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ABSTRACT. This paper is concerned with the existence of multiple
positive solutions for a quasilinear elliptic system involving concave-
convex nonlinearities and sign-changing weight functions. With the
help of the Nehari manifold and Palais-Smale condition, we prove
that the system has at least two nontrivial peositive solutions, when
the pair of parameters (A, ;1) belongs to acertain subset of R?.
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1. Introduction and notation

There is a wide literature that deals with the existence of multiple
solutions to semilinear elliptic boundary value problems. Conditions
that guarantee the existence of multiple solutions to differential equa-
tions are of interest, because physical processes described by differential
equations can exhibit:more than one solution. In recent years, many
works._have been carried out to discuss the existence and multiplicity
of positive solutions for BVPs by variational methods, for example, see
1, 2, 5, 7,9, 10, 12, 13, 18, 19].

In this paper, we are interested in the existence of two nontrivial positive
solutions for the following nonlinear elliptic system:
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(1.1)

—Apu+a(z)|ulP~?u =X\ f(z)u|?%u + b(x)|u|*2up|? =€ Q,

>
a+f

—Apv+a(z)|v[P~2v = p g(z)|v]T %0 + %b(x)|v|5*2v|u\°‘ z€Q,
a

u=v=0 x € 092,

where 0 € Q € RV (N > 3) is a bounded domain with smooth boundary
and 0, \,u > 0,1 < g < p < N, Apu = div(|Vu|P~?Vu)is the
p—L]z\ifplacian. Also a > 1,8 > 1 satisfy p < a+ g < p*, and p* =

p
N-p
assumptions for the weight functions a, b, f, g :

(A) a e C(Q), a(x) > 0;

(B)be C(Q), b =max{b,0} Z 0 and |b|oo = 1

(C) f,g€C(Q), ft=max{f0}#0,and gt =max{g,0} # 0.

In many problems of mathematical physics and engineering it is not
sufficient to deal with the classical solutions of differential equations. It
is necessary to introduce variational methods involving Nehari manifold
and Palais-Smale condition.

Here we give a variational method to prove the existence of at least two
nontrivial nonnegative solutions of problem (1.1) in two cases.

Set f(x) =g(z) =b(x)=1land e+ =p",1 < qg<p< N, then
(1.1) reduces to

is the so-called critical Sobolev exponent. We make the following

(1.2)
—Apu + a(@)|ulP?u = Mul9?u + %ﬁ\u|°‘_2ulv|5 x € Q,
Q@
_ _ B _
—Ayu + al@)|wlP~2v = pl|t 20 + ——— P 20lul® zeQ,
p¥ + a(@) |l plvl 04+B’ 7" olul
u=1v=0 x € 0N.

In our recent work ([15]), we proved that there exists Ag > 0 such that

if the parameters A, u > 0, satisfy 0 < AP + ,uppfq < Ay then problem
(1.2) has at least two nontrivial positive solutions.

Wu in [18] has investigated the following semilinear elliptic system
with subcritical nonlinearity:
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—Au = M (x)|u|?2u + O[O[Tﬁh(a;ﬂu]a_zuww x € Q,

(1.3) —Av = pg(x)|v]i %0 + mh(:v)|v|ﬁ_gv|u|a x €€,
u=v=0 x € 01,

where 1 < ¢ <2 < a+f < 2* with o > 1,8 > 1, and the weights f, g, h
satisfy some suitable conditions. He proved that problem (1.3) has at
least two nontrivial positive solutions when the pair of (A, ) belongs to
a certain subset of R2.

Hsu in [13] also considered problem (1.3) in the caseof the p-Laplacian
operator. Motivated by the above paper, we consider the problem (1.1)
and extend the results of the literature [13].

In this paper we use of the following notations.

L*(92) where 1 < s < oo , denote Lebesgue spaces and the norm in
L? is denoted by | - |s for 1 < s < o0;

The dual space of a Banach space W will be denoted by W1,
(u,v) is said to be nonnegative in.Q if u > 0 and v > 0 in ;
(u,v) is said to be positive in Q if u > 0 and v > 0 in ;

|| is the Lebesgue measure of ;

¢
O(g') denotes |O(f ) <Case—0fort>0;

o(1) denotes 0(1) = 0 as n — oo;
C, C; denote various positive constants, the exact values of which are
not important;

*

N

p* = Np;(l < p < N) is the critical Sobolev exponent;
- p

S is the best Sobolev embedding constant defined by

(IVulP + a(x)|ulP)dz
(1.4) S = inf /Q ;

ueWy P ()\{0} (/ | u |a+,3dx>aiﬂ
Q
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By modifying the proof of Alves et al. [4, Theorem 5], we have

(1.5) Sup = <<OB‘> = + (g) +B)S

where S is the best Sobolev constant defined in (1.4) and
(1.6)

/ (IVul? + a(z)|ul?)dz + / (1Yol + a(a)[v]?)dz
Sap = ilnf Q Q2 -
WEW,P(Q atB
upEW, P (Q)\{0} (/ u|av|gdx> +
Q

when a+ 8 = p*. This is achieved if and only if Q = R™ by the function

1 (N—p)/p
P
Ues(z) =Cn <5> , e>0.

s+|x!ﬁ

bl

We organize this paper into four sections. In section 2, we give prop-
erties of Nehari manifold and set up the variational method. In section
3, we consider Palais-Smale condition and in the last section we give our
main results.

