0
n—oo

(ii) the Lq-strong ergodicity if there exists a probability measure pu
such that for every s € Ry and A € M one has

lim [P = | =o.
n—oo

It is clear that the weak ergodicity implies the Li-weak ergodicity.
In the paper we will deal with Li-weak ergodicity. Note that histor-
ically, one of the most significant conditions for the weak erodicity is
the Doeblin’s Condition (for homogeneous Markov processes), which is
formulated as follows: there exist a probability measure v, an integer
nog € N and constants 0 < € < 1, § > 0 such that for every A € F if
v(A) > € then

inf P"(x,A) > 0.
zeX
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Such a condition does not imply either the aperiodicity or the weak
ergodicity of the process. In [15] the aperiodicity is studied by minoriza-
tion type conditions, i.e., there exist a non-trivial positive measure A
and ng € N such that

P(z,A) > MA), Vo€ X, VA€ F.

But this condition is not sufficient for the strong ergodicity. In [18] it
was introduced a variation of the above condition, i.e., Condition (Ap):
there exists a non-trivial positive measure pg € L', ||ux|[1 # Os-and for
every A € M one can find a sequence {X,,} C F with pu(X\ X,,) = 0,
as n — oo, and ng € N such that for all n > ng one has

Pf)\ Z :U’01Xn7

where 14 stands for the indicator function of a set” A. It has been
proved that such a condition is necessary and sufficient forthe L;-strong
ergodicity of the homogeneous Markov process. In the present paper we
shall introduce a simple variation of the condition (Ap) for NHCTMP,
and prove that it is necessary and sufficient for the L;-weak ergodicity.
Note that another variation of the Deoblin’s Condition has been studied
in [2], which also provides a negessary and sufficient condition for the
weak ergodicity.

3. Main results

In this section we introduce a simple variation of condition (Ap).

Definition 3.1 We say that a NHCTMP P4 (z, A) given on (X, F, u)
satisfies condition (B) if for each s € Ry there exist a positive measure
ps € LY, Jusllh # 0, and for every § > 0 and \,v € M one can find sets
X1 Yo e F with (X \ Xs) <0, p(X\Ys) <9 and a number ts > 1 such
that

(3.1) PEEIN > 1y, PR >ty

Remark 3.2. In (3.1), (3.19) without loss of generality we may assume
that ||us||1 < 1/2, otherwise we will replace pis by s = us/2.

Before we formulate the main result, we need the following auxiliary
lemma.
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Lemma 3.3. For every \,v € M there exist \1,v1 € M with supp(A1)N
supp(v1) = 0 such that
A=

(3.2) A—v 5

()\1 — 1/1).

The proof is obvious.

Now we are ready to formulate our main result.

Theorem 3.4. Let Pl!(z, A) be a NHCTMP given on (X, F, - Then
the following assertions are equivalent:

(i) Plst(x, A) satisfies condition (B) with
(3.3) liminf || psll1 > 0;
§—00

(ii) for each s € Z and any \,v € M there is a number s € [0, 1)
and tg > 1 such that

(3.4) 1PN — PESHOl ) <l N v
where
(3.5) limsup~s < 1;
S— 00

(iii) Plt(x, A) satisfies the Ly-weak ergodicity.

Proof. (i)=(ii). Take any A,v € MM and fix s € Ry. Then due to Lemma
3.4 one can find measures A, € M such that (3.2) holds. For A\,
due to condition (B) one can find a measure ps. Then according to
absolute continuity of Lebesgue integral, there is §; > 0 such that for
any Z € F with u(Z) < 201 one has

(3.6) /,,lezdu < ”’;Hl

Now due to condition (B) there are X;,Y; C F and ¢; > 1 such that
one has max{u(X \ X1), (X \ Y1)} < and

(3.7) PETIIN > ety PR > gy,
Denoting Z; = X1 NY1, one gets u(X \ Z1) < 26, and from (3.7) we find

(3.8) PN > g1y, PR >
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It follows from (3.8) that

Hpis,s—ktl})\l . Mlel Hl _ / (Pi&s—i_tl])\l _ Nlel)dﬂ

= /Pis’s—i_tl])\ldu—/Molznyld/,b

= 1- /uolzld/i
_ /Pis’s—i_tl]Vld,Ua—/MOlZldﬂ
(3.9) = HP»[S’SHHW — polz 1.

