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Abstract. Let NG denote the set of all proper normal subgroups
of a group G and A be an element of NG. We use the notation
ncc(A) to denote the number of distinct G-conjugacy classes con-
tained in A and also KG for the set {ncc(A) | A ∈ NG}. Let X
be a non-empty set of positive integers. A group G is said to be
X-decomposable, if KG = X. In this paper we give a classification
of finite X-decomposable groups for X = {1, 2, 3, 4}.
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1. Introduction

All groups in this paper are finite. The relation between the structure
of a group and the cardinality of its conjugacy classes has already been
extensively studied (see, e.g., [7–9, 12, 19]). Let G be a group and N
be a normal subgroup of G. Then N is a union of G-conjugacy classes
contained in N , and some authors hope to investigate the structure of a
normal subgroup if it is a union of a small number of G-conjugacy classes
(see, e.g., [1,13,16]). Furthermore, some authors hope to determine the
structure of a group if every non-trivial normal subgroup is a union of
a given number of G-conjugacy classes (see, e.g., [2, 3, 10]).
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On finite X-decomposable groups 1244

Let n be a positive integer. Recall that a normal subgroup N of a
groupG is called n-decomposable if it is a union of n distinctG-conjugacy
classes, and a group G is called an n-decomposable group if it is not sim-
ple and its every non-trivial normal subgroup is n-decomposable. Up to
now, 2-, 3-, 7-, 8-, 9- and 10-decomposable normal subgroups have been
investigated (see [5, 6, 17] and [18]) and the authors in [2] give some
properties for finite n-decomposable groups. Furthermore, they classify
finite n-decomposable groups for n = 2, 3, 4 in the same paper.

Let G be a group. For convenience, we use NG to denote the set of all
proper normal subgroups of G. If A is an element of NG, then we use
ncc(A) to denote the number of distinctG-conjugacy classes contained in
A. Furthermore, suppose that X is a non-empty set of positive integers
and KG = {ncc(A) | A ∈ NG}. A group G is said to be X-decomposable
if KG = X. A. R. Ashrafi in [3] raised the following question:
Question. [3, Question 2.7] Suppose that X is a finite subset of positive
integers containing 1. Is there a finite X-decomposable group G?

Now X-decomposable groups have been classified for X = {1, 2, 3},
{1, 3, 4} and {1, 2, 4}. They are as follows:
Theorem A. [4] Let G be a finite non-perfect {1, 2, 3}-decomposable
group. Then G is isomorphic to Z6, D8, Q8, S4, SmallGroup(20, 3) or
SmallGroup(24, 3).
Theorem B. [3] Let G be a finite non-perfect {1, 3, 4}-decomposable
group. Then G is isomorphic to SmallGroup(36, 9), a metabelian group

of order 2n(2
n−1
2 −1), in which n is an odd positive integer and 2

n−1
2 −1

is a Mersenne prime or a metabelian group of order 2n(2
n
3 − 1) where

3|n and 2
n
3 − 1 is a Mersenne prime.

Theorem C. [10] Let G be a finite non-perfect {1, 2, 4}-decomposable
group. Then G is isomorphic to Q12, Z2 × A4 or G = ⟨a, b, c | a11 =
b5 = c2 = 1, b−1ab = a4, c−1ac = a−1, c−1bc = b−1⟩.

We note here that SmallGroup(n, i) in Theorem A and Theorem B
is the ith group of order n in the small group library of GAP (see [15]).

In this paper, we continue to study the above question for the case
X = {1, 2, 3, 4} and give the classification of non-perfect {1, 2, 3, 4}-
decomposable groups. Our main result is as follows.
Main Theorem. Let G be a finite non-perfect {1, 2, 3, 4}-decomposable
group. Then G is one of the following groups:

(1) |G| = 216 and G = ⟨a, b, c, d, e, f | a3 = d2 = e3 = f3 = 1, b2 =
c2 = d, ba = cd, ca = bc, cb = cd, ea = f2, eb = e2f, ec = f2, ed = e2, fa =
ef2, f b = ef, f c = e, fd = f2⟩.
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1245 Guo and Chen

(2) |G| = 600 and G = ⟨a, b, c, d, e, f | a3 = d2 = e5 = f5 = 1, b2 =
c2 = d, ba = bc, ca = b, cb = cd, ea = ef3, eb = e3f3, ec = e3, ed =
e4, fa = e4f3, f b = f2, f c = e4f2, fd = f4⟩.

(3) |G| = 42 and G = ⟨a, b | a7 = b6 = 1, b−1ab = a5⟩.
(4) G = D12.
Let G be a finite group. Throughout this paper, G′,Φ(G), Z(G) and

exp(G) denotes the derived subgroup, the Frattini subgroup, the center
and the exponent of G, respectively. A group G is said to be non-
perfect if G′ ̸= G. If x is an element in G, then xG = {xg | g ∈ G} is
the G-conjugacy class containing x. Furthermore, Zn denotes the cyclic
group of order n, E(pn) denotes the elementary abelian group of order
pn and d(n) denotes the set of all positive divisors of n. We always
assume that X = {1, 2, 3, 4} in the next two sections.

2. Preliminaries

In this section, we list some fundamental facts which are useful in the
sequel.

Example 2.1. [3, Example 2.5] Let G = ⟨a, b | a6 = b2 = 1, b−1ab =
a−1⟩ be the dihedral group of order 12. Then NG = {1,H = ⟨a2, b⟩,K =
⟨a2, ab⟩, ⟨a⟩, ⟨a2⟩, ⟨a3⟩}. It is easy to see that ⟨a2⟩ and ⟨a3⟩ are 2-decompo-
sable, H and K are 3-decomposable and ⟨a⟩ is 4-decomposable. There-
fore, G is X-decomposable.

Lemma 2.2. [10, Example 2.1] Let G be an abelian group of order n
and Y = d(n)− {n}. Then G is Y -decomposable.

Corollary 2.3. There is no finite abelian X-decomposable group.

Lemma 2.4. There is no finite X-decomposable group of prime power
order.

Proof. Suppose that there is a prime p such that G is a p-group. Then
p = 2 by [17, Theorem 1(3)]. Assume that |G| = 2n for some integer n.
There is a chief series

1 = G0 < G1 < · · · < Gn−1 < Gn = G

in G such that |Gi| = 2i for i = 1, 2, · · ·, n. As G is X-decomposable, we
have n = 4.