2. The Nehari manifold

Problem (1.1) is pesed in the framework of the Sobolev space W =
W& P ox VVO1 P equipped with the norm

1/p

|z ||= </Q(]Vu|p+a(x)|u|p)d:1:—|—/ﬂ(]Vv|p+a(a:)|v|p)daz> , 2 = (u,v)eW.

Moreover, z is said to be a weak solution of problem (1.1) if for all
(p1,¢2) € W, there holds

/ (|[Vu[P~2VuVe; 4 a(z)up )dz + / (IVo|P~2VoV s + a(z)vps)dx
Q Q

.\ / F(@) [l — g / 9(2)[0]7 2opda
Q 9]

@
a+p

b a=2 5d—ﬂ/b B=2p|u|%padx = 0,
[ bl 2uleords — L [ @l 2olulpads
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It is clear that problem (1.1) has a variational structure. Let Jy, :
W — R be the corresponding energy functional of problem (1.1), which
is defined by

1 1 1
Du(z)==|z P —=Kx,u(z) — ——L(2), Vze W
&) = 212 P L R(e) = 50

for which K ,, L : W — R are the functionals defined by

&M@=AQKMW+M@W%M, M@:AM@MWWM~

It is well known that the weak solution of problem (1.1) is the critical
point of the energy functional .J ,. Thus, to prove the existence of weak
solutions for problem (1.1), it is sufficient to show that .J) , admits a
critical points. As the energy functional Jy , is not bounded below on
W, it is useful to consider the functional J) , on the Nehari manifold

Ny ={z € WA{0}[(J} ,(2), 2) = 0}.
Obviously z € Ny , if and only if
(2.1) (I u(2),2) =[l 2 [IP = Ky u(z) —L(2) = 0.

Note that N, contains every nontrivial weak solution of problem (1.1).
Define

Oau(2) =0 u(2), 2)-
Then, for any z € N ,,

(22) (Phu(2).2) = pllal’ — aKau(z) = (a+ B)L(2)

(2.3) = (=9l zP =(a+B-qL(z)
(2.4) = (a+B8-qKu(z) —(a+B-p) |z
It is natural to split IV) , into three disjoint parts:

NIM = {z€N\u: <¢')\,M(z),z> > 0},

Ng\),u = {Z € N)vu : <¢/>\,,u(z)az> = O}a

N):M = {z€Ny\,: <qb'/\7u(z),z> < 0},

similar to the method used in Tarantello ([16]). We now derive some
important properties of N;ru, Ngu and N;M.

Lemma 2.1. J, , is coercive and bounded from below on Ny ,,.
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Proof. 1f z € Ny, it follows from (2.1), (C), and the Holder inequality
and the Sobolev embedding theorem, that

Lﬁ_p” P - atpf—q

Iau(z) 7;(57qj7§5*f(A4¢(2)

p(a+ )
atB-p i atBoag s ese B
> ——— ||z |P - ————=S5 " 7|Q| 28 o," || 2 |9,
where S is the best Sobolev embedding constant defined in (1.4) and
_p _p_
(2.5) o = (Alfloc) 7= + (plgloc) 7=
Since 1 < g < p, we get that Jy , is coercive and bounded below on
Ny u- O

Lemma 2.2. Suppose that zy is a local minimizer for Jyy, on Ny, and
20 & N/(\)u' Then z is a critical point of Jy ,, that-means, J;\M(zo) =0
in W1,

Proof. If g is a local minimizer for Jy , on [Ny, then zg is a solution of
optimization problem. Since ¢y ,(2) ={J} ,(2).2), then by the theory
of Lagrange multipliers, there exists v € R such that

<‘]//\,,u(20)7 ZO) v 7<¢//\,,u(20)7 ZO)'

Since 29 € Ny, and 2y & Ng,ﬂ we get <¢’)\7“(z0),zo> # 0 and so v = 0.
This completes the proof. O

Lemma 2.3. (i) ifz € NJTH, then Ky ,(z) > 0;
(i) if z € N/(\),W then K ,(2) > 0 and L(z) > 0;

(iii) if z € N, ,, then L(z) > 0.

