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Abstract. In the present paper we investigate the L1-weak ergod-

icity of nonhomogeneous continuous-time Markov processes with
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1. Introduction

The main aim of the present paper is to establish necessary and suf-

ficient conditions for nonhomogeneous continuous-time Markov process

to satisfy the L1-weak ergodicity. Here we are going to employ measure-

theoretic methods to get the desired assertions. Note that a similar con-

dition was studied for homogeneous Markov processes in [18]. We recall

that the ergodicity of Markov process means the tendency for a chain to

forget the distant past. There is a huge number of investigations devoted

to the ergodicity of such processes with countable state spaces (see for

example, [1–6, 8, 9, 19, 20]). For example, in [7] it was studied weak er-

godicity of nonhomogeneous Markov processes. In [13] weak and strong

ergodicity of nonhomogeneous Markov processes were studied in terms

of the Dobrushun’s ergodic coefficient [1]. In [10, 21, 22] using methods
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On L1-weak ergodicity of nonhomogeneous 1228

of differential equations, some sufficient conditions for weak and strong

ergodicity of nonhomogeneous continuous-time Markov processes were

given.

The paper is organized as follows. In Section 2 we provide neces-

sary notions. In Section 3 we prove our main result, i.e., necessary and

sufficient conditions for nonhomogeneous continuous-time Markov pro-

cess to satisfy the L1-weak ergodicity. Finally, in Section 4 we provide

some applications of the main result to L1-weak ergodicity of quadratic

stochastic processes which improves the result of [17]. Note that such

processes relate to quadratic operators [11, 12] as Markov processes re-

late to linear operators. For the recent review on quadratic operator we

refer to [5].

2. L1-Weak ergodicity

Let (X,F , µ) be a probability space. In what follows, we consider the

standard L1(X,F , µ) and L∞(X,F , µ) spaces. Note that L1(X,F , µ)

can be identified with the space of finite signed measures on X which

are absolutely continuous with respect to µ. By M we denote the set

of all probability measures on X which are absolutely continuous w.r.t.

µ. We recall that a set of transition probabilities P [s,t](x,A), x ∈ X,

A ∈ F (s, t ∈ R+) forms a non-homogeneous continuous-time Markov

process (NHCTMP) if the following conditions are satisfied:

1. for each s, t (s ≤ t) the function of two variables P [s,t](x,A) is

a Markov kernel, and it is µ-measurable, i.e., µ(A) = 0 implies

P [s,t](x,A) = 0 a.e. on X.

2. Kolmogorov-Chapman equation: for every s ≤ h ≤ t

(2.1) P [s,t](x,A) =

∫
P [s,h](x, dy)P [h,t](y,A)

In the sequel, we will deal with µ-measurable NHCTMP. In this case,

for each s and t one can define a positive linear contraction operator on

L1 (respectively L∞) denoted by P
[s,t]
∗ (respectively P [s,t]). Namely,
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1229 Mukhamedov

(P
[s,t]
∗ ν)(A) =

∫
P [s,t](x,A)dν(x), ν ∈ L1(2.2)

(P [s,t]f)(x) =

∫
P [s,t](x, dy)f(y), f ∈ L∞.(2.3)

It is clear that ∥P [s,t]
∗ ν∥1 = ∥ν∥1 for every positive measure ν ∈ L1.

From (2.2) it follows that (2.1) can be rewritten as follows

P
[s,t]
∗ = P

[h,t]
∗ P

[s,h]
∗

where s ≤ h ≤ t.

Recall that if for a NHCTMP P [s,t](x,A) one has P
[s,t]
∗ =

(
P

[0,1]
∗

)t−s
,

then such a process becomes homogeneous and, therefore, it is denoted

by P t(x,A).

Definition 2.1. A NHCTMP P [s,t](x,A) is said to satisfy:

(i) the weak ergodicity if for any s ∈ R+ one has

lim
n→∞

sup
x,y∈X

∥P [s,t](x, ·)− P [s,t](y, ·)∥1 = 0;

(i) the L1-weak ergodicity if for any probability measures λ, ν ∈ M

and s ∈ R+ one has

lim
n→∞

∥P [s,t]
∗ λ− P

[s,t]
∗ ν∥1 = 0;

(ii) the L1-strong ergodicity if there exists a probability measure µ1

such that for every s ∈ R+ and λ ∈ M one has

lim
n→∞

∥P [s,t]
∗ λ− µ1∥1 = 0.

It is clear that the weak ergodicity implies the L1-weak ergodicity.

