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Abstract. Let N be a submodule of a module M and a mini-
mal primary decomposition of N is known. A formula to compute
Baer’s lower nilradical of N is given. The relations between classi-
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1. Introduction

Throughout this paper all rings are commutative with identity and
all modules are unitary.

Let R be a ring and M be an R-module. A proper submodule P of
M is said to be primary if whenever rm ∈ P where r ∈ R and m ∈ M
then m ∈ P or rkM ⊆ N for some positive integer k.

Recall that (P : M) = {r ∈ R | rM ⊆ P}. If P is a primary

submodule ofM and p =
√
P : M , then P is called p-primary submodule

(see [10]).
A primary decomposition of a submodule N of M is a representation

of N as an intersection of finitely many primary submodules of M . Such
a primary decomposition N = ∩n

i=1Qi with pi-primary submodules Qi
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Nilradical and classical prime submodules 1264

is called minimal if pi’s are pairwise distinct and Qj ⊉ ∩i̸=jQi for all
j = 1, . . . , n.

If R is a Noetherian ring and M is a finitely generated module, then
every proper submodule N has a minimal primary decomposition. The
first uniqueness theorem states that for such a minimal primary decom-
position the set of primes {p1, . . . , pm} is uniquely defined. These primes
are called the associated primes of N . We denote this set by Ass(M/N).
It is clear that for any p ∈ Ass(M/N), (N : M) ⊆ p.

The prime ideals in Ass(M/N) that are minimal with respect to in-
clusion are called the isolated primes of N , the remaining associated
prime ideals are the embedded primes of N .

The second uniqueness theorem states that not only the primes but
also the primary components corresponding to isolated primes, the iso-
lated components of N in M , are uniquely defined. The other primary
components, the embedded components of N in M , need not be defined
uniquely. The concepts and theorems about the primary decomposition
of modules can be found in chapter 9 of [12].

The radical
√
I of an ideal I ⊂ R is characterized as the the set of

elements a ∈ R such that an ∈ I for some positive integer n. The concept
of envelope of a submodule is the generalization of this characterization
to the modules. If N is a submodule of an R-module M , then the
envelope of N in M is defined to be the set

EM (N) = {rm : r ∈ R,m ∈ M and rkm ∈ N for some k ∈ Z+}.

The submodule generated by the envelope is called (Baer’s) lower nilrad-

ical and denoted by nil
√
N . Although some methods to compute radical

of a submodule, which defined to be intersection of prime submodules
containing N , are given in [9] and [11]. It seems there is no description
for the computation of the lower nilradical of a submodule in the liter-
ature. In Section 1, we give a formula for the computation of nil

√
N if a

minimal primary decomposition of N is known. In this section, we use
extensively the concepts and results from [8].

When M is a module, a proper submodule N of an R-module M
is called a classical prime submodule if for each m ∈ M and a, b ∈ R;
abm ∈ N implies that am ∈ N or bm ∈ N . A proper submodule N of an
R-module M is called a classical primary submodule if abm ∈ N where
a, b ∈ R and m ∈ M , then either bm ∈ N or akm ∈ N for some k ≥ 1.
We remark that these two concept are sometimes referred to in the
literature as weakly prime submodules and weakly primary submodules,

Arc
hive

 of
 S

ID

www.SID.ir



1265 Yılmaz and Cansu

respectively. This notion of classical (weakly) prime submodule was
first introduced and studied in [4] and recently has received a good deal
of attention from several authors; see for example [1, 2, 5]. Also, this
notion of classical primary submodule was first introduced and studied
in [3]. In Section 2, we investigated relations between classical prime
submodules and their lower nilradicals. We also give an example to
show a conjecture given in [3] is false.