?/’l"
Proof. The proof is obtained from (2.2)-(2.4). O
Lemma 2.4. Set
(2.6)
aTh=q =
A= [ PoT atlB=gqt et - 0.
a+B—q a+f—p

Then for (A, ) satisfying 0 < oy, < Mg, we have NR# = 0.
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Proof. Assume contrary, i.e., there exist A\, u > 0 with 0 < 0y, < Ag
such that Ny, # 0. Then for z € N , by (2.3), (2.4) we have that

at+pB—q a+pB—q
Iz [P = ﬁL(z), (R mKA,u(Z)-

Then (B) implies
5=
_ « a+pB—p
Iz > [—2=9_5%"° ,
a+fp—q

It follows from (C), the Holder inequality and the Sobolev embedding

theorem,
1

_ atfg \ P9
Izl (2270641015 ) (o
“\a+8-p '

This implies

p

P N
a+B—p P—q
— a4+ b — a+B— a+p
O = ( rE ) ( ; Li0| awq) STHFT7 = Ao,

a+8—gq a+8—p

which is a contradiction. This proves.the Lemma. ]

Let O = {(\ 1) € R2\(0;0) : 0.< gr,, < A} and Ay = (%)p’%qu <

Ap. By lemma (2.4), forevery (A, 1) € ©4,, we have N ,, = N;'MUN)\_M.
So we define

0y, = inf J,.(2), 07 = inf J\,(2), 05 = inf J\,(2).
s ZEN/\J,‘ 7}"( )7 A,,U, ZGN;:H 7ﬂ( )’ /\,,u ZEN;’H ,,U,( )

Then we have the following result.
Theorem 2.5. (i) If (A, p) € Oy, then 0y, < Gj\ru < 0;

(ii) If (A p) € Op,, then there exists dg = do(\, p, p,q, N, S, |2, | floos
|9loc) > 0 such that 6 , > do.

Proof. (i) For any z € N;#, it follows from (2.4), that

st SR

K > ——
)\,M(z) OC+B_q



Existence and multiplicity of nontrivial solutions 1308

and
1 1 1
Tale) = <p—a+5)u|| (G- 5 ) Ko
(1— >H|! (1— ! )“*5‘puzw
p a+p g a+pB)a+p—q

— 1
a+/3p<_>||z||p<0
at+B \p ¢

This gives 0y, <63, <0

(i) For any z € Ny, we obtain from (2.3) that

pb—q P
————| 2z || < L(2).
s <L

Moreover, using (1.4) and (1.5) , since S, g > S, we get
L(z) <

(2.7)

a+5.

This implies that

1
. at+p—p a
IHH><pA7> S+,
T \a+ b —=q

Using the main formula in the proof of Lemma (2.1), we have

I

hale) 2 e S e L R

A w ¥ (a+8)
# Sp(qa+ﬁ—p)
a+ B —=q

p—q
a+pg— pS(p an)r(Baanl;) < p—gq > at+B-p
pla+f) at+f—q

o+ 8-
(+@

_9 Q OH“ﬁgq %
S 7| O |
Thus, for any (A, u) € Oy, and z € N, ,, we have

J)\“u(z) > dO = dO(A7,U/7p7Q7 N7 Sv ‘9’7 ’f‘oo; ’g’OO) >0



1309 Khademloo and Khanjany Ghazi

For each z € W with L(z) > 0, we write

-l \ T
(2'8) tmax - <(a _’_5 _ q)L(z)) > 0.

Then the following lemma holds.

Lemma 2.6. Assume that (\,p) € On,, then for each z € W with
L(z) > 0, we have:

(1) if Kx,(z) < 0, then there is a unique t~ = t(2) > fmax such
thatt~z € Ny, and
(2.9) Iau(t™z) = sup Jy ,(t2);

>0

(ii) if Ky u(2) > 0, then there are unique 0 < t+ = t7(2) < tiax <t~ =
t=(2), such that t*z € N)\iu and

(2.10) unu+z)zo inf  Jy,(t2); Iy, (- 2) = sup Jy ,(t2).

<t<tmax >0
Proof. Fix z € W with L(z) > 0, we define
m(t) = 9| AP 3 UL(z),
for t > 0. Clearly m(0) = 0 and m(t) — —oo as t — oo. Furthermore
m'(t) = (p = )P 2 [P = (a+ B — )t PTITIL(2),

there is a unique tyax > 0 such that m(t) achieves its maximum at
tmax > 0, increasing for ¢ € [0, tyax) and decreasing for ¢ € (tmax, 00).
Clearly, tz € N;rﬂ(or N, ) if and only if m'(t) > 0( or < 0). Moreover,

m(tmaX> N ((a+6q)L(Z)> H || <(Oé+ﬂq)L(z)> L( )

P— atB—q

piq mi piq a+p—p || Py ||Oc+ﬁ ﬁﬁ*l’
at+pf—q a+pB—q L(z)
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(i) If K),(2) < 0, then there exists a unique ¢~ > tyax such that
m(t™) = K ,(z) and m/(t7) < 0. Now,

(=)t )Pl 2P = (a+B—q)(t7)*PL(z) = (7)™ 'm(t7) <0,
and
(I u(t72), (t72)) = (7)1 [m(t7) — Ky u(2)] = 0.