Since Z(G) ̸= 1 and G is non-abelian by Corollary 2.3, Z(G) can
not be 4-decomposable in G. Furthermore, if Z(G) is 3-decomposable
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On finite X-decomposable groups 1246

in G, then |Z(G)| = 3, contradicting that G is a 2-group. Therefore,
Z(G) is 2-decomposable in G, and thus |Z(G)| = 2. Let H be a 3-
decomposable normal subgroup of G. As Z(G) ∩H ̸= 1 and Z(G) is a
minimal subgroup of G, we have that Z(G) < H and |H| = 4. Suppose
that H = Z(G)∪ xG. Then |xG| = 2 and thus |CG(x)| = 8. So CG(x) is
normal in G. Since ⟨Z(G), x⟩ ≤ Z(CG(x)), CG(x) is abelian. Therefore,

1 < Z(G) < H < CG(x) < G

is a chief series of G. Let CG(x) = H ∪yG. Then |yG| = |CG(x)|− |H| =
4, and thus |CG(y)| = 4, which contradicts the fact that CG(x) is abelian
and y ∈ CG(x). □

Lemma 2.5. Let G be a finite X-decomposable group such that G′ is
a Sylow 2-subgroup of G. Suppose that G′ is 4-decomposable in G and
that Z(G) = Z(G′) is of order 2. Then Z(G) is contained in every
non-trivial normal subgroup of G.

Proof. As G′ is a Sylow 2-subgroup of G, then it is solvable.
Let N be a non-trivial proper normal subgroup of G. We claim that

N ≤ G′. In fact, by the hypothesis, one can see that G′ is a maximal
subgroup of G. If N ≰ G′, then G = G′N and thus (G/N)′ = G/N ,
which contradicts that G/N is solvable.

Now, it is easy to see that Z(G) = Z(G′) ≤ N since N ∩ Z(G′) ̸= 1
and |Z(G′)| = 2.

□

Lemma 2.6. [10, Lemma 2.1] Suppose that p and q are primes and n
is a positive integer such that pn = 1+3q. Then p = 7, n = 1, and q = 2
or p = 2, n = 4, and q = 5.

Lemma 2.7. If n is a positive integer and n ≥ 2, then there is no odd
prime q such that q2 = 2n − 1.

Proof. Suppose that there exists an odd prime q such that q2 = 2n −
1. Then there exist positive integers l and t such that q = 2l · t + 1.
Therefore, 2n = q2+1 = (2l · t+1)2+1 = 22l · t2+2l+1 · t+2. It follows
that 22l−1 · t2 + 2l · t+ 1 = 2n−1, which is a contradiction.

□

Lemma 2.8. [10, Lemma 2.2] There is no prime p such that 2p+ 1 is
also a prime and that 2p2 + p+ 1 = 2n for some positive integer n.
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1247 Guo and Chen

3. Proof of the main theorem

In this section, we will give the proof of our main theorem. We have
shown in Corollary 2.3 and Lemma 2.4 that G is neither an abelian group
nor a group of prime power order if G is an X-decomposable group. Also
an X-decomposable group must be of even order by [17, Theorem 1(3)],
and we will use these facts frequently in the proofs.

We first give the following three theorems.

Theorem 3.1. Let G be a finite non-perfect X-decomposable group. If
G′ is 4-decomposable in G, then G is one of the following two groups:

(1) |G| = 216 and G = ⟨a, b, c, d, e, f | a3 = d2 = e3 = f3 = 1, b2 =
c2 = d, ba = cd, ca = bc, cb = cd, ea = f2, eb = e2f, ec = f2, ed = e2, fa =
ef2, f b = ef, f c = e, fd = f2⟩.

(2) |G| = 600 and G = ⟨a, b, c, d, e, f | a3 = d2 = e5 = f5 = 1, b2 =
c2 = d, ba = bc, ca = b, cb = cd, ea = ef3, eb = e3f3, ec = e3, ed =
e4, fa = e4f3, f b = f2, f c = e4f2, fd = f4⟩.

Proof. Since G′ is 4-decomposable in G, G′ must be one of the following
groups by [13, Theorem 1] and [13, Theorem 2]:

1) G′ ∼= A5, the alternating group of degree 5, and G/CG(G
′) ∼= S5.

2) G′ is a p-group for some prime p and G′′′ = 1.
3) G′ is a group of order pnqb, where p and q are distinct primes, and

n and b are positive integers.
Furthermore, if G′ is of type 3), then G′ has the following three pos-

sibilities.
(A) G′ is the direct product of its elementary abelian Sylow p- and

q-subgroups.
(B) G′ is a Frobenius group with kernel N and G′/N ∼= Zq or Zq2 or

Q8, where N is 2-decomposable in G.
(C) G′ is a Frobenius group with kernel N and G′/N ∼= Zq, where N

is 3-decomposable in G.

Case 1. G′ ∼= A5 and G/CG(G
′) ∼= S5.

As A5 is centerless, G
′∩CG(G

′) = Z(G′) ∼= Z(A5) = 1. If CG(G
′) ̸= 1,

then G = G′CG(G
′) since G′ is a maximal normal subgroup of G. There-

fore, S5
∼= G/CG(G

′) ∼= G′ ∼= A5, which is a contradiction. If CG(G
′) =

1, then G ∼= S5. However, S5 does not contain a 2-decomposable normal
subgroup. Hence this case is impossible.

Case 2. G′ is a p-group for some prime p and G′′′ = 1.
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On finite X-decomposable groups 1248

Assume that |G′| = pn for some positive integer n. As G′ is a maximal
subgroup of G and G is not of prime power order, there is a prime q ̸= p
such that |G| = pnq. It follows that G is solvable. Arguing similarly as
in the proof of Lemma 2.5, we see that every proper normal subgroup
of G is contained in G′. Recall that G is non-abelian, Z(G) can not be
maximal in G, so we conclude that Z(G) < G′.

If G′ is abelian, then G′ ≤ CG(x) for every x ∈ G′, and so |xG| = 1
or q. It follows that pn = 1 + 1 + 1 + q or pn = 1 + 1 + q + q or
pn = 1 + q + q + q. If pn = 1 + 1 + 1 + q, then |Z(G)| = 3 and p = 3.
Therefore, q = 2 as G is of even order, and thus 3n = 5, which is
impossible. If pn = 1 + 1 + q + q, then |Z(G)| = 2 and so p = 2. Let Q
be a Sylow q-subgroup of G. Then Q acts on the abelian group G′, and
thus G′ = Z(G)× [G′, Q]. It is clear that [G′, Q]Q is a normal subgroup
of G and so G = Z(G)× [G′, Q]Q. It follows that G′ = [G′, Q], leading
that Z(G) = 1, which is a contradiction. If pn = 1 + q + q + q, then
p = 7, n = 1, and q = 2 or p = 2, n = 4, and q = 5 by Lemma 2.6. If
p = 7, n = 1 and q = 2, then |G| = 14. It is easy to see that G has
no 2-decomposable normal subgroup. If p = 2, n = 4 and q = 5, then
we can choose H to be a 2-decomposable normal subgroup of G. As
H ≤ G′, we may assume that |H| = 2t, then 2t = 1 + q = 6, which is
impossible. Consequently, we conclude that G′ is non-abelian.