In the paper we will deal with L1-weak ergodicity. Note that histor-

ically, one of the most significant conditions for the weak erodicity is

the Doeblin’s Condition (for homogeneous Markov processes), which is

formulated as follows: there exist a probability measure ν, an integer

n0 ∈ N and constants 0 < ε < 1, δ > 0 such that for every A ∈ F if

ν(A) > ε then

inf
x∈X

Pn0(x,A) ≥ δ.
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On L1-weak ergodicity of nonhomogeneous 1230

Such a condition does not imply either the aperiodicity or the weak

ergodicity of the process. In [15] the aperiodicity is studied by minoriza-

tion type conditions, i.e., there exist a non-trivial positive measure λ

and n0 ∈ N such that

Pn0(x,A) ≥ λ(A), ∀x ∈ X, ∀A ∈ F .

But this condition is not sufficient for the strong ergodicity. In [18] it

was introduced a variation of the above condition, i.e., Condition (A0):

there exists a non-trivial positive measure µ0 ∈ L1, ∥µk∥1 ̸= 0, and for

every λ ∈ M one can find a sequence {Xn} ⊂ F with µ(X \Xn) → 0,

as n → ∞, and n0 ∈ N such that for all n ≥ n0 one has

Pn
∗ λ ≥ µ01Xn ,

where 1A stands for the indicator function of a set A. It has been

proved that such a condition is necessary and sufficient for the L1-strong

ergodicity of the homogeneous Markov process. In the present paper we

shall introduce a simple variation of the condition (A0) for NHCTMP,

and prove that it is necessary and sufficient for the L1-weak ergodicity.

Note that another variation of the Deoblin’s Condition has been studied

in [2], which also provides a necessary and sufficient condition for the

weak ergodicity.

3. Main results

In this section we introduce a simple variation of condition (A0).

Definition 3.1. We say that a NHCTMP P [s,t](x,A) given on (X,F , µ)

satisfies condition (B) if for each s ∈ R+ there exist a positive measure

µs ∈ L1, ∥µs∥1 ̸= 0, and for every δ > 0 and λ, ν ∈ M one can find sets

Xs, Ys ∈ F with µ(X \Xs) < δ, µ(X \Ys) < δ and a number ts ≥ 1 such

that

(3.1) P
[s,s+ts]
∗ λ ≥ µs1Xs , P

[s,s+ts]
∗ ν ≥ µs1Ys .

Remark 3.2. In (3.1), (3.19) without loss of generality we may assume

that ∥µs∥1 < 1/2, otherwise we will replace µs by µ′
s = µs/2.

Before we formulate the main result, we need the following auxiliary

lemma.
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1231 Mukhamedov

Lemma 3.3. For every λ, ν ∈ M there exist λ1, ν1 ∈ M with supp(λ1)∩
supp(ν1) = ∅ such that

(3.2) λ− ν =
∥λ− ν∥1

2
(λ1 − ν1).

The proof is obvious.

Now we are ready to formulate our main result.

Theorem 3.4. Let P [s,t](x,A) be a NHCTMP given on (X,F , µ). Then

the following assertions are equivalent:

(i) P [s,t](x,A) satisfies condition (B) with

(3.3) lim inf
s→∞

∥µs∥1 > 0;

(ii) for each s ∈ Z+ and any λ, ν ∈ M there is a number γs ∈ [0, 1)

and t0 ≥ 1 such that

(3.4) ∥P [s,s+t0]
∗ λ− P

[s,s+t0]
∗ ν∥1 ≤ γs∥λ− ν∥1;

where

(3.5) lim sup
s→∞

γs < 1;

(iii) P [s,t](x,A) satisfies the L1-weak ergodicity.

Proof. (i)⇒(ii). Take any λ, ν ∈ M and fix s ∈ R+. Then due to Lemma

3.4 one can find measures λ1, ν1 ∈ M such that (3.2) holds. For λ1, ν1
due to condition (B) one can find a measure µs. Then according to

absolute continuity of Lebesgue integral, there is δ1 > 0 such that for

any Z ∈ F with µ(Z) < 2δ1 one has

(3.6)

∫
µs1Zdµ <

∥µs∥1
2

.

Now due to condition (B) there are X1, Y1 ⊂ F and t1 ≥ 1 such that

one has max{µ(X \X1), µ(X \ Y1)} < δ and

(3.7) P
[s,s+t1]
∗ λ1 ≥ µs1X1 , P

[s,s+t1]
∗ ν1 ≥ µs1Y1 .