Thus, t~z € Ny ,. Subsequently, m/(t) < 0 and m”(t) < 0 for ¢ > tyax.
Then
Iau(t™2) = sup Jy ,(tz2).
>0
(ii) Suppose that Ky ,(z) > 0. Then for (A, ) € ©4,, We have

m0) =0 < Kxu(2)

< SO g | 20
«@
< sTHOE g |2

TSR s
oo (220 ) e iemt) (5%
a+B8—gq a+tB—q ’

by (2.11), there are unique ¢ and ¢~ such that 0 < tT = t1(2) < tmax <
tm=t"(2),

IN

m(tT) = Ky ,(2) = m(t), m/(tT) > 0>m/(t7).
Moreover, we have t¥z e N ;\—Lﬂ, and
Iu(t72) = Iau(tz) = Iy u(t™2), vt e[ttt

T ttz) < T u(tz), Yt € [0, tmax]
Thus

I (tF2) = 0<3§fmax Iap(tz); Iay, (67 2) = Sup Iru(tz)

For each z € W with L(z) > 0, we write

1

i ((a +B- q)KA,,xz))

> 0.

(212) o = \ T 5=l = P

Then we have the following lemma.
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Lemma 2.7. Assume that (A, u) € Oy,, then for each z € W with
Ky .(2) >0, we have:

(i) if L(z) < 0, then there exists 0 < tT = t7(2) < #tmax such that
ttz e Niﬂ and

) —; .
(2.13) Iu(tTz) = %IZIE I u(tz);

(ii) if L(z) > 0, then there exist 0 < tT = t7(2) < tmax <t~ =t (2),
such that t*z € N;f# and

(2.14) Sy u(tT2)= inf  Jy,(t2); Iau(t™z) = sup Jy u(tz).
0<t<tmax >0

Proof. Fix z € W with K ,(z) > 0. Let
m(t) = P70 2 |P = 4970 K (=),

for t > 0. Clearly m(t) — —oo ast — 0" and m(t) — 0 as t — oo. Since
m'(t) = (p—a =B 2P — (g a2 BT (=),

there is a unique fyax > 0 such that m(t) achieves its maximum at fax,
increasing for ¢ € [0, tmax) and decreasing for ¢ € (fyax, 00). Similar to
the argument in the proof of Lemma (2.6), we can derive the result of
Lemma. ]

3. Palais-Smale condition

At first, we give the following definitions about (PS). -sequence and
introduce the Brézis-Lieb lemma (see [8]) as a remark.

Definition 3.1. Let c € R, W be a Banach space and J € C*(W,R).
(i) {zn} is a (PS)c- sequence in W for J if J(z,) = ¢+ o(1l) and
J'(zn) = o(1) strongly in W= asn — oo.

(i) J satisfies the (PS). condition if any (PS).-sequence {zp} in W
for J has a convergent subsequence.
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Remark 3.2. Let z, € W such that
(i) || zn || < a constant;
(ii) zn — 2o almost every where in ), then

(3.1) 120 [P=1 20 1P = || 20 |7 +o(1),

as n — 0o where Z, = zp, — 20.

Next, we will find the range of ¢ where (PS). condition holds for Jy ,,.

Lemma 3.3. Assume that {z,} C W is a (PS).- sequence for J),
and z, — z i W, then z is critical point of Jy ,, and there exists a

Co = Co(p,q, N, S, |2) > 0 such that Jy , > —Coox -

Proof. Let z, = (un,v,) and assume that {z,} is a (P.5).-sequence for
Jap with z, — z in W, it is easy to see that J} ,(2) =0, s0 (J{ (2),2) =
0. It follows from (2.1) that
L(z) = || z |I” = Kxpu(2)-
Consequently,
a+pB—p a+p=q
Inu(z)=—F———= | 2 ||IP = ——— K u(2).
,M( ) p(Oz—l-B) H || q<0é+,8) 7/1( )

By (C), the Holder inequality and the Sobolev embedding theorem, we
obtain

SRR e

ot B) dGarp o AT

« [A(/Q(|Vu]p+a(x)|u]p)dx> +u</Q(\va+a(:U)|v|p)dx>] N

It follows from the Young inequality, that

J/\,u(z) >

1S}

a+B=p a+pB—-p
J ST By e - P _Cooru = —CoOru,
R 2 SR |2 7 ~Coon, = ~Cueny
in which Cy = Cy(p,q, N, S,|Q2]) >0 . O

Lemma 3.4. Assume that {z,} C W is a (PS).-sequence for J ,, then
{zn} is bounded in W .

Proof. Assume contrary, that || z, || — co. Let

(3.2) 2= (u,vf) = 0 :< Un __Un >

Fzn 71 20 |
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zb — 2" = (u*,v*) in W. This implies that «} — u*, v} — v* strongly
in L5(Q) for all 1 < s < p* and

(3.3) Ky u(z) = Ky u(2%) + o(1).