2. Baer’s lower nilradicals of submodules

Lemma 2.1. Let N be a submodule of a module M over a ring R. If
N = Q1∩Q2∩ · · · ∩Qk is a minimal primary decomposition of N where√
Qi : M = pi for all i = 1, 2, . . . , k. If S = {1, 2, . . . , k} and ∅ ̸= T ⊊ S,

then
(
∩
i∈T

pi)(
∩

i∈S\T

Qi) ⊆
nil
√
N

Proof. Let n ∈ (
∩
i∈T

pi)(
∩

i∈S\T
Qi). Then there exist rj ∈

∩
i∈T

pi and

mj ∈
∩

i∈S\T
Qi such that

n = r1m1 + r2m2 + · · ·+ rsms

for some s ∈ Z+.
Since rj ∈

∩
i∈T

pi, we have rj
kjM ⊆

∩
i∈T

Qi for some kj ∈ Z+. In

particular, rj
kjmj ∈

∩
i∈T

Qi for all j = 1, 2, · · · , s.

Since mj ∈
∩

i∈S−T

Qi, we have rj
kjmj ∈

∩
i∈S−T

Qi for all j. Thus, we

have rj
kjmj ∈

k∩
i=1

Qi = N which means that rjmj ∈ EM (N) for all j.

Therefore, n ∈ nil
√
N . □

Before giving a formula for the nilradical of a submodule in terms of
its associated primes and primary submodules in its primary decompo-
sition, we need some technical prerequisites.

Definition 2.2. Let N be a submodule of a module M over a ring R.
If I is an ideal of R, then the set

N : I∞ = {m ∈ M : Ikm ⊆ N for some positive integer k}
is called the stable quotient of N by I in M .
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Nilradical and classical prime submodules 1266

Lemma 2.3. [8, Lemma 1] Let P ⊂ M be a primary submodule of M
and f ∈ R.

(i) P : ⟨f⟩∞ = M if f ∈
√
P : M,

(ii) P : ⟨f⟩∞ = P if f ̸∈
√
P : M.

More generally, for arbitrary submodule N of M and its primary de-
composition N =

∩
Pi into pi-primary submodules Pi we get

(iii) N : ⟨f⟩∞ =
∩
f ̸∈pi

Pi

and for arbitrary ideal I of R

(iv) N : I∞ =
∩
I ̸⊂pi

Pi.

We can easily show that.

Lemma 2.4. Let N be p-primary submodule of an R-module M . Then

(i) N : h = N, if h ̸∈ p,

(ii) N : h = M, if h ∈ (N : M).

The following theorem is the main result of this section.

Theorem 2.5. With the notation in Lemma 2.1,

nil
√
N = N + (

k∩
i=1

pi)M +
∑

∅̸=T⊊S

(
∩
i∈T

pi)(
∩

i∈S\T

Qi).

Proof. Let m ∈ nil
√
N . Then there exist mj ∈ M , and rj ∈ R such that

m = r1m1 + r2m2 + · · ·+ rtmt.

By the definition of nil
√
N , we have mj ∈ N : ⟨rj⟩∞ for each j =

1, 2, . . . , t.

For each rj , rj ∈ R \
k∪

i=1
pi, there is a maximal proper subset T of S

such that rj ∈
∩
i∈T

pi or rj ∈ pi for all i.
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1267 Yılmaz and Cansu

If rj ∈ R \
k∪

i=1
pi, then N : ⟨rj⟩∞ = N by Lemma 2.3. Hence mj ∈ N

and so rjmj ∈ N .
If rj ∈

∩
i∈T

pi, then

N : ⟨rj⟩∞ =
k∩

i=1

(Qi : ⟨rj⟩∞) =
∩

i∈S\T

Qi

by Lemma 2.3. Hence,

rjmj ∈ (
∩
i∈T

pi)(
∩

i∈S\T

Qi).

If rj ∈
k∩

i=1
pi =

√
N : M , then rjmj ∈

√
N : MM .

Thus, we can conclude that

nil
√
N ⊆ N + (

k∩
i=1

pi)M +
∑

∅̸=T⊊S

(
∩
i∈T

pi)(
∩

i∈S\T

Qi).