Therefore, let us define
%o = PPN = i .
One can see that
(3.10) 1— /ﬂleldﬂ 21— /usdu > %

Due to p(X \ Z1) < 21+from (3.6) we have

1
2/:“8(1#2/,ule\Zld,u:/Nsdﬂ_/ﬂleldﬂ

which yields

//‘lezldu > HMSHI

Therefore,

(3.11) 1— /uslzldu <1- H“;”l

Hence, from (3.10),(3.11) we infer
N Y

1232
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This with (3.3) yields (3.5). Thus, we obtain

HP*[s,s-Hl})\l . P»[87s+t1]yl||1 _ ||(P>.[s’s+tl])\1 . ,Ule1)
—(PE Moy — u12)
(3.12) = 7sllA2 — 12,
where
Ny = ;(Pls,s-i-tﬂ)\l ~slz,)

1
Vs
It is clear that A2, 2 € 9. Now from (3.2) and (3.12) one gets

Vs (Pﬂ[s,s—l-tl]yl o /’lezl).

A = vl

5 Hpiszs%ﬁl])\l 4 P£8,5+t1]yl||1

”Pi578+t1})\ - Pl8,5+t1]y||1

IN

VslA =l

which implies the required assertion.
(ii)=(iii). Take any A, € 9 and fix s € Ry. Then due to condition
(ii) one finds t9 > 1 and ~s € [0, 1) such that one has

(3.13) 1Pl PESERLL) <y x =

Let us prove by induction that there are numbers {t;}¢_, (t; > 1) such
that for any ¢ € N one has

V4
19 PR A< (T )IA- ol
1=0

‘
where Ky :=s+ > t;, vs+i €[0,1),1=0,1,...,¢.

=0
We have proved (3.14) at £ = 0. Now assume that (3.14) holds at
i=4.
Let us prove (3.14) at i = ¢ + 1. Denote

A = pPlEdy = plaEd,,
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Now from (ii) for s, vy and Ky one finds tp11 > 1 and v4y¢41 such
that

Ko, Ko+t Ky, Ko+t
(3.15) | pIEeRettenly, _ plReRetteal, <y e = vl

Denoting Kyi1 = Ky + to1 with (3.15),(3.14) we get

e T [ e OV

Vs+e+1 ’PlS’KZ])\ - P*[S’Kl]l/Hl

/+1
(TDowes )r ~
=0

IN

IN

Hence, (3.14) is valid for all £ € N.
Take any t > s, then one can find m € N-such that

t=Kpn+r, 0<7r <ngii
Now due to (3.14) we obtain

pr[&t])\ . Pls’t]lel _ HPiKm,t] (Pis’Km]A . Pis,Km]V) Hl

m
[R5y — Pyl < 2 T vega
=0

(3.16)

VAN

According to (3.5) one can find m € N such that J[7;vs+i < /2.
Then it follows from (3.16) that

||P>,[S’t])\ — Pis’t]VHl <e forall t> K,

which implies the L'-weak ergodicity.
Now, we consider the implication (iii)= (i). Fix 1 > ¢ > 0. Then
given s € Ry and A, o € M, (here pp is fixed) one has

||P*[s’t])\ - P*[s’ﬂuoﬂl —0 as n — oo.

Take any increasing sequence {t,} such that ¢, — co as n — oo. Then
one can find a sequence {Y,,} C F such that u(X \Y,) — 0, as n — oo,
and

H(Pis’t”]/\ — Pi&tn}uo)lynHoo — 0 as n — oo.
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Therefore, there exists an nj, € N such that (X \'Y;, ) <€ and

s,54tn s,54tn 9
(3.17) JP N = P )y e < 5

Let vs = P*[S’SH"’C}MO. Hence, from (3.17) we get

P£87s+tnk]A > P4[878+tnk])\]-ynk

£
= Vsly,, —5lv,

Z ,us]-Ynka
where
1
s = §VslAk> A, = {x € X: vs(x) >

L

Since vy is a probability measure, therefore, we have 0 < |lus|l1 < 1/2,
SO

Do | M

AT
2
This completes the proof. ]

>

> W

From the proof of the previous theorem we can estimate the rate of
convergence whenever the process satisfies condition (B). Namely, one
has the following

Corollary 3.5. Let P®!(z,A) be a NHCTMP given on (X, F,u). As-
sume that P (x, A) satisfies condition (B) with

a:= llglor.}f l|es|ln > 0.