Denoting Z1 = X1∩Y1, one gets µ(X \Z1) < 2δ, and from (3.7) we find

(3.8) P
[s,s+t1]
∗ λ1 ≥ µs1Z1 , P

[s,s+t1]
∗ ν1 ≥ µs1Z1 .
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On L1-weak ergodicity of nonhomogeneous 1232

It follows from (3.8) that

∥P [s,s+t1]
∗ λ1 − µs1Z1∥1 =

∫ (
P

[s,s+t1]
∗ λ1 − µs1Z1

)
dµ

=

∫
P

[s,s+t1]
∗ λ1dµ−

∫
µ01Zn,1dµ

= 1−
∫

µ01Z1dµ

=

∫
P

[s,s+t1]
∗ ν1dµ−

∫
µ01Z1dµ

= ∥P [s,s+t1]
∗ ν1 − µ01Z1∥1.(3.9)

Therefore, let us define

γs = ∥P [s,s+t1]
∗ λ1 − µs1Z1∥1.

One can see that

1−
∫

µs1Z1dµ ≥ 1−
∫

µsdµ ≥ 1

2
.(3.10)

Due to µ(X \ Z1) < 2δ1 from (3.6) we have

1

2

∫
µsdµ ≥

∫
µs1X\Z1

dµ =

∫
µsdµ−

∫
µs1Z1dµ

which yields ∫
µs1Z1dµ ≥ ∥µs∥1

2
.

Therefore,

1−
∫

µs1Z1dµ ≤ 1− ∥µs∥1
2

.(3.11)

Hence, from (3.10),(3.11) we infer

1

2
≤ γs ≤ 1− ∥µs∥1

2
.
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1233 Mukhamedov

This with (3.3) yields (3.5). Thus, we obtain

∥P [s,s+t1]
∗ λ1 − P

[s,s+t1]
∗ ν1∥1 = ∥(P [s,s+t1]

∗ λ1 − µs1Z1

)
−(P

[s,s+t1]
∗ ν1 − µs1Z1)∥1

= γs∥λ2 − ν2∥1,(3.12)

where

λ2 =
1

γs

(
P

[s,s+t1]
∗ λ1 − µs1Z1

)
ν2 =

1

γs

(
P

[s,s+t1]
∗ ν1 − µs1Z1

)
.

It is clear that λ2, ν2 ∈ M. Now from (3.2) and (3.12) one gets

∥P [s,s+t1]
∗ λ− P

[s,s+t1]
∗ ν∥1 =

∥λ− ν∥1
2

∥P [s,s+t1]
∗ λ1 − P

[s,s+t1]
∗ ν1∥1

≤ γs∥λ− ν∥1

which implies the required assertion.

(ii)⇒(iii). Take any λ, ν ∈ M and fix s ∈ R+. Then due to condition

(ii) one finds t0 ≥ 1 and γs ∈ [0, 1) such that one has

(3.13) ∥P [s,s+t0]
∗ λ− P

[s,s+t0]
∗ ν∥1 ≤ γs∥λ− ν∥1.

Let us prove by induction that there are numbers {ti}ℓi=0 (ti ≥ 1) such

that for any ℓ ∈ N one has

(3.14) ∥P [s,Kℓ]
∗ λ− P

[s,Kℓ]
∗ ν∥1 ≤

( ℓ∏
i=0

γs+i

)
∥λ− ν∥1,

where Kℓ := s+
ℓ∑

i=0
ti, γs+i ∈ [0, 1), i = 0, 1, . . . , ℓ.

We have proved (3.14) at ℓ = 0. Now assume that (3.14) holds at

i = ℓ.

Let us prove (3.14) at i = ℓ+ 1. Denote

λℓ = P
[s,Kℓ]
∗ λ, νℓ = P

[s,Kℓ]
∗ ν.
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On L1-weak ergodicity of nonhomogeneous 1234

Now from (ii) for λℓ, νℓ and Kℓ one finds tℓ+1 ≥ 1 and γs+ℓ+1 such

that

(3.15) ∥P [Kℓ,Kℓ+tℓ+1]
∗ λℓ − P

[Kℓ,Kℓ+tℓ+1]
∗ νℓ∥1 ≤ γs+ℓ+1∥λℓ − νℓ∥1.