Now, since {z,} C W is a (PS).-sequence for Jy , and || z, ||—= oo, we
have

Lza 117 Wl zn (1777 oz P
3.4 - Kau(zn) = 2nl pey = o1
a1 P K - ) = o)
and
(3-5) 2 7= 11 2 11977 Koy u(zi) = [ 2 177977 L) = o(1).
From (3.3)-(3.5), one can get

pla+B—-4q) _

3.6 2P =———< | 20 |77 Kxu(2))+0(1).
(3.6) 2 | @t 5—p) |2 | w(z)t0(1)

Since 1 < ¢ < pand | 2z, || = oo, (3.6) implies that || 2z} || — 0, as
n — oo, which contradicts || 2% ||” = 1. O

Now, we need the following proposition.

Proposition 3.5. [16] Suppose that i(z) = b(z)|u|*|v|? is positively
homogeneous of degree p*. Then'there exists M > 0 such that |(z)] <
M(|ulP” + |v|P"), where

M = max{t)(z) | [ul”" +[v|"" = 1}.
Lemma 3.6. Assume that 1) (z) is positively homogeneous of degree p*,

then vy, Y, are positively homogeneous of degree p* — 1. Moreover, there
exist My, My > 0 such that

ju < Mi(lul” 7"+ oY), (] < Ma(fuf” T+ o).
Proof. The proof is an immediate consequence of Proposition (3.5). [
Next, we need the following version of Brézis-Lieb lemma.

Lemma 3.7. Suppose that {z,} is a bounded sequence in W, and z, — z
weakly in W. Let Up, = up — u, 0y = vy — v, and Z, = (Up, 0p). Then
one can get

L(z,) = L(z,) — L(2) + o(1).
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Proof. Let @, = up — u, 0y = v, — v, and 2, = (Up, 0y ), then by the
mean value theorem, for given 0 < |f| < 1, it follows that

|¢(zn) - w(én” = |v¢(2n + 92)'2’
< My (i + OulP" Y + |3, + 0P ")yl
+ My ([T, + OulP" = + |5, + Ov[P"~Y)|v]

=4 [(lﬂn\p*_IIUI + [l + [ ul + ol )

([P ol + [ul” " ol + |9,

*7 E3
P y| i >]
< Mo @ﬂnrp*—lw 1 o] + [P 3 0] + Jon2 o

HUP” [0+ o]+ G
where My = max{M;, Ms}. Hence, for any & > 0, applying the Young
inequality to (3.7), there exists M. > 0 such that
Y(2n) = ¥(Zn)] < e(ltn 7))+ Me([uf”” + v
Now, we define the functions
(3.7 fo=10(zn) = (En) LU, g = fo — (@l + | ]").
Then

7+ [ 7).

Fo < e(l@n]” oalP") + Me(lul?” + [0o]") + 9 (2),

gn < Mo(lulP” + ") + 9(z)
< Mo([ufP” + o) + M(Jul”” + [vfP)
(M. + M)(Jul” +|v|P") e LY(9Q).

Il

Since z; — z weakly in W, we can assume that u,, — u,v, — v a.e. in
Q. Thus we get g, — 0 a.e. in 2 as n — co. The Lebesgue dominated
convergence theorem implies that

lim [ gn(z)dz =0.

n—oo Q

Therefore

lim sup/ fu(z)dz <lim sup/(gn(x) + e(|inlP” + |
Q Q

n—o0 n—oo

P))da
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< limsup/ gn(a:)d(a:)+€limsup/(\ﬂn\p* + |5, [P"))d ()
Q Q

n—oo n—oo

< M..

By the arbitrariness of € > 0, one can get

lim [ fu(z)d(z)=0.
Q

n—oo

Thus,
L(z,) = L(z,) — L(2) + o(1).
[l

1 N
Lemma 3.8. Let C), = NSOZﬁ — Coon,u, where Cy is the positive
constant given in Lemma (3.3), then Jy , satisfies the (PS). condition
with ¢ € (=00, C) ).

Proof. Let {z,} C W be a (PS).-sequence for Jy , with c € (—o0,C) ;).
By lemma (3.4) we have that {z,} is bounded in W. This implies
that 2, — z up to a subsequence, when z is a critical point of Jy ,.
Furthermore we may assume

Up = U, vy —v  in WyP(Q),
(3.8) Up —> U, Up —> U a.e on £,

Up = u, vy —v [ InL*(Q) (1 <s<p*).
This implies that J}  (z) =0 and
(3.9) K/\,,u(zn) = K/\,u(z) + 0(1)'

Let @, = uy — u, Uy =0, — v, and Z, = (Uy, Uy). Then by Remark (3.2),
we obtain

(3.10) 120 I =11 2n [P = Il 2 IP + o(1),

and from Lemma (3.7), deduce that

(3.11) L(z,) = L(zn) — L(2) + o(1).

Since Ji u(zn) = c+o(1), J} ,(2n) = o(1), by (3.9)-(3.11), we get
(3.12) ;H Z | - aiﬁL(zn) = c— Jyu(2) + o(1).

and

I Zn [P = L(Zn) = o(1).
Thus, we may assume that
(3.13) | Zn ||” = h, L(z,) — h.