For the other side of the inclusion, Lemma 2.1 implies that∑
∅̸=T⊊S

(
∩
i∈T

pi)(
∩

i∈S\T

Qi) ⊆
nil
√
N.

Moreover N and (
k∩

i=1
pi)M =

√
N : MM are clearly in nil

√
N . □

Corollary 2.6. If N is a p-primary submodule, then
nil
√
N = N + pM.

Now, we will give an application of Theorem 2.5. The computer
algebra system Singular was used for the computations (see [7]).

Example 2.7. Let R = Q[x, y, z] and let M = R ⊕ R ⊕ R. Consider
the submodule N = ⟨xze3 − ze1, x

2e3, x
2y3e1 + x2y2ze2⟩.

Primary decomposition of N is N = Q1 ∩Q2 ∩Q3 where

Q1 = ⟨e3, ze1, ye1 + ze2, z
2e2⟩ is ⟨z⟩ − primary,

Q2 = ⟨e1, e3, y2e2⟩ is ⟨y⟩ − primary and

Q3 = ⟨xe1, xe3 − e1, x
2e2⟩ is ⟨x⟩ − primary.
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Nilradical and classical prime submodules 1268

By Theorem 2.5,

nil
√
N = N + (p1 ∩ p2 ∩ p3)M + p1(Q2 ∩Q3) + p2(Q1 ∩Q3)

+p3(Q1 ∩Q2) + (p1 ∩ p2)Q3 + (p1 ∩ p3)Q2 + (p2 ∩ p3)Q1.

It is clear that (p1 ∩ p2 ∩ p3)M = ⟨xyze1, xyze2, xyze3⟩. We also get

p1(Q2 ∩Q3) = ⟨xze1, xze3 − ze1, x
2y2ze2⟩

p2(Q1 ∩Q3) = ⟨xyze3 − yze1, x
2ye3, x

2y2e1 + x2yze2⟩
p3(Q1 ∩Q2) = ⟨xe3, xze1, xy3e1 + xy2ze2⟩
(p1 ∩ p2)Q3 = ⟨xyze1, xyze3 − yze1, x

2yze2⟩
(p1 ∩ p3)Q2 = ⟨xze1, xze3, xy2ze2⟩
(p2 ∩ p3)Q1 = ⟨xye3, xyze1, xy2e1 + xyze2, xyz

2e2⟩
Thus

nil
√
N = ⟨ze1, xe3, xyze2, xy2e1⟩.

Corollary 2.8. If nil
√
N = N , then each isolated component of primary

decomposition of N must be prime.

Proof. Let N = Q1∩Q2∩· · ·∩Qn with Qi’s are pi-primary submodules.
Let Qk be one of the isolated components of N . If Qk’s were not a prime
submodule, then there would exist x ∈ pk\(Qk : M). Hence, there exists
m ∈ M such that xm ̸∈ Qk. Since pk is an isolated prime, we can find
an element y ∈ (

∩
j ̸=k

pj) \ pk. Then

xym ∈ (

n∩
j=1

pj)M ⊆ nil
√
N = N ⊆ Qk.

Since Qk is pk-primary and xm ̸∈ Qk, y ∈ pk which is a contradiction.
□

3. Classical prime submodules

In this section we investigate the relations between classical prime
submodules and their nilradicals.

Lemma 3.1. If N is a classical prime submodule, then nil
√
N = N .
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1269 Yılmaz and Cansu

Proof. Let x ∈ nil
√
N . Then there exist elements ri ∈ R and mi ∈ M

(1 ≤ i ≤ k) such that

x = r1m1 + · · ·+ rkmk with rtii mi ∈ N

for some ti ∈ Z+. Since N is classical prime, rtii mi ∈ N implies that

rimi ∈ N or rti−1
i mi ∈ N . If rimi ∈ N , then x = r1m1+· · ·+rkmk ∈ N .