Denoting Kℓ+1 = Kℓ + tℓ+1 with (3.15),(3.14) we get

∥P [s,Kℓ+1]
∗ λ− P

[s,Kℓ+1]
∗ ν∥1 =

∥∥P [Kℓ,Kℓ+1]
∗

(
λℓ − νℓ

)∥∥
1

≤ γs+ℓ+1|P
[s,Kℓ]
∗ λ− P

[s,Kℓ]
∗ ν∥1

≤
( ℓ+1∏

i=0

γs+i

)
∥λ− ν∥1.

Hence, (3.14) is valid for all ℓ ∈ N.
Take any t > s, then one can find m ∈ N such that

t = Km + r, 0 ≤ r < nm+1

Now due to (3.14) we obtain

∥P [s,t]
∗ λ− P

[s,t]
∗ ν∥1 =

∥∥P [Km,t]
∗

(
P

[s,Km]
∗ λ− P

[s,Km]
∗ ν

)∥∥
1

≤ ∥P [s,Km]
∗ λ− P

[s,Km]
∗ ν∥1 ≤ 2

m∏
i=0

γs+i(3.16)

According to (3.5) one can find m ∈ N such that
∏m

j=0 γs+i < ε/2.

Then it follows from (3.16) that

∥P [s,t]
∗ λ− P

[s,t]
∗ ν∥1 < ε for all t ≥ Km

which implies the L1-weak ergodicity.

Now, we consider the implication (iii)⇒ (i). Fix 1 > ε > 0. Then

given s ∈ R+ and λ, µ0 ∈ M, (here µ0 is fixed) one has

∥P [s,t]
∗ λ− P

[s,t]
∗ µ0∥1 → 0 as n → ∞.

Take any increasing sequence {tn} such that tn → ∞ as n → ∞. Then

one can find a sequence {Yn} ⊂ F such that µ(X \ Yn) → 0, as n → ∞,

and

∥(P [s,tn]
∗ λ− P

[s,tn]
∗ µ0)1Yn∥∞ → 0 as n → ∞.
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1235 Mukhamedov

Therefore, there exists an nk ∈ N such that µ(X \ Ytnk
) < ε and

(3.17) ∥(P [s,s+tnk
]

∗ λ− P
[s,s+tnk

]
∗ µ0)1Ynk

∥∞ <
ε

2

Let νs = P
[s,s+tnk

]
∗ µ0. Hence, from (3.17) we get

P
[s,s+tnk

]
∗ λ ≥ P

[s,s+tnk
]

∗ λ1Ynk

≥ νs1Ynk
− ε

2
1Ynk

≥ µs1Ynk
,

where

µs =
1

2
νs1Ak

, As =

{
x ∈ X : νs(x) ≥

ε

2

}
.

Since νs is a probability measure, therefore, we have 0 < ∥µs∥1 ≤ 1/2,

so

1− ∥µs∥1
2

≥ 3

4
.

This completes the proof. □

From the proof of the previous theorem we can estimate the rate of

convergence whenever the process satisfies condition (B). Namely, one

has the following

Corollary 3.5. Let P [s,t](x,A) be a NHCTMP given on (X,F , µ). As-

sume that P [s,t](x,A) satisfies condition (B) with

α := lim inf
s→∞

∥µs∥1 > 0.

Then for each s ∈ R+ and λ, n ∈ M one can find N(s, λ, ν) ∈ R+ such

that

(3.18) ∥P [s,t]
∗ λ− P

[s,t]
∗ ν∥1 ≤ C

(
1− α

2

)(t−s)/N(s,λ,ν)

∥λ− ν∥1,

where C is a some constant.

Moreover, the last inequality is equivalent to the L1-weak ergodicity.

Proof. The proof immediately follows from the estimation (3.16). □
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On L1-weak ergodicity of nonhomogeneous 1236

We note that if the number N(s, λ, ν) in (3.18) does not depend on λ

and ν, then the process satisfies the weak ergodicity.

Now, let us turn to a nonhomogeneous version of the condition (A0).

Namely, we say that a NHCTMP P [s,t](x,A) given on (X,F , µ) satisfies

condition (A) if for each s ∈ R+ there exists a positive measure µs ∈ L1,

∥µs∥1 ̸= 0, and for every λ ∈ M one can find a sequence {X(s)
n } ⊂ F

with µ(X \ X
(s)
t ) → 0, as t → ∞, and t0(λ, k) ≥ 1 such that for all

t ≥ t0(λ, s) one has

(3.19) P
[s,t]
∗ λ ≥ µs1X(s)

t
.