Then for each s € Ry and \,n € M one can find N(s,\,v) € Ry such
that

(t—s)/N(s,\,v)
) A= v,

(3.18) |PEA — Pty < 0(1 - %

where C' is a some constant.
Moreover, the last inequality is equivalent to the Li-weak ergodicity.

Proof. The proof immediately follows from the estimation (3.16). O
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We note that if the number N (s, A,v) in (3.18) does not depend on A
and v, then the process satisfies the weak ergodicity.

Now, let us turn to a nonhomogeneous version of the condition (Ay).
Namely, we say that a NHCTMP P58 (z, A) given on (X, F, uu) satisfies
condition (A) if for each s € R there exists a positive measure us € L,
llusllt # 0, and for every A € 91 one can find a sequence {Xy(f)} CF
with (X \ Xt(s)) — 0, as t — oo, and to(A, k) > 1 such that for all
t > to(A, s) one has

(3.19) PPN > pl .
t

It is easy to see that condition (A) implies condition (B), hence by
Theorem 3.4 we immediately conclude that condition (A) with (3.3) is
sufficient for the Li-weak ergodicity. On the other hand, if one looks at
the homogeneous Markov process which satisfies the Li-weak ergodicity,
then in [17] it has been proved that such process also satisfies condition
(A). In another words, for homogeneous Markov process condition (A)
is necessary and sufficient for the Li-weak ergodicity. Therefore, we can
formulate the following:

Problem. Is condition (A) with (3.3) necessary for the L;-weak ergod-
icity of NHCTMP?

4. Applications
In this section we apply of condition (B) to a couple of concrete cases.

4.1. Discrete case. Let us consider a countable state space NHCTMP.

Namely, let. X' = N and p be the Poisson measure. Then the process
. . . . [s,t]

can be given in form of stochastic matrices {p, ; }ijen.

Theorem 4.1. Let {pz[fj’-t]}iyjeN be a NHCTMP. If there exists a function
A(s), s €[1,00) (I(s) € [0,1)) satisfying

(4.1) lim inf A(s) > 0

and such that for some sequence of states {ns}

(4.2) pfr;l’s] > A(s) forall ieN, s>1,

then the process satisfies the Ly-weak ergodicity.
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Proof. We now show that the process satisfies condition (B). For each
s € Ry we first define a measure u(®) on X as follows:

A(s), i=ns
ILL(S) =
! 0, i+#n,

It is clear that liminfy . [|(*)]|1 0. From (4.2) it follows that

(4.3) pk{l’s] > ,ug»s), for all 4,57 € N.

For any given v € 9 and s € R, we take Xg = X, then from (4.3)
one finds
P*[Sfl’s]y > u(s) for all s> 1.
Hence, condition (B) is satisfied. So, taking into account (4.1), from
Theorem 3.4 we get the desired assertion. O

We observe that the proved theorem extends results of {4, 16].

4.2. Continuous case. Let (X, F, i) be aprobability space and Pl*(z, A)
be a nonhomogeneous Markov process on this space.

Theorem 4.2. Let P! (x, A) be e NHCTMP on (X, F, ). If for every
s € Ry there exists a set As € F and a function 0 < a(s) < 1 such that

(4.4) PlELsl(z A )y = a(s) for all € X, s>1,
where
(4.5) hggfa(s) > 0,

then the process satisfies the Ly-weak ergodicity.

Proof. To prove the statement it is enough to establish that the process
satisfies condition (B). Indeed, for each s € Ry let us define

vs(A)= N\ Ptz An4,), AeF
zeX
Due to Theorem IV.7.5 [3] the defined mapping v, is a measure on X,
and moreover, one has v5(A4;) > a(s). Now let us put
vs(ANAy)

, AeF.
vi(As)

Hs (A) =
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Then one can see that
(4.6) pEtels, > a(s)us for all z € X, s> 1.

It is clear that lirg inf [|ps][1 > 0. Now given any A € 9t and each
S§—00

s € Ry we put Xg = X, then using the standard density argument from
(4.6) we obtain

(4.7) PEIN > a(s) .