If 1 < G′′ < Z(G′) < G′, then there exist positive integers 1 < s < t
such that |G′′| = ps and |Z(G′)| = pt. Let Z(G′) = G′′ ∪ xG. Then
G′ = CG(x), and thus |xG| = q. It follows that pt = ps + q, which gives
the contradiction that p divides q.

If 1 < Z(G′) < G′′ < G′, then G′′ = Φ(G′) and there exist positive
integers 1 < s < t such that |Z(G′)| = ps and |G′′| = pt. Let Z(G′) =
1 ∪ xG, G′′ = Z(G′) ∪ yG, G′ = G′′ ∪ zG. Assume that Z(G) = 1. If
p = 2, then |xG| = 2s − 1 = q and |zG| = 2t(2n−t − 1). As G′ is
non-abelian and |G′/Φ(G′)| = 2n−t, we have n − t > 1. Therefore,
q = 2n−t − 1 and n − t = s. It follows that |CG(z)| = 2n−t = 2s,
which is contrary to that Z(G′) < ⟨Z(G′), z⟩ ≤ CG(z). Hence q = 2.
Then ps = 1 + |xG| = 3, |yG| = 3(3t−1 − 1) and |zG| = 3t(3n−t − 1).
Therefore, t = 2, n = 3 and |G| = 54. Recall that G′ = G′′ ∪ zG, then
|CG(z)| = 3, which contradicts Z(G′) ̸= 1. So Z(G) ̸= 1. Note that
Z(G) ≤ Z(G′), implies Z(G) = Z(G′) is 2-decomposable in G, and thus
Z(G) = Z(G′) is of order 2. Now consider the factor group G = G/Z(G).
It is easy to see that G is {1, 2, 3}-decomposable. Then |G| = 40 or
48 by Theorem A, Corollary 2.3 and Lemma 2.4. First, suppose that
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1249 Guo and Chen

|G| = 40, then Φ(G′) = G′′. It follows that |G′/Φ(G′)| = 2, which
implies the contradiction that G′ is abelian. Suppose that |G| = 48.
By arguing similarly as in the former case, we see that |G′/G′′| ̸= 2,
hence |G′/G′′| = 4. Suppose that G′′ = Z(G′) ∪ uG. Then |uG| = 2,
and thus CG(u)⊴G. It follows that G′ ≤ CG(u), which contradicts that
u /∈ Z(G′).

From the above two paragraphs we conclude that if Z(G′) ̸= G′′,
then Z(G′)G′′ is a 4-decomposable normal subgroup of G, and thus
G′ = Z(G′)G′′, leading the contradiction that G′′ = G′′′ = 1. Hence
Z(G′) = G′′.

If |Z(G)| = 3, then p = 3, q = 2 and Z(G) = Z(G′). Let T be a
2-decomposable normal subgroup of G. Keeping in mind that T ≤ G′,
we have T ∩ Z(G′) ̸= 1. However, as we have seen that |Z(G′)| = 3,
then Z(G′) ≤ T , which is a contradiction.

If |Z(G)| = 2, then p = 2. If Z(G) ̸= Z(G′), then Z(G′) = G′′ is
3-decomposable in G. Set |Z(G′)| = 2s. Then 2 + q = 2s and therefore
q = 2 = p, which is a contradiction. So Z(G) = Z(G′) = G′′ and thus
Z(G′) = G′′ = Φ(G′). Therefore, G′ is an extraspecial 2-group and
|G′| = 2n = 22m+1 for some positive integer m. Consider the factor
group G = G/Z(G). Then G is {1, 2, 3}-decomposable and |G| = 40
or 48 by Theorem A, Corollary 2.3 and Lemma 2.4. If |G| = 40, then
|G′| = 8. Let K be a 3-decomposable normal subgroup of G. Then
Z(G′) ≤ K ≤ G′. Suppose K = Z(G′) ∪ uG. Then |uG| = 2 and
thus G′ ≤ CG(u), which contradicts that u /∈ Z(G′). If |G| = 48, then
|G′| = 16 = 24 = 22m+1, another contradiction.

Therefore, Z(G) = 1. Suppose |G′′| = ps for some positive integer s.
If G′′ = Z(G′) is 3-decomposable in G, then 1 + 2q = ps. Recall that
p = 2 or q = 2, we have q = 2 and ps = 5. Since |G′| − |Z(G′)| = 5n − 5
divides |G| = 5n · 2, we see that 5n−1 − 1 divides 2, which is impossible.
Hence, G′′ = Z(G′) is 2-decomposable in G. Let 1 ̸= g1 ∈ G′′. Then
CG(g1) = G′, and so q = ps−1. Suppose thatG′ = Z(G′)∪gG2 ∪gG3 . Then
CG(gi) ≥ ⟨gi, Z(G′)⟩ for i = 2 and 3. Therefore, |CG(g2)| = ps+t1 ≥ ps+1

and |CG(g3)| = ps+t2 ≥ ps+1. Hence, pn − ps = pnq
ps+t1

+ pnq
ps+t2

. It follows

that

ps(pn−s − 1) = q(pn−s−t1 + pn−s−t2).

As G/G′′ is non-abelian, the length of G/G′′-conjugacy classes of each
non-trivial element in G′/G′′ is q. Hence q+q = pn−s−1 or q = pn−s−1.
If q+q = pn−s−1, then by ps(pn−s−1) = q(pn−s−t1 +pn−s−t2), we have
2psq = q(pn−s−t1+pn−s−t2). Therefore, pn−2s−t1+pn−2s−t2 = 2, whence
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On finite X-decomposable groups 1250

pn−2s−t1 = pn−2s−t2 = 1. It follows that t1 = t2 and n = 2s+ t1. Since
q + q is even, we see that p ̸= 2, and thus q = 2, p = 5 and n − s = 1.
Therefore, s+ t1 = n− s = 1, which is a contradiction. If q = pn−s − 1,
then n = 2s. It follows from ps(pn−s − 1) = q(pn−s−t1 + pn−s−t2) that
pn−2s−t1 + pn−2s−t2 = 1. Hence p = 2 and t1 = t2 = 1. In this case, we
have 2n = |G′| = 2s + 2s+1 + 2s+1 = 2s · 5, which is impossible.