Existence and multiplicity of nontrivial solutions 1316

Assume that h > 0; by the definition of S, 5 and (B), (3.14), one can get

Saghai® = S,z lim L(z,)a7

n—o0

_p_
[bls™ || Zn [IP= h,

IN

N
which implies that A > S, 5. By (3.13) and (3.14), we have

1 1
=|-- h+J
¢ (P a—i—ﬁ) 2
then by Lemma (3.3), we get

1 N~
c> Nsoiﬁ — C'()QA,“ = C')\“u.

which is a contradiction. Hence h = 0; that is z,, — z strongly in W. O

4. Existence of solutions

First, we state our main results.

Theorem 4.1. Assume that conditions (A)-(C) hold. If a+p < p*, and
A, psatisfy 0 < oy, < Ao, then (1.1).has at least one positive solution.

Theorem 4.2. Assumethat conditions (A)-(C) hold. If a+p < p*, and
A, posatisfy 0 < ox, <Ay, then (1.1) has at least two positive solutions.

Theorem 4.3. Assume that conditions (A)-(C) hold. If a4+ = p*,then
there ewists Ao'> 0 such that for \, u satisfying 0 < oy, < Az, problem
(1.1) has at least two positive solutions.

Note that, in Theorem 4.1 we claim the existence of one positive so-
lution and in Theorem 4.2 and 4.3 we claim that the second positive
solution exists in subcritical and critical case, respectively.

Proposition 4.4. [19] (i) If (A, 1) € ©On,, then there exists a (PS)s, -
sequence {zn} C Ny, in W for Jy ,;

(i) If (\, 1) € Op,, then there exists a (PS)G; -sequence {zn} C N, ,
NY ’
in W for Jy u,
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where Ay is a positive constant given in (2.6).

Now, we prove the existence of a local minimum for J , on N ;r g

Theorem 4.5. If (A, p) € Oy, then Jy, has a minimizer z§ in N;ru
and it satisfies the following:

(Z) J>\7M(Z()+) = O/J\r”u = 0)\# < O,’

(ii) =4 s a positive solution of (1.1).

Proof. By proposition 4.4 (i), there exists a minimizing sequence {z, }
for Jy , on N, , such that

(4.1) Iapu(zn) =0x, +o0(1)  and I\ (zn) = 0(1).
Since Jy, is coercive on Ny, (see Lemma (2.1)), there exists a subse-

quence {z,} = {(un,v,)} and 25 = (ug,vg) € W such that

Un = ud , vp —vf  weakly in W, (),
(4.2) T T R almost everywhere in 2,
Up = ug , vy — vy stromgly in L(2) (1 < s <p*),

as n — oo. This implies

(4.3) Ky u(z) = Ky u(2g) +0(1)  asn— occ.

First, we claim that zg is a nontrivial solution of (1.1). By (4.1) and
(4.2), we can deduce that 27 is a weak solution of (1.1). By (2.4) we have

_a+pB-p a+f—q
Dailen) = W | 2n (1P — WK)\,H(ZR)
a+6—q

et

Let n — oo, we get

q(a+B)

(4.4) Kyulzg) > - atfB—q

9)\# > 0.
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Thus, zg € N A, 1s a nontrivial solution of (1.1). Now, we prove that
zn — 2g strongly in W and J), (25 ) = 0. By applying Fatou’s lemma
and z(f € N, we have

a+pB—p a+6—gq

O < ka(z+)::‘5zaj¥7§y |25 IIP — zﬁajljgj}(ku(zﬁ)
. . fa+p—D a+p—q
<t (S50 1 P - S )

< lminfJy,(2n) = Oy

This implies that Jy,(zd) = 6, and nan;O | zn IP=|l 2g. II”. Let
Zn = Zn — zar,
then by Remark (3.2), we get

120 [P=I 20 [P = 1 25 117 -

Therefore, z, — z('f strongly in W. Next, we show that zar € N;r -

Suppose that z;5 € N, > » then by (4.4) we have K ,(z4) > 0. Thus
by Lemma (2.6), there are unique tJ and t; such that tEz5 € N ;\—L“. In
particular tg <t, = 1. Since

d d’
agjk*xtgzgj =0 and Aagng<q§zg) > 0,

there exists tJ < < tyesuch that Jy ,(t525) < Jau(tzg). By Lemma
(2.6), we have

Igultgzg W< Iau(tzg) < Daultgzg) = Iaulg),

which contradicts Jy ,(z5 ) = 0;\;. Thus z; € N;Cu. Since Jy ,(z5) =
Ipllzg]) and |2 | € N;ru, by Lemma (2.2) we may assume that zg is
a nontrivial nonnegative solution of (1.1). Moreover uj > 0,vf > 0 in
Q by the maximum principle.