If rti−1
i mi ∈ N , then rimi ∈ N or rti−2

i mi ∈ N . By the same process,

rimi ∈ N for all cases. Hence, x ∈ N , which means that nil
√
N ⊆ N .

Other side of the inclusion is obvious. □
The classical quasi-primary submodules are introduced in [6]. We will

take one of the equivalence definitions in Noetherian modules.

Definition 3.2. A proper submodule N of a Noetherian module M is
called classical quasi-primary if abm ∈ N where a, b ∈ R and m ∈ M
implies that either akm ∈ N or bkm ∈ N for some k ∈ N.

Proposition 3.3. [6, Proposition 3.4] Let M be a Noetherian R-module
and N is a proper submodule of M . Suppose that N = Q1 ∩Q2 ∩ · · · ∩
Qs where each Qi is pi-primary submodule. Then N is classical quasi-
primary if and only if {p1, p2, . . . , ps} is a chain of prime ideals.

Theorem 3.4. If N is a classical quasi-primary submodule and nil
√
N =

N , then N is classical prime submodule.

Proof. Suppose that N = Q1 ∩ Q2 ∩ · · · ∩ Qs where each Qi is pi-
primary submodule with p1 ⊂ p2 ⊂ · · · ⊂ ps. Since p1 ⊂ p2 ⊂ · · · ⊂ ps,
by the Theorem 2.5

N =
nil
√
N = N + p1M +

s∑
i=2

pi(

i−1∩
j=1

Qj).

Let abm ∈ N with a, b ∈ R and m ∈ M . Let i be the first index for
which m ̸∈ Qi. Since Qi is pi-primary, ab ∈ pi and so either a ∈ pi
or b ∈ pi. If i = 1, then since p1M ⊂ nil

√
N = N , either am ∈ N or

bm ∈ N . Let i > 1. Since pi(
∩i−1

j=1Qj) ⊂ nil
√
N = N , either am ∈ N or

bm ∈ N . Hence N is a classical prime submodule. □
The following conjecture is stated in [3]: Let R be a ring and M be an

R-module. Then for every classical primary submodule Q of M , nil
√
Q

is a classical prime submodule.
The next example shows that the conjecture is false.

Arc
hive

 of
 S

ID

www.SID.ir



Nilradical and classical prime submodules 1270

Example 3.5. Let R = Q[x, y] and let M = R ⊕ R. Consider the
submodule N = ⟨xe1 + y3e2, x

2e1, xe2⟩. One can easily see that (N :

M) = ⟨x2⟩ and N is ⟨x⟩-primary submodule. Hence

nil
√
N = N + ⟨x⟩M = ⟨xe1, xe2, y3e2⟩

Then nil
√
N is not classical prime submodule since y2(0, y) = (0, y3) ∈

nil
√
N but y(0, y) = (0, y2) ̸∈ nil

√
N .

If we weaken the conditions of the conjecture as follows, then we can
obtain the desired result as a consequence of Theorem 3.4.

Corollary 3.6. Let R be a Noetherian ring and M be a finitely gener-
ated R-module. Then for every classical primary submodule Q of M ; if
nil
√
Q = Q, then Q is classical prime.

We also have the following.

Corollary 3.7. Let N = Q1 ∩ Q2 be a submodule of M where Qi is
pi-primary. If nil

√
N = N , then either Q1 and Q2 are both prime or N

is classical prime.

Proof. We have two cases: p1 ⊈ p2 or p1 ⊆ p2. If p1 ⊈ p2, then both
p1 and p2 are isolated primes. From Corollary 2.8, Q1 and Q2 are prime
submodules. If p1 ⊆ p2, then Theorem 3.4 implies that N is classical
prime. □

Definition 3.8. A proper submodule N of an R-module M is called
semiprime if whenever rkm ∈ N for some r ∈ R,m ∈ M and natural
number k, then rm ∈ N .