Case 3. G′ is a group of order pnqb.
In this case, there exists a prime r such that |G| = pnqbr. It follows

that G is solvable as G′ is solvable. Arguing similarly as in the proof
of Lemma 2.5, we have that every proper normal of G is contained in
G′. We discuss the three possibilities (A), (B) and (C) described in the
beginning of the proof of this theorem.

(A) G′ = P1 × Q1 with P1 and Q1 its elementary abelian Sylow p-
and q-subgroups, respectively.

If r = p, then Z(P ) ∩ P1 ̸= 1 for every Sylow p-subgroup P of G.
Write K = Z(P )∩ P1. Then K ≤ Z(G) and thus K ⊴G. If P1 or Q1 is
3-decomposable in G, then P1 ×Q1 has at least 5 G-conjugacy classes,
which is a contradiction. Therefore, P1 is 2-decomposable in G, and thus
P1 = K ≤ Z(G). So |P1| = 2 and |G| = 4qb. It follows that G/Q1 is of
order 4 and thus it is abelian, which implies the contradiction that G′ ≤
Q1. By arguing similarly, we have r ̸= q. Therefore, q ̸= r ̸= p. If P1

is 3-decomposable in G, then there are more that 4 G-conjugacy classes
in P1 × Q1, which is a contradiction. Therefore, P1 is 2-decomposable
in G. Similarly, we have that Q1 is 2-decomposable in G. If P1 ≤ Z(G),
then |P1| = 2 and |G| = 2qbr. Let K be a subgroup of G with order
qbr. Then K ⊴ G and thus G′ ≤ K since G/K is abelian of order 2,
which is a contradiction. Therefore, P1 ≰ Z(G). Similarly, we have that

Q1 ≰ Z(G). Therefore, pn − 1 = r = qb − 1, and thus p = q, another
contradiction.

(B) G′ = N ⋊H is a Frobenius group with kernel N and G′/N ∼= Zq

or Zq2 or Q8, where N is 2-decomposable in G.
(i) G′/N ∼= Zq2 .

If r = p, then |G| = pn+1q2. Let P ∈ Sylp(G) and N = {1} ∪ xG. As
Z(P )∩N ̸= 1, without loss of generality we may assume that x ∈ Z(P ).
Therefore, CG(x) = P and q2 = pn − 1. Since, p = 2 or q = 2, we have
q = 2 and pn = 5 by Lemma 2.7. It follows that |G| = 100. By Sylow’s
Theorem, a Sylow 5-subgroup of G is normal in G, so P ⊴G. Since G/P
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1251 Guo and Chen

is abelian of order 4, we have that G′ ≤ P , which is a contradiction by
order consideration.

If r = q, then |G| = pnq3. As |G/N | = q3, we may choose K/N to be
a normal subgroup of G/N such that |K/N | = q. Then |K| = pnq and
|G/K| = q2. It follows that G/K is abelian, and thus G′ ≤ K, which is
again a contradiction by order consideration.

Now, we conclude that p ̸= r ̸= q. By the fact thatN is 2-decomposable
in G and G′ is a Frobenius group, we have |N | − 1 = pn − 1 = q2 or q2r.
If pn − 1 = q2, then p = 2 or q = 2. By Lemma 2.7, we have q = 2 and
pn = 5. Therefore, |G| = 5·2·r. As r ̸= 2, there exists a normal subgroup
K of G of order 5r. It follows that G/K is abelian of order 2, leading
to the contradiction that G′ ≤ K. Now, suppose that pn − 1 = q2r. Let
K be a 3-decomposable normal subgroup of G. Since K ≤ G′, N ≤ K
by [14, Exercise 8.5.7]. It follows that |K| = pnq. If q ̸= 2, then q = 3
and r = 2 as |G′|−|K| = pnq(q−1) divides pnq2r. Therefore, |G| = 342.
Let G′ = K ∪ wG. Then |wG| = 114 and thus |CG(w)| = 3. The fact
that G′ has abelian Sylow 3-subgroups gives |CG′(w)| ≥ 9, which is a
contradiction. If q = 2, then r ̸= 2 and |G/K| = 2r. Let T/K be a
subgroup of G/K of order r. Then T is a normal subgroup of G of index
2, and thus G′ ≤ T , contrary to that |G′| = pn2b and |T | = pn2b−1r.

(ii) G′/N ∼= Zq.
Let Q ∈ Sylq(G

′). Then G = G′NG(Q) = NNG(Q) by the Frattini’s
argument. As G′ is a Frobenius group, N ∩ NG(Q) = 1. Therefore,
G/N ∼= NG(Q) and NG(Q) is non-abelian. Hence r ̸= q. If r = p and
P ∈ Sylp(G), then N ≤ P since N is a normal p-subgroup of G. It
follows that P = P ∩ G = P ∩ NNG(Q) = N(P ∩ NG(Q)) and thus
|P ∩ NG(Q)| = p. If 1 ̸= x ∈ Z(P ) ∩ G′, then CG(x) = P since G′

is a Frobenius group and thus |G : CG(x)| = q. If N ≰ Z(P ), then
there exists y ∈ N − Z(P ). In this case, |G : CG(y)| > q, and therefore
x and y are not conjugate in G, which contradicts the fact that N is
2-decomposable in G. Hence N ≤ Z(P ) and P is abelian. Since N is
2-decomposable in G, Q acts transitively on N − {1}. So pn − 1 = q.
For every 1 ̸= x ∈ Q, we have CG(x) = Q and |xG| = pn+1. As G′ is
4-decomposable, pn+1 + pn+1 = qpn − pn. It follows that q = 2p + 1.
Therefore, pn = 2(p + 1), and it is easy to see that p = 2 and 2n = 6,
which is impossible. Hence, q ̸= r ̸= p.