Next, we prove the existence of a local minimizer for Jy , on Ny 4 in
the case a + 8 < p*. This implies that there exists the second positive
solution in the subcritical case. O
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Theorem 4.6. If p < a+ 3 < p* and (A\, ) € Op,, then Jy, has a
minimizer z, in NA_“ and it satisfies the following:

(i) Inp(z5) = O

(i1) zy is a positive solution of (1.1).

Proof. Let {z,} be a minimizing sequence for Jy , on Ny o le,

lim Jy ,(z,) = inf Jy,(2).
n—oo ZEN):M

Then by coercivity of Jy ,, on Ny , and the compact imbedding theorem,
there exists a subsequence {z,} and (z, ) = (u,, v, ) € W such that
(4.5) Un = ug , vy — vy weakly in W,P(62),

U = ug , Uy — vy strongly in LI(Q), LOFE(Q).
This implies
(4.6) Ky u(zn) = K\ u(2y) +0(1), L(zn) = L(zy ) + o(1),

as n — oo. By Lemmas (2.3) and (2.7) we obtain that there exists
Cy > 0 such that L(z,) > Cs. This implies

(4.7) L(zy )2Co.

Now, we prove that z, — 2, strongly in W. Assume contrary, then
| zo || <liminf || z, ||. By Lemma (2:6), there exists a unique ¢, such
n—oo

that ¢, z, € N/\_u' Since zj, € N/\_u’ Iau(zn) = Iy pu(tzp) for all t > 0, we
have
HX,M < Dadty 2 )< nlggo Ity zn) < nILH;O Iau(zn) = 0}:147

and this is a contradiction. Hence 2z, — z; strongly in W. This implies
that

Iau(zy) = nh_)nolo Iaulzn) =05 .
Since Jxu(z ) = Jaullz |) and |z5| € Ny ,, by Lemma (2.2) and (4.7)

we deduce that z; is a nontrivial nonnegative solution of (1.1). By the
maximum principle, it follows that u, > 0,v, > 01in € .
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Now, we complete the proof of Theorem (4.1) and (4.2):

Proof of Theorem 4.1. By Theorem (4.5), we get that for all \, u > 0
and 0 < gx, < Ap (or (A\,u) € On,), (1.1) has a positive solution
+ +

zg € N/\,u'

Proof of Theorem 4.2. By Theorems (4.5) and (4.6), we obtain
that for all \,p > 0, a+ 3 < p*, and 0 < oy, < Ay < Ag (or
(A, 1) € ©4,), (1.1) has two positive solutions z7, 2, with zéc S N;fu.
Since N ;r w0 N gy (), this implies that zar and z, are distinct. This
completes the proof of Theorem (4.2).

Now, we prove the existence of a local minimizer for Jy,, on N W in
the case a + 8 = p*. This implies that there exists the second positive
solution in the critical case. First, We point the following fact as a re-
mark which will be used in the next lemma.

Remark 4.7. Let A,B > 0, then-using the auxiliary function f(t) =
P ta+5

p a+fp

N—

tP toth 1 A\ 7 1 A
sup [ —A — B)=—A(= = — A=
»g(p a=j > N <B) N (Bw

Lemma 4.8. There exists a nonnegative function z € W\ {(0,0)} and
A* > 0 such that for (A, p) € Opx, we have

B, we have

(4.8) sup Jy u(tz) < Cxp,

t>0
where G ,, 15 the constant given in Lemma (3.8). In particular, 9;# <
Caps Jor all (A, p) € Op-.

Proof. Since D¢+ N D g+ # (), there exists ¢ € Q, po, ag, bg > 0 such that
B(xp,2p0) C Q and f(x) > ap and g(x) > by for all x € B(zg,2p0). In
fact ap = min f(z) and by = min g(z) on B(xg, 2pp). Without loss of gen-
erality, we assume that zo = 0. Let b(x) > 0 for all zp € Q, |b|oc = b(0)
and there exists 0y > 2%1 such that b(x) = b(0) + o(|z|%) as = — 0.
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Now, we consider the functional I : W — R defined by

1 1
I(z) =~ | 2z | -
P a+ 3

L(2),

for all z € W, and define a cut-off function n(z) € C§°(€2) such that

77(51”):{ L |z| < po, where 0 <7 <1 and |Vn| < C. For € >0, let

0 [z] > 2po,
T
(4.9) welr) = — 10
(e + lal#D)5
1 2 N-p
Step 1. We show that igg Iy . (tz0) < NSOZB +0( 7).

From Hsu [14](Lemma 4.3), we have

= My
* P _ NZP
</Q |u€|p dl‘) =€ P ‘U|I[)/p*(RN) +O(€)7

_N-p
| P 5 19U g, + 001,

/|Vu5|pd:v
N—p
(4.10) 2 - =S+O<5 P >
(e
Q
»_ _N-p
where U(x) = (1 + |z|7=1)" » € WLHP(RN).

Set ug = Yaue,vg = ¥/Pu. and zg € W. Then from Remark (4.7),
(1.4) and (4.10), we conclude that
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N
p

N

sup I ,.(t20)

1 (a+58) JgIVulde
>0 - N

@ é *
Oéplﬁp fQ |u5|p d."L‘> !