It is easy to see that condition (A) implies condition (B), hence by

Theorem 3.4 we immediately conclude that condition (A) with (3.3) is

sufficient for the L1-weak ergodicity. On the other hand, if one looks at

the homogeneous Markov process which satisfies the L1-weak ergodicity,

then in [17] it has been proved that such process also satisfies condition

(A). In another words, for homogeneous Markov process condition (A)

is necessary and sufficient for the L1-weak ergodicity. Therefore, we can

formulate the following:

Problem. Is condition (A) with (3.3) necessary for the L1-weak ergod-

icity of NHCTMP?

4. Applications

In this section we apply of condition (B) to a couple of concrete cases.

4.1. Discrete case. Let us consider a countable state space NHCTMP.

Namely, let X = N and µ be the Poisson measure. Then the process

can be given in form of stochastic matrices {p[s,t]i,j }i,j∈N.

Theorem 4.1. Let {p[s,t]i,j }i,j∈N be a NHCTMP. If there exists a function

λ(s), s ∈ [1,∞) (l(s) ∈ [0, 1)) satisfying

(4.1) lim inf
s→∞

λ(s) > 0

and such that for some sequence of states {ns}

(4.2) p
[s−1,s]
i,ns

≥ λ(s) for all i ∈ N, s ≥ 1,

then the process satisfies the L1-weak ergodicity.
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1237 Mukhamedov

Proof. We now show that the process satisfies condition (B). For each

s ∈ R+ we first define a measure µ(s) on X as follows:

µ
(s)
i =

{
λ(s), i = ns

0, i ̸= ns

It is clear that lim infs→∞ ∥µ(s)∥1 0. From (4.2) it follows that

(4.3) p
[s−1,s]
i,j ≥ µ

(s)
j , for all i, j ∈ N.

For any given ν ∈ M and s ∈ R+ we take Xs = X, then from (4.3)

one finds

P
[s−1,s]
∗ ν ≥ µ(s) for all s ≥ 1.

Hence, condition (B) is satisfied. So, taking into account (4.1), from

Theorem 3.4 we get the desired assertion. □

We observe that the proved theorem extends results of [4, 16].

4.2. Continuous case. Let (X,F , µ) be a probability space and P [s,t](x,A)

be a nonhomogeneous Markov process on this space.

Theorem 4.2. Let P [s,t](x,A) be a NHCTMP on (X,F , µ). If for every

s ∈ R+ there exists a set As ∈ F and a function 0 ≤ α(s) < 1 such that

(4.4) P [s−1,s](x,As) ≥ α(s) for all x ∈ X, s ≥ 1,

where

(4.5) lim inf
s→∞

α(s) > 0,

then the process satisfies the L1-weak ergodicity.

Proof. To prove the statement it is enough to establish that the process

satisfies condition (B). Indeed, for each s ∈ R+ let us define

νs(A) =
∧
x∈X

P [s−1,s](x,A ∩As), A ∈ F

Due to Theorem IV.7.5 [3] the defined mapping νs is a measure on X,

and moreover, one has νs(As) ≥ α(s). Now let us put

µs(A) =
νs(A ∩As)

νk(As)
, A ∈ F .
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On L1-weak ergodicity of nonhomogeneous 1238

Then one can see that

(4.6) P
[s−1,s]
∗ δx ≥ α(s)µs for all x ∈ X, s ≥ 1.

It is clear that lim inf
s→∞

∥µs∥1 > 0. Now given any λ ∈ M and each

s ∈ R+ we put Xs = X, then using the standard density argument from

(4.6) we obtain

(4.7) P
[s−1,s]
∗ λ ≥ α(s)µs.

Hence, condition (B) is satisfied. So, taking into account (4.11), from

Theorem 3.4 we get the desired assertion.

Define

γ = lim sup
s→∞

(1− ∥µs∥1/2).

It is clear that 0 < γ < 1. From the proof of Theorem 3.4 we conclude

that

∥P [s,t]
∗ λ− P

[s,t]
∗ µ∥1 ≤ 2γm+1,

where t = s+m+ r.

Hence, one gets

∥P [s,t]
∗ λ− P

[s,t]
∗ µ∥1 ≤ 2γt−s,

for any λ, µ ∈ M. □

4.3. Quadratic stochastic processes. In this section we apply the

obtained results to quadratic stochastic processes. Note that such kind

of processes are related to quadratic operators as well as Markov pro-

cesses with linear operators (see [5] for review).