Let R ∈ Sylr(G). If R acts trivially on G′, then R ≤ Z(G) ≤ G′,
which is a contradiction. If R acts on N trivially, then pn − 1 = q and
pnr+pnr = qpn−pn. It follows that p = 2, q = 2n−1 and r = 2n−1−1.
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On finite X-decomposable groups 1252

If n ≥ 4, then either n or n − 1 is even. Without loss of generality
we may assume that n = 2k for some positive integer k > 1. Then
q = 2n − 1 = (2k − 1)(2k + 1), which is a contradiction since neither
2k − 1 nor 2k + 1 is equal to 1. Therefore, n ≤ 3. It follows that q = 7
and r = 3. So |CG(N)| = 24 and G/CG(N) is abelian. It follows that
G′ ≤ CG(N) and N ≤ Z(G′) = 1, which is a contradiction. Therefore,
R does not act trivially on N . As N is 2-decomposable in G, we have
pn − 1 = qr. By arguing similarly we have that pnr + pnr = qpn − pn.
In this case, q = 2r + 1 and pn = 2r2 + r + 1. If r ̸= 2, then p = 2.
However, the equation 2n = 2r2 + r + 1 does not have any solution by
Lemma 2.8. So r = 2. In this case, q = 5, p = 11, n = 1 and |G| = 110.
Let H be a 3-decomposable subgroup of G. As H ≤ G′, we have N ≤ H
by [14, Exercise 8.5.7], which contradicts the fact that N is a maximal
subgroup of G′.

(iii) G′/N ∼= Q8

In this case, N < G′′ by [14, Exercise 8.5.7]. Therefore, |G′| = 8pn and
|G′′/N | = |Q′

8| = 2, and thus |G′′| = 2pn. Notice that 1 < N < G′′ <
G′ < G, then both |N | − 1 = pn − 1 and |G′| − |G′′| = 6pn divide |G| =
8pnr. It follows that r = 3 and that pn−1 divides 24. Recall that G′ is a
Frobenius group, we have p ̸= 2 and write 2 ∤ |CG(x)| for every 1 ̸= x ∈
N . Consequently, |G| = 600 or 216. In both cases, we write G = G/N .
Then G is a {1, 2, 3}-decomposable group. It follows from Theorem
A that G is isomorphic S4 or SmallGroup(24, 3). Since the derived
subgroup of S4 has index 2 in S4, G is isomorphic to SmallGroup(24, 3).
Noticing that N = F (G) is a minimal normal subgroup of G and that
G is solvable, we have Φ(G) < F (G), whence Φ(G) = 1. So there exists
H ≤ G such that G = NH and N ∩ H = 1. Therefore, H ∼= G/N is
isomorphic to SmallGroup(24, 3). If |G| = 216, then we may assume
that H = ⟨a, b, c, d | a3 = d2 = 1, b2 = c2 = d, ba = cd, ca = bc, cb = cd⟩
and that N = ⟨e, f | e3 = f3 = 1, [e, f ] = 1⟩. As N is normal in G,
we may assume that ea = eif j , fa = ekf l, eb = esf t, f b = emfn, ec =
eufv, f c = ewfx, where i, j, k, l, s, t,m, n, u, v, w, x ∈ {0, 1, 2}. Then

ea
3
= eb

4
= ec

4
= e, fa3 = f b4 = f c4 = f, eb

2
= ec

2
= ed ̸= e, f b2 =

f c2 = fd ̸= f, eba = eacd, f ba = facd, eca = eabc, f ca = fabc, ecb = ebcd

and f cb = f bcd. Therefore, the integers i, j, k, l, s, t,m, n, u, v, w, x must
satisfy all of the following congruence equations:

s2 +mt− u2 − vw ≡ 0 (mod 3)
st+ tn− uv − vx ≡ 0 (mod 3)
sm+mn− uw − wx ≡ 0 (mod 3)
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1253 Guo and Chen

tm+ n2 − wv − x2 ≡ 0 (mod 3)
i3 + 2ijk + jkl ≡ 1 (mod 3)
ijk + 2jkl + l3 ≡ 1 (mod 3)
i2j + kj2 + ijl + l2j ≡ 0 (mod 3)
i2k + ikl + kl2 ≡ 0 (mod 3)
s4 + 2stmn+m2t2 +mn2t ≡ 1 (mod 3)
s2tm+ 2smnt+ t2m2 + n4 ≡ 1 (mod 3)
u4 + 2uvwx+ v2w2 + wx2v ≡ 1 (mod 3)
u2vw + 2uvwx+ v2w2 + x4 ≡ 1 (mod 3)
usi+ umj + wti+ wnj − iu− kv ≡ 0 (mod 3)
vsi+ vmj + xti+ xnj − ju− lv ≡ 0 (mod 3)
usi+ umj + wti+ wnj − iw − kx ≡ 0 (mod 3)
vsi+ vmj + xti+ xnj − jw − lx ≡ 0 (mod 3)
u3v + 2uv2w + 2v2wx+ u2xv + uvx2 + x3v ≡ 0 (mod 3)
u3w + u2wx+ 2uvw2 + uwx2 + 2vw2x+ wx3 ≡ 0 (mod 3)
s3t+ 2st2m+ 2t2mn+ s2nt+ stn2 + n3t ≡ 0 (mod 3)
s3m+ s2mn+ 2stm2 + smn2 + 2tm2n+mn3 ≡ 0 (mod 3)
s3u+s2wt+mtus+mwt2+s2mv+smxt+mnvs+mnst−su−mv ≡

0 (mod 3)
s2um+s2wn+tum2+mtwn+sm2v+smxn+m2vn+mxn2−sw−mx ≡

0 (mod 3)
stum+stwn+ tnum+ twn2+ tvm2+ tmxn+n2vm+xn3− tw−nx ≡

0 (mod 3)
s2ut+ swt2 + tnus+ t2wn+ tmvs+mxt2 + n2vs+ n2xt− tu− nv ≡

0 (mod 3)
s2ui+ s2wj+mtui+mtwj+ smvi+ smxj+mnvi+mnxj− is− lt ≡

0 (mod 3)
stui+ stwj + tnui+ tnwj + tmvi+ tmxj + n2vj + n2xj − js− lt ≡

0 (mod 3)
s2uk+s2wl+mtuk+mtwl+smvk+smxl+mnvk+mnxl−im−kn ≡

0 (mod 3)
stuk+ stwl+ tnuk+ tnwl+ tmvk+ tmxl+ n2vk+ n2xl− jm− ln ≡

0 (mod 3).