The question when a semiprime submodule can be expressed as a
finite intersection of classical prime submodules was discussed in [5].
We try to make some contributions to this discussion. First of all, the
following lemma shows that semiprime submodules can be defined in
terms of their lower nilradicals.

Lemma 3.9. A proper submodule N is semiprime if and only if nil
√
N =

N .

Proof. Suppose that N is semiprime. Let x ∈ nil
√
N . Then there exist

elements ri ∈ R, mi ∈ M (1 ≤ i ≤ k) such that

x = r1m1 + · · ·+ rkmk with rtii mi ∈ N
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1271 Yılmaz and Cansu

for some ti ∈ Z+. Since N is semiprime, rimi ∈ N for all i. Hence
x ∈ N and nil

√
N = N .

Conversely, suppose that nil
√
N = N . Let rkm ∈ N for some r ∈

R,m ∈ M and natural number k. By definition of the envelope, rm ∈
EM (N) ⊆ nil

√
N = N . Hence, N is semiprime. □

Proposition 3.10. A finite intersection semiprime submodules is also
semiprime.

Proof. Let N = N1 ∩ N2 ∩ · · · ∩ Ns where each Ni is semiprime.
If x ∈ nil

√
N , then x = r1m1 + r2m2 + · · · rtmt where rkii mi ∈ N for

some ki ∈ N. Therefore for each i and j, rkii mi ∈ Nj . Since each Nj is
semiprime, rimi ∈ Nj for j = 1, . . . , s. Hence x ∈ N . By Lemma 3.9 ,
N is semiprime. □

Definition 3.11. A submodule N is called a quasi-p-primary submodule
in M , if N has a unique isolated prime p (and possibly embedded primes).

Definition 3.12. A quasi-p-primary submodule N is called simple quasi-
p-primary if for any distinct associated primes pi, pj and pk of N , pi ⊂ pk
and pj ⊂ pk implies either pi ⊂ pj or pj ⊂ pi.

In the language of graph theory, we can say N is a simple quasi-
primary submodule, if Hasse diagram of associated primes of N with
respect to set inclusion form a rooted tree.

Lemma 3.13. Let N be a simple quasi-p1-primary submodule for a
prime ideal p1. If N is also semiprime, then N can be expressed as an
intersection of finitely many classical prime submodules containing N .

Proof. Let Ass(M/N) = {p1, . . . , ps} and S = {1, . . . , s}. If N con-
tains only one maximal associated prime with respect to inclusion, then
its associated primes form a chain p1 ⊂ · · · ⊂ ps. Hence, N is classical
prime by Theorem 3.4.

Suppose that N has more than one maximal element. For each max-
imal pj , we have a unique chain of associated primes p1 = pj1 ⊂ pj2 ⊂
· · · ⊂ pjt = pj . Let Nj = Qj1 ∩ Qj2 · · · ∩ Qjt where Qj1 = Q1 and
Qjt = Qj . From Theorem 2.5,

nil
√
N = N + p1M +

∑
T⊂S

(
∩
i∈T

pi)(
∩

i∈S\T

Qi)
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Nilradical and classical prime submodules 1272

and

nil
√

Nj = Nj + p1M +

t∑
i=2

pji(

i−1∩
k=1

Qjk).

Our aim is to show that nil
√

Nj = Nj . Clearly p1M ⊂ nil
√
N = N ⊂ Nj .

Let B = Ass(M/N) \ Ass(M/Nj). Take x ∈ pji and m ∈
∩i−1

k=1Qjk .
Since pj is a maximal prime and N is simple quasi-primary, there exists
y ∈ (

∩
p∈B

p) \ pj . Hence,

yxm ∈ (pji ∩ (
∩
p∈B

p))(

i−1∩
k=1

Qjk) ⊂
nil
√
N = N ⊂ Nj ⊂ Qjk .

Since each Qjk is pjk -primary and y ̸∈ pjk , xm ∈ Qjk . Hence, xm ∈ Nj .