IA
2=
/N VR
N TN
=] Q
S~
‘m E—‘m
™
+
N
Q™
N~
i\g
N~~~ ~—_—

Step 2. We claim that if we set € = Q/]\V;”, then there exists A* > 0,

such that for (A, 1) € ©p«we have sup;sqJy,(tz) < Cx -

Let Cy be the positive constant given in Lemma (3.3). We can choose
01 > 0 such that for all (A, u) € ©3,, we have

1 X

C)\“LL = NSOZB — C()Q,\“LL > 0.

Using the definition of J) , and zg, we get

tP o+
Tyulta) S Sl 1P = pﬁtp|Vu5|7£p(RN) V>0, A p>0,

which implies that there exists ¢y € (0, 1) satisfying

sup Jy,(tzo) < Crpu V(A p) € B,
0<t<tg

Using the definition of Jy , and zg and by a, 8 > 1, (4.11), we have
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14
sup Jy . (tz0) = sup <I(tzo) — qKA,u(ZO)>

t>to t>1o
1 X Nop o tod P P
< 87+ 0 7 )~ O(aoag)\eroBZu) / lue|9dz
N q B(0.p0)
1 X N—p th
< §50+0ET) 20w [ fucfids
N7l q B(0,90)

Let 0 <e < pof’%l, we have

1
/ lus|de = / —x— dx
B(0,p0) B(0,p0) (g + |z|P-1)477

1
= / — % AW
B(Os0) (2p7T )T 7
== Cl - CI(N7p7q”00)-

\Y

Then by (4.12) and (4.13), for all € € (O,pop%), one can get

1 = . p_ to?
o J(120) < 525+ O OVSI77 4 (ulol) 75 ) = Cr34.10),

t>to

Hence, we can choose d2 > 0 such that for all (A, u) € O5,, we have
to?
O(orpu) = 7010\ + 1) < Coonp-
N—
If we set A* = min{d, poﬁ, d2}, then for (A, ) € O+, we have

(4.11) sup Jy u(tz0) < Ch -
>0

Step 3. We prove that Gxu < Cyy, for all (A, ) € Oy~
By the definition of zg and u., we have

L(Z()) > 0, K)\”u(Zo) > 0.

Using this fact, Lemma (2.6)(ii), definition of #y and (4.11) indicate
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that there exists tg > 0 such that tgzg € N, u and
0):“ < J)\,,u(tZO) < igg J)\nu(tz()) < C)MN

for all (A, p) € Op-. O

Theorem 4.9. If (A, p) € ©y,, then Jy, has a minimizer 2o~ in Ny,
and satisfies the following

(i) Inulzg) =0y .5
(1) z, is a positive solution of (1.1),

where Ao = min{A*, A1}, A* is the same as in Lemma (4.8).
Proof. If (A, 1) € ©4,, then by Proposition (4.4), there exists a (PS)G_ -

sequence {z,} C Ny in W for J) ;. From Lemmas (3.8)/and (4.8) and
Theorem (2.5)(ii), for (A, 1) € Op=, Jy, satisfies (PS)ef condition and

0, € (0,Cy ). By Lemma (2.1) and from coercivity of JA,u on Ny ,, we
get that {z,} is bounded in W. Therefore, there exists a subsequence
still denoted by {z,} and a nontrivial solution z, € N,  such that

zp — zp weakly in W. Finally by the same arguments as in the proof
of Theorem (4.5), for all (A, ) € Oay, we have that z; is a positive
solution of (1.1). O

Proof of Theorem 4.3. By Theorems (4.5) and (4.9), we obtain that
for all \,;p > 0 and 0 < gy, < Az < Ag (or (A, ) € Oy,), (1.1) has
two positive solutions zg,za with ZOi € N;\t’u. Since N;L’M N N/;# =0,
this implies that z(f and z, are distinct. This completes the proof of
Theorem (4.3). O

Conclusion. In this paper we investigate the existence and multi-
plicity of positive solutions for problem (1.1) in both cases, critical and
subcritical growth terms. In the proof, we apply variational methods,
via the extraction of Palais-Smale sequences in the Nehari manifold for
subcritical Sobolev exponent. It consists of making precise comparisons
between the critical and subcritical cases. In order to overcome the lack
of compactness due to the critical growth, we use the ideas of Brezis
and Nirenberg ([7]), besides the paper of Hsu ([13]), where it is proved
that the existence of a certain range in R?, which plays an important



1325 Khademloo and Khanjany Ghazi

role when dealing with critical systems like (1.1). Actually, we use this
certain range and adapt some calculations to localize the energy levels
where Palais-Smale condition fails.

Finally, we would like to mention that, as a byproduct of our arguments,
we can extend the existence results in Theorems (4.1), (4.2) and (4.3) for
both critical and subcritical degrees of homogeneity of any perturbation
term.
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