Noting that eb
2 ̸= e and f b2 ̸= f , we have neither

(3.1)

{
s2 +mt ≡ 1 (mod 3)

st+ tn ≡ 0 (mod 3)

nor
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On finite X-decomposable groups 1254

(3.2)

{
sm+mn ≡ 0 (mod 3)

tm+ n2 ≡ 1 (mod 3)

happens.
According to the calculation, we have the following 8 solutions for the

above conditions:
1. i = 0, j = 1, k = 2, l = 2, s = 0, t = 2,m = 1, n = 0, u = 1, v =

2, w = 2, x = 2,
2. i = 0, j = 2, k = 1, l = 2, s = 0, t = 1,m = 2, n = 0, u = 1, v =

1, w = 1, x = 2,
3. i = 2, j = 2, k = 1, l = 0, s = 1, t = 1,m = 1, n = 2, u = 2, v =

1, w = 1, x = 1,
4. i = 2, j = 1, k = 2, l = 0, s = 1, t = 1,m = 1, n = 2, u = 0, v =

1, w = 2, x = 0,
5. i = 2, j = 2, k = 1, l = 0, s = 1, t = 2,m = 2, n = 2, u = 0, v =

2, w = 1, x = 0,
6. i = 0, j = 1, k = 2, l = 2, s = 2, t = 1,m = 1, n = 1, u = 1, v =

1, w = 1, x = 2,
7. i = 0, j = 2, k = 1, l = 2, s = 2, t = 1,m = 1, n = 1, u = 0, v =

2, w = 1, x = 0,
8. i = 2, j = 2, k = 1, l = 0, s = 0, t = 1,m = 2, n = 0, u = 2, v =

2, w = 2, x = 1.
Let G1, G2, G3, G4, G5, G6, G7, G8 be the groups corresponding to the

above solutions, respectively. In group G2, we may replace f by f2, then
G2 has the same representation as G1, and thus G2

∼= G1. Similarly,
in groups G3, G4, G5, G6, G7, G8, we may replace e, f by e2, ef , replace
e by ef2, replace e, f by ef, f2, replace e, f by f2, ef , replace e, f by
ef2, e2, replace e, f by f, e, respectively, then all of them are isomorphic
to G1. Therefore, we may define G as in (1) of this Theorem. If |G| =
600, with the help of Program 1 in the Appendix, we have that G ∼=
SmallGroup(600, 150), and thus we may assume that G is defined as in
(2) of this Theorem.

(C) G′ is a Frobenius group with kernel N and G′/N ∼= Zq, where N
is 3-decomposable in G.

As |G′| − |N | = pnq − pn divides pnqr, we see that q − 1 divides qr.
So q = 2, and r ̸= 2 or q = 3, and r = 2.

Suppose r ̸= p. If q = 2 and r ̸= 2, then |G| = 2pnr. We can choose
T to be a subgroup of G of order pnr. Then T ⊴G and G′ ≤ T as G/T
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1255 Guo and Chen

is abelian of order 2, which is a contradiction by order consideration. If
q = 3 and r = 2, then |G| = 6pn. Suppose that N is abelian. Then
pn = 1+ 2qr or pn = 1+ 2q or pn = 1+ qr + q. It follows that |G| = 78
or 42. Since every normal subgroup of G is contained in G′, it is easy
to see that there is no 2-decomposable normal subgroup in G in each
case. Therefore, N is non-abelian, and thus Z(N) is 2-decomposable in
G. Suppose |Z(N)| = pt for some integer t. Then pn = pt + psqr or
pn = pt + psq for some integer s. If pn = pt + psqr, then p = 7 and
n − t = 1. Note that Z(N) is 2-decomposable, we have pt = 1 + qr.
Therefore, t = 1, n = 2 and |G| = 294. Suppose N = Z(N) ∪ uG.
Then |CG(u)| = 7, which is contrary to the fact that Z(N) ̸= 1. If
pn = pt + psq, then p = 2 = r, contrary to our assumption.

Therefore, r = p. In this case, we have |G| = pn+1q. If q = 2,
we can choose T to be a subgroup of G of order pn+1. Then G/T is
abelian and thus G′ ≤ T , which is a contradiction. If p = 2, then
q = 3 and |G| = 2n+1 · 3. Let K be a 2-decomposable normal subgroup
of G. Then K ≤ G′, and thus K ≤ N by [14, Exercise 8.5.7]. If
t = 1, then K = Z(G), which gives Z(G′) ̸= 1, and this contradicts
the fact that G′ is a Frobenius group. Since both |K| − 1 = 2t − 1 and
|N | − |K| = 2n − 2t divide |G| = 2n+1 · 3, we have t = 2, and n = 3 or
n = 4. Therefore, |G| = 48 or 96. First suppose that |G| = 48. Then
G = G/K is {1, 2, 3}-decomposable and |G| = 12, which contradicts
Theorem A. Now, suppose that |G| = 96. Then |N | = 16. It is easy to
see that N ′ = Z(N) is an elementary abelian 2-group of order 4 and that
exp(N) = 4. However, by investigating the structures of non-abelian 2-
groups of order 16 with exponent 4, we find that there does not exist a
group satisfying this condition. Therefore, there is no X-decomposable
group in this case.

□

Theorem 3.2. There is no finite non-perfect X-decomposable group G
such that G′ is 3-decomposable in G.

Proof. Since G′ is 3-decomposable, G′ must be one of the following
groups by [16]:

1) |G′| = pn for some prime p and some integer n and G′ is metabelian.
2) |G′| = pn for some prime p and some integer n and G′ is elementary

abelian.
3) G′ is a Frobenius group and G′ = {1} ∪ gG ∪ hG, with h−1 ∈ hG

and (|h|, |g|) = 1.

Arc
hive

 of
 S

ID

www.SID.ir



On finite X-decomposable groups 1256

Furthermore, if G′ is of type 3), then |G′| = 2np, where p = 2n − 1 is
a prime by [2, Lemma 1].

We see that in all cases, G is solvable as G′ is solvable. Let N be an
arbitrary normal subgroup of G. We claim that G′ ≤ N or N ≤ G′.
For otherwise, since G is X-decomposable and G′ is 3-decomposable in
G, there are more than 4 G-conjugacy classes in G′N . It follows that
G = G′N , and thus (G/N)′ = G/N , which is a contradiction.

Case A. |G′| = pn for some prime p and some integer n and G′ is
metabelian.

If Z(G) ≰ G′, then G′ < Z(G) by the above paragraph, which gives
the contradiction that G is abelian. Therefore, Z(G) ≤ G′.

(i) If G has at least two distinct 4-decomposable normal subgroups
K1 and K2, then K1 ∩ K2 = G′ and G = K1K2. Furthermore, there
exist primes r1 and r2 such that |G/K1| = |K2/G

′| = r1 and |G/K2| =
|K1/G

′| = r2, and thus |G| = pnr1r2. On the other hand, since |K1|−|G′|
and |K2| − |G′| divide |G|, we have that both r1 − 1 and r2 − 1 divide
r1r2. It is easy to see that |G| = 4pn or |G| = 6pn.