This implies nil
√

Nj = Nj and Nj is classical prime by Theorem 3.4.
Since N = ∩Nj , N is intersection of finitely many classical prime sub-
modules. □

The following proposition is crucial for computing primary decompo-
sitions and is quite useful for our purpose.

Proposition 3.14. [8, Proposition 1] Assume that L = {p1, . . . , pk}
are the isolated primes of N . For i, j = 1, . . . , k take fi ∈ R such that
fi ∈ pj if i ̸= j, but fi ̸∈ pi, Ni = N : f∞

i and take integers ei such that
f ei
i Ni ⊂ N .
Then:
(i) Ni is a quasi-pi-primary module in M .
(ii) The sets Ai = Ass(M/Ni) = {p ∈ Ass(M/N) : fi ̸∈ p} are

pairwise disjoint.
(iii) For J := ⟨e1, e2, . . . , ek⟩ we have

N = (
∩

Ni) ∩ (N + JM)

This is a decomposition of N into quasi-primary components Ni and a
component N ′ := N + JM ⊂ M of lower (relative) dimension.

Theorem 3.15. Assume that L = {p1, . . . , pk} are the isolated primes
of a semiprime submodule N and define Ni’s as in the previous propo-
sition. If N = N1 ∩N2 ∩ · · ·Nk and each Ni is simple quasi-pi-primary,
then nil

√
Ni = Ni for i = 1, . . . , k. Hence N can be written as a finite

intersection of classical prime submodules.
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1273 Yılmaz and Cansu

Proof. For a fixed i, let Ass(M/Ni) = {pi1 = pi, pi2 , . . . , pisi} and pi ⊆
pik for every k and let Ni = Qi1∩· · ·∩Qisi

where each Qik is pik -primary.
By Theorem 2.5,

nil
√
N = N + (

k∩
i=1

pi)M +
∑

∅̸=T⊊S

( ∩
j∈T

pij
)( ∩

j∈S\T

Qij

)
and

nil
√

Ni = Ni + piM +
∑

∅≠T⊊Si

( ∩
r∈T

pir
)( ∩

r∈Si\T

Qir⟩

where Si = {i1, i2, . . . , isi} and S =
∪k

i=1 Si.
Let x ∈ pi and m ∈ M . Take y ∈

(∩
j ̸=i pj

)
\
(∪si

t=2 pit
)
. This is

possible since associated primes of Ni’s are pairwise disjoint. Then

yxm ∈
( k∩
j=1

pj
)
M ⊆ nil

√
N ⊆ Qit

for t = 1, . . . , si. Since Qit is primary and y ̸∈ pit , xm ∈ Qit . Hence
xm ∈ Ni.

Now, let x ∈
∩

r∈T pir ,m ∈
∩

Si\T Qir for some T ⊊ Si. Take

y ∈
(∩
j ̸=i

pj
)
\
( si∪
t=2

pit
)
.

Then

yxm ∈
[(∩

j ̸=i

pj
)
∩
( ∩
r∈T

pit
)]( ∩

r∈Si\T

Qir

)
.

Since ∩
j ̸=i

pj =
∩
j ̸=i

sj∩
t=1

pjt ,

we have [(∩
j ̸=i

pj
)
∩
( ∩
r∈T

pit
)]( ∩

r∈Si\T

Qir

)
⊆ nil

√
N ⊆ Ni.

Thus yxm ∈ Qit for t = 1, . . . , si. Since Qit is primary and y ̸∈ pit ,
xm ∈ Qit and hence xm ∈ Ni. Therefore

nil
√
Ni = Ni and the conclusion

easily follows. □

We also have the following result.

Arc
hive

 of
 S

ID

www.SID.ir



Nilradical and classical prime submodules 1274

Proposition 3.16. Let N be a classical primary submodule of M . Then
N is semiprime if and only if N is classical prime.

Proof. Suppose N is semiprime. Then by Lemma 3.9, nil
√
N = N .

Since N is classical primary, N is classical prime by Corollary 3.6.
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