Let (X,F , µ) be a probability space. We recall that a family of func-

tions {Q[s,t](x, y,A)} defined for s + 1 ≤ t (s, t ∈ R+) for all x, y ∈ X,

A ∈ F , is called quadratic stochastic process (QSP) if the following con-

ditions are satisfied:

(i) Q[s,t](x, y,A) = Q[s,t](y, x,A) for any x, y ∈ X and A ∈ F ;

(ii) Q[s,t](x, y, ·) ∈ M for any fixed x, y ∈ X;

(iii) Q[s,t](x, y,A) as a function of x and y is measurable on (X ×
X,F ⊗ F) for any A ∈ F ;

(iv) (Analogue of the Chapman-Kolmogorov equation) for the initial

measure µ ∈ M and arbitrary s < τ < t with τ−s ≥ 1, t−τ ≥ 1

we have either
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1239 Mukhamedov

(iv)A

Q[s,t](x, y,A) =

∫
X

∫
X
Q[s,τ ](x, y, du)Q[τ,t](u, v,A)µτ (dv),

where measure µτ on (X,F) is defined by

µτ (B) =

∫
X

∫
X
Q[0,τ ](x, y,B)µ(dx)µ(dy),

for any B ∈ F , or

(iv)B

Q[s,t](x, y,A) =∫
X

∫
X

∫
X

∫
X
Q[s,τ ](x, z, du)Q[s,τ ](y, v, dw)Q[τ,t](u,w,A)µs(dz)µs(dw).

If the condition (iv)A (respectively (iv)B) holds, then QSP is called

of type (A) (respectively (B)).

The process Q[s,t](x, y,A) can be interpreted as the probability of the

following event: if x and y in X interact at time s, then one of the

elements of the set A ∈ F will be realized at time t. All phenomena

in physics, chemistry, and biology develop along non-zero finite time

intervals. Therefore, we assume that the maximum of these values of

time is equal to 1. Hence, Q[s,t](x, y,A) is defined for t− s ≥ 1 (we refer

the reader to [5] for more information).

By M2 we denote the set of all probability measures on X ×X which

are absolutely continuous w.r.t. µ ⊗ µ, i.e., M2 can be considered as a

subset of L1(X × X,F ⊗ F , µ ⊗ µ). Given QSP Q[s,t](x, y,A) one can

define

(4.8) (Q
[s,t]
∗ ν̃)(A) =

∫
X

∫
X
Q[s,t](x, y,A)dν̃(x, y), ν̃ ∈ L1(X×X,µ⊗µ).

We recall that a QSP Q[s,t](x, y,A) is said to satisfy the L1-weak

ergodicity ( or ergodic principle) if for any probability measures λ̃, ν̃ ∈
M2 and s ∈ R+ one has

lim
t→∞

∥Q[s,t]
∗ λ̃−Q

[s,t]
∗ ν̃∥1 = 0;
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Let Q[s,t](x, y,A) be a given QSP. Now define the following transition

probability

(4.9) P
[s,t]
Q (x,A) =

∫
X
Q[s,t](x, y,A)dµs(y).

In [14] it has been proved the following

Theorem 4.3. Let Q[s,t](x, y,A) be a given QSP on (X,F , µ). Then

the following statements hold true:

(i) the defined P
[s,t]
Q (x,A) is a NHCTMP on (X,F , µ);

(ii) the process P
[s,t]
Q (x,A) satisfies the L1-weak ergodicity if and only

if Q[s,t](x, y,A) satisfies the L1-weak ergodicity.

This theorem allows us to prove the following result.

Theorem 4.4. Let Q[s,t](x, y,A) be a given QSP on (X,F , µ). If for

every s ∈ R+ there exists a set As ∈ F and a function 0 ≤ α(s) < 1

such that

(4.10) Q[s−1,s](x, y,As) ≥ α(s) for all x, y ∈ X, s ≥ 1,

where

(4.11) lim inf
s→∞

α(s) > 0,

then the QSP is the L1-weak ergodic.

Proof. Consider the process P
[s,t]
Q (x,A). Then from (4.9) and (4.3) one

finds

P
[s−1,s]
Q (x,As) =

∫
X
Q[s−1,s](x, y,As)dµs(y) ≥ α(s) for all x ∈ X, s ≥ 1.

Hence, the Markov process P
[s,t]
Q (x,A) satisfies the conditions of Theo-

rem 4.2, so it is weak ergodic. Therefore, Theorem 4.3 implies that QSP

Q[s,t](x, y,A) satisfies the L1-weak ergodicity. □

Note that the last theorem improves the result of [17].Arc
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