Suppose |G| = 4pn. Then p ̸= 2. Let K be a 2-decomposable normal
subgroup of G. ThenK ≤ G′, and so there exists a positive integer t < n
such that |K| = pt. Then both |K| − 1 = pt− 1 and |G′| − |K| = pn− pt

divide 4pn. It is easy to see that pn = 9 or 25. Suppose that pn = 9
and that G′ = K ∪ xG for some x ∈ G′. Then |xG| = 9 − 3 = 6 and
|CG(x)| = 6. On the other hand, we have that G′ ≤ CG(x) as G′ is
abelian, and thus |CG(x)| ≥ 9, which is a contradiction. If pn = 25, by
arguing similarly as for pn = 9, we can get a contradiction.

Now, suppose |G| = 6pn. Let H be a 2-decomposable normal sub-
group of G. Then H ≤ G′. If H ≤ Z(G), then |H| = 2 and p = 2.
Therefore, |G′| − |H| = 2n − 2 divides 2n · 6. It follows that |G| = 24 or
48. First suppose |G| = 24. If G has normal Sylow 3-subgroup Q, then
Z(G) × Q is 4-decomposable in G, and thus G′ ≤ Z(G) × Q, which is
a contradiction. Therefore, a Sylow 3-subgroup of G is not normal and
G/Z(G) ∼= A4 by [11, Theorem 4.3.4], which is a contradiction. Now,
suppose |G| = 48. Then |G′| = 8 and we can choose a 4-decomposable
normal subgroup of G, say K1, such that |K1| = 24. If K1 = G′ ∪ wG,
then |wG| = 16 and thus |CG(w)| = 3, contrary to that Z(G) ̸= 1.

Therefore, H ≰ Z(G). Recall that H ≤ G′, so there exists a positive
integer i such that |H| = pi. Then both |H| − 1 = pi − 1 and |G′| −
|H| = pn − pi divides 6pn. Note that |H| ̸= 2 as H ≰ Z(G). We
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1257 Guo and Chen

conclude that |G| =48, 54, 96 or 294. If |G| = 48. Let K1 be a 4-
decomposable normal subgroup such that |K1| = 24 and K1 = G′ ∪wG.
Then |CG(w)| = 3. On the other hand, write G′ = H ∪ vG. Then
|CG(v)| = 12, which is a contradiction. If |G| = 54, then we can choose
K1 to be a 4-decomposable normal subgroup such that |K1| = 27 and
that K1 = G′ ∪ uG. It follows that K1 is a Sylow 3-subgroup of G and
Z(K1) ̸= 1, which contradicts the fact that |CG(u)| = 3. If |G| = 96.
We can choose K2 to be a 4-decomposable subgroup of G such that
|K2| = 32 and K2 = G′ ∪ kG. Then |CG(k)| = 6, which contradicts
that Z(G′) ̸= 1. Finally, suppose |G| = 294. Let G′ = H ∪ hG. Then
|CG(h)| = 7, contrary to that G′ is abelian.

(ii) There is exactly one 4-decomposable normal subgroup in G. Then
there exists a prime q ̸= p such that G/G′ is a cyclic group and |G/G′| =
q2. Let H/G′ be a normal subgroup of G/G′ of order q. Then |H| = pnq
and H is 4-decomposable in G. Therefore, |H|− |G′| = pn(q−1) divides
|G| = pnq. It follows that q = 2 and |G| = 4pn. By arguing similarly as
in (i), we conclude that there is no X-decomposable group in this case.

Case B. |G′| = pn for some prime p and some integer n and G′ is
elementary abelian.

We can similarly have Z(G) ≤ G′ as in Case A.
(i) There are at least two distinct 4-decomposable normal subgroups

in G. By arguing similarly as in Case A(i), we have |G| = 4pn or
|G| = 6pn.

Suppose |G| = 4pn. Then p ̸= 2. If Z(G) ̸= 1, then |Z(G)| = 3 and
G′ = Z(G) as G′ is 3-decomposable in G. It follows that G is abelian,
which is a contradiction. Therefore Z(G) = 1, and thus G′ is the only
minimal normal subgroup of G by [2, Theorem 1(i)], so G does not have
a 2-decomposable normal subgroup, which is a contradiction.

Now suppose |G| = 6pn. If Z(G) = 1, by arguing similarly as in
the above paragraph, we can get a contradiction. Therefore, Z(G) ̸= 1.
If |Z(G)| = 2, then |G′| − |Z(G)| = 2n − 2 divides |G| = 6 · 2n. It
follows that |G| = 24 or 48. If |G| = 24, then |G′| = 4. Let K1 be
a 4-decomposable normal subgroup of G such that |K1| = 12 and let
K1 = G′ ∪ xG. Then |CG(x)| = 3, which contradicts the fact that
Z(G) ̸= 1. If |G| = 48, by arguing similarly as for |G| = 24, we arrive at
a contradiction. Therefore, Z(G) = G′ is of order 3. Consequently, we
conclude that |G| = 18 and G/Z(G) = G/G′ is a cyclic group of order
6, which gives the contradiction that G is abelian.
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On finite X-decomposable groups 1258

(ii) There is exactly one 4-decomposable normal subgroup in G. By
arguing similarly as in Case A(ii), we have that |G| = 4pn. By (i) of this
case, we see that there is no X-decomposable group in this case.

Case C. G′ is a Frobenius group of order 2np, where p = 2n − 1 is a
prime and G′ = {1} ∪ gG ∪ hG, with h−1 ∈ hG and (|h|, |g|) = 1.

Let H be a 4-decomposable normal subgroup of G. Then G′ ≤ H
by the beginning of this theorem. We see that H is a Frobenius group
by [13, Theorem 2]. Let M be the Frobenius kernel of H. Then M is
nilpotent, and thus M ≤ G′ by [14, Exercise 8.5.7]. It follows that M
is the Frobenius kernel of G′. So |H| = 2npb and |G| = 2npbr for some
prime r. As |H| − |G′| = 2n(pb− p) divides 2npbr, we have that pb−1− 1
divides r. Therefore, pb−1−1 = r since p = 2n−1. It is easy to see that
r = 2, p = 3, b = 2 and n = 2. Let H = G′ ∪ wG. Then |wG| = 24 and
thus |CG(w)| = 3, which contradicts the fact that G has abelian Sylow
3-subgroups. □

Theorem 3.3. Let G be a finite non-perfect X-decomposable group. If
G′ is 2-decomposable in G, then G is one of the following two groups:

(1) |G|=42 and G = ⟨a, b | a7 = b6 = 1, b−1ab = a5⟩.
(2) G = D12.