Hence, condition (B) is satisfied. So, taking into account (4.11), from
Theorem 3.4 we get the desired assertion.
Define

v = limsup(1 — [s]1/2).
5—00
It is clear that 0 < v < 1. From the proof of Theorem 3.4 we conclude
that
| PN = PRy <@,
where t =s+m +r.
Hence, one gets

1P = P28l 2,
for any A\, u € 9. O

4.3. Quadratic stochastic processes. In this section we apply the
obtained results to quadratic stochastic processes. Note that such kind
of processes arerelated to quadratic operators as well as Markov pro-
cesses with linear operators (see [5] for review).

Let (X, F, u) be a probability space. We recall that a family of func-
tions {QP!(x,y; A)} defined for s +1 < t (s,t € Ry) for all 2,y € X,
A € F, is called quadratic stochastic process (QSP) if the following con-
ditions are satisfied:

1) QB (z,y, A) = Q(y, z, A) for any z,y € X and A € F;
(i) QP (xz,y,-) € M for any fixed z,y € X;
(ii) QI*!(x,y, A) as a function of z and y is measurable on (X x
X, F®F) for any A € F;
(iv) (Analogue of the Chapman-Kolmogorov equation) for the initial
measure y € M and arbitrary s <7 <t with7—s>1,t—72>1
we have either
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(iV) A
[s,t] _ [s,7] [7.t]
Q9 (z,y, A) AAQ (2,9, dw) QI ut, 0, Ay (d),

where measure p, on (X, F) is defined by

/M&=AAQWW@EMMMM,

for any B € F, or
(iv)p

Q[Sﬂ(xayvA) -
/‘;{/)(/}{/}(Q[S,T}(xaz7du)Q[S7T}(y7U;d'LU)Q[T’t](U,/U],A),us<dz)us(dw>_

If the condition (iv)4 (respectively (iv)p) holds, then QSP is called
of type (A) (respectively (B)).

The process Q51 (z,y, A) can be interpreted as the probability of the
following event: if z and y in X interact at time s, then one of the
elements of the set A € F will be realized at time ¢. All phenomena
in physics, chemistry, and biology develop along non-zero finite time
intervals. Therefore, we assume that the maximum of these values of
time is equal to 1. Hence, @[*! (x,y, A) is defined for t —s > 1 (we refer
the reader to [5] for more information).

By 9t? we denote the set of all probability measures on X x X which
are absolutely continuous w.r.t. p ® p, i.e., 9? can be considered as a
subset of L'(X X X, F ® F,u® ). Given QSP QF*Y(x,y, A) one can
define

(4.8) (QU1o)) = / / QB (x,y, AYdi(x,y),7 € LY X x X, n®@ p).
XJX

We recall that a QSP QI*!(x,y, A) is said to satisfy the L;-weak
ergodicity ( or ergodic principle) if for any probability measures \, 7 €
M2 and s € Ry one has

lim QX - Q5 = 0;
t—o0
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Let Q1% (z,y, A) be a given QSP. Now define the following transition
probability

(4.9 Py ) = [ Qe A o).
In [14] it has been proved the following

Theorem 4.3. Let Q58 (z,y, A) be a given QSP on (X, F,pn). Then
the following statements hold true:

(i) the defined Pg’t] (x,A) is a NHCTMP on (X, F,u);
(ii) the process Pg’t] (z, A) satisfies the Ly-weak ergodicity if and only
if QU (x,y, A) satisfies the Li-weak ergodicity:

This theorem allows us to prove the following result.

Theorem 4.4. Let Q*!(z,y, A) be a given QSP on (X, F,u). If for
every s € Ry there exists a set As € F and.a function 0 < a(s) < 1
such that

(4.10) QE (2, y, Ay) > a(s) for all @,y € X, s>1,
where
(4.11) liminf a(s) > 0,

S—00

then the QSP is the Ly-weak ergodic.

Proof. Consider the process Pg’t] (z,A). Then from (4.9) and (4.3) one
finds

Pg_l’s] (x,Ag) = / Qb Yz, y, A)dps(y) > a(s) for all z € X, s> 1.
X
Hence, the Markov process Pg 4 (x, A) satisfies the conditions of Theo-

rem 4.2; so it is weak ergodic. Therefore, Theorem 4.3 implies that QSP
Q¥ (x4, A) satisfies the Li-weak ergodicity. O

Note that the last theorem improves the result of [17].
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