Proof. As G′ is 2-decomposable in G, there is a prime p such that G′ is
an elementary abelian p-group by [17, Theorem 1]. Suppose |G′| = pn

for some positive integer n.
If G′ ≤ Φ(G), then G is nilpotent. As Z(G) can not be maximal

in G, Z(G) is 2- or 3-decomposable in G. However, |Z(G)| is divided
by at least two primes since G is not of prime power order, which is
a contradiction. Therefore, G′ ≰ Φ(G). In this case, there exists a
maximal subgroup M of G such that G′ ≰ M . So G = G′M and
G′ ∩ M = 1. Moreover, M ∼= G/G′ is abelian. For 1 ̸= x ∈ M , the
maximality of M implies that CG(x) = M or CG(x) = G.

If CG(x) = M for every 1 ̸= x ∈ M , then G is a Frobenius group
with kernel G′ and a complement M . By the structure of the Frobenius
complements, M is a cyclic group. Take K to be an arbitrary non-trivial
subgroup of M . Then G′K ⊴G and so G′K is 3- or 4-decomposable in
G. For every 1 ̸= y ∈ G′K\G′, y must be a p′-element and there
exists a Hall p′-subgroup M1 of G such that y ∈ M1. Noticing that
M1 and M are conjugate, we conclude that M1 is also abelian and thus

|yG| = |G|
|M1| = |G′|. If G′K is 3-decomposable in G, then |G′||K| =
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|G′K| = 2|G′| and |K| = 2. If G′K is 4-decomposable in G, then
|G′||K| = |G′K| = 3|G′| and |K| = 3. Therefore, M is a cyclic group of
order 6. On the other hand, M acts transitively and fixed-point freely
on G′\{1}, so |G′| − 1 = pn − 1 = 6. It follows that |G′| = 7 and there
exists i ∈ {2, 3, 4, 5, 6} such that G = ⟨a, b | a7 = b6 = 1, b−1ab = ai⟩.
It is easy to see that i = 5 and G is the first group described in this
theorem.

Now, suppose that there exists 1 ̸= x ∈ M such that CG(x) = G.
Then Z(G) ̸= 1. If G′ ≤ Z(G), then |G′| = 2 and |G : M | = |G′| = 2.
So G′ ≤ M , which is a contradiction. Therefore, G′ ≰ Z(G). The
minimality of G′ implies that G′ ∩ Z(G) = 1. Let H = G′ × Z(G).
Then H is abelian and thus H < G. In this case, Z(G) must be 2-
decomposable and so H is 4-decomposable in G. Therefore, there exists
a prime q such that |G/H| = q. Since |H| = 2pn, we have |G| = 2pnq.
If p = 2, then q ̸= 2 as G is not a 2-group. As G′ is 2-decomposable
and H ≤ CG(G

′), we have that |G′| − 1 = 2n − 1 = q. Let Q be a
Sylow q-subgroup of G and K = G′Q. Then K is normal in G and
|K| = 2nq. If K is 3-decomposable in G, then |K| − |G′| = 2n(q − 1)
divides |G| = 2n+1q. It follows that q = 3, n = 2 and |G| = 24. Since
Q ⋬ G and Z(G) ̸= 1, G/Z(G) ∼= A4 by [11, Theorem 4.3.4], which is
a contradiction. If K is 4-decomposable in G, then K is a Frobenius
group by [13, Theorem 2]. So all elements of order q in K form two G-
conjugacy classes. Let y ∈ K be an element of order q. We can see that
|CG(y)| = 2q, and thus |yG| = 2n. Now we have 2nq = |K| = 2n+2n+2n

and thus q = 3, n = 2 and |K| = 12. It is easy to see that K ∼= A4 and
K ∩ Z(G) = 1. Therefore, G ∼= A4 × Z2. However, G is {1, 2, 4}-
decomposable by Theorem C, which is a contradiction. If p ̸= 2, then
there exist elements in H of order 2, p and 2p. So all elements of order
p in H form one G-conjugacy class. Noticing that H is abelian, we
conclude that pn − 1 = q and thus pn = 3 and q = 2. In this case,
|G| = 12 and G is an extension of a cyclic group H of order 6 by a
cyclic group of order 2. Suppose that H = ⟨a⟩ and let 1 ̸= b ∈ G\H.
Then b−1ab = a−1 since b−1ab ̸= a. On the other hand, b2 ∈ H since
|G/H| = 2. If b2 = a2 or b2 = a4, then b is of order 6. It is easy to
see that |⟨a⟩ ∩ ⟨b⟩| = 3, and thus |Z(G)| ≥ 3, which contradicts to that
|Z(G)| = 2. If b2 = a3, then G = ⟨a, b | a6 = 1, b2 = a3, b−1ab = a−1⟩ ∼=
Q12. However, G is {1, 2, 4}-decomposable by Theorem C. Therefore,
b2 = 1 and G = ⟨a, b | a6 = b2 = 1, b−1ab = a−1⟩ ∼= D12, and G is
X-decomposable by Example 2.1.
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□
Now, from the above three theorems, we come to our main theorem.

Theorem 3.4 (Main theorem). Let G be a finite non-perfect X-
decomposable group. Then G is one of the following groups:

(1) |G| = 216 and G = ⟨a, b, c, d, e, f | a3 = d2 = e3 = f3 = 1, b2 =
c2 = d, ba = cd, ca = bc, cb = cd, ea = f2, eb = e2f, ec = f2, ed = e2, fa =
ef2, f b = ef, f c = e, fd = f2⟩.

(2) |G| = 600 and G = ⟨a, b, c, d, e, f | a3 = d2 = e5 = f5 = 1, b2 =
c2 = d, ba = bc, ca = b, cb = cd, ea = ef3, eb = e3f3, ec = e3, ed =
e4, fa = e4f3, f b = f2, f c = e4f2, fd = f4⟩.

(3) |G| = 42 and G = ⟨a, b | a7 = b6 = 1, b−1ab = a5⟩.
(4) G = D12.

Appendix

Program 1 : A Magma Program

SetLogFile(“nnn..txt”);
P:=SmallGroupProcess(600);
repeat
G:=Current(P);
“..................................................................group ”;
CurrentLabel(P);
M:=NormalSubgroups(G); m:=0;
for j in [1..♯M] do
N:=M[j]‘subgroup;
S:=[n:n in N—Order(n) ge 1];
while ♯S gt 1 do
h:=1;X:=S[1];Remove( S,1);

for k in [♯S..1 by -1] do
if IsConjugate(G, X, S[k]) then

h:=h+1;Remove( S,k);
end if;

end for;
“c,”,h;
end while; “c,”,♯S; N;m:=m+1; “........................................” ,m;
if ♯N eq 1 then ”1”; end if;
end for;
“.................................................................................”;
Advance( P);
until IsEmpty(P);
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