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ABSTRACT. In this paper, an efficient dropping criterion has been
used to compute the IUL factorization obtained from Backward
Factored APproximate INVerse (BFAPINV) and ILU factorization
obtained from Forward Factored APproximate INVerse (FFAPINV)
algorithms. We use different drop tolerance parameters to compute
the preconditioners. To study the effect of such a dropping on the
quality of the ILU and IUL factorizations; we have used the pre-
conditioners as the right preconditioners for several linear systems
and then, the Krylov subspace methods have been used to solve
the preconditioned systems. To aveid storing matrix A in two CSR
and CSC formats, the linked lists trick has been used in the imple-
mentations. As the preprocessing; the multilevel nested dissection
reordering has also been used.
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1. Introduction

Suppose that a matrix A is nonsymmetric. Also, suppose that W =
[wi, -+ Jwh]? and Z = [z1,- - - , 2, are unit upper and lower triangular
matrices, respectively and D = diag(dy, - - ,dy,) is a diagonal matrix. If

the matrices W, Z, D and A satisfy the relation
(1.1) WAZ = D,
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ILU and IUL factorizations obtained from forward and backward 1328

then, matrices W, Z and D are the inverse factors of A. In [5], a
procedure to compute the inverse factorization (1.1) has been presented
which is termed the Backward Factored INVerse or BFINV process. If
the entries of W and Z are dropped in this process, then the approximate
inverse factorization

(1.2) WAZ ~ D,

will be computed and the process will be termed Backward Factored
APproximate INVerse or BFAPINV. Matrices W, Z and D obtained
from this process are the approximate inverse factors of matrix A. In
each step of BFAPINV process, a row of W and a column of Z are
computed. Since at step j of this process, the (n — j+ 1)-st row and
column of W and Z are computed, respectively, it iscalled a backward
process.

Suppose that matrices W and Z are unit lower and upper triangular
matrices and D is still diagonal. Also, suppose that the relation (1.1)
still holds. In [10], another process which is termed the Forward Fac-
tored INVerse or FFINV has also been proposed to compute the inverse
factors W, Z and D of a matrix A. If in this process the entries of
W and Z are dropped, then the approximate inverse factorization (1.2)
will be computed and the process will be termed the Forward Factored
APproximate INVerse or FFAPINV. This process also computes W row
wise and Z column wise. At step j of this process, the j-th row and
column of W and Z are computed, respectively. This is why it is called
a Forward process.

Existence of approximate inverse factors which are obtained from
FFAPINYV process has been studied in [7, 8] for M-matrices, H—matrices
and also for positive definite matrices. All the observations, can also be
extended for the existence of the approximate inverse factors which are
obtained from BFAPINV process.

In 8], an ILU factorization of matrix A, which is obtained as by-
product of FFAPINV process, has been presented in which L is a unit
lower triangular and U is an upper triangular matrix. Matrices L, U
and A satisfy the relation

A~ LU.

We term this ILU factorization, ILUFF (ILU factorization obtained from
Forward Factored APproximate INverse). The approximate INVerse
factors W, Z and D and also matrices L and U satisfy the following
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relation
L~w~! UxDz '

It is also possible to obtain an IUL factorizatin of matrix A, as by-
product of BFAPINV process such that

A=~UL.

In this case, L is a lower triangular and U is a unit upper triangular
matrix. We term this IUL factorizatin as IULBF (IUL factorization
obtained from Backward Factored APproximate INVerse). The approx-
imate INVerse factors W, Z and D and also matrices U and L satisfy
the following relation

U~W~', La~DzZ '
Consider the linear system of equation of the form
Ax = b,

where the coefficient matrix A € R™*" is nonsingular, large, sparse and
nonsymmetric with x,b6 € R™.  An implicit ‘preconditioner M for the
above system is a matrix M ~ A. If the Krylov subspace methods [9]
can not solve such a system in a proper number of iterations and if
M is a good approximation of A, then it is better to solve the right
preconditioned linear system

AM 'y =1 M 'y =z,

by the Krylov subspace methods. Both ILUFF and TULBF factoriza-
tions are examples of implicit preconditioners.

A crucial challenge for the ILU preconditioners is how to apply the
dropping strategy.For the first time in [1, 2], Bollhofer presented a
safe dropping strategy for this type of preconditioners and he termed it
the INVerse-based dropping strategy. In this paper, a type of INVerse-
based dropping strategy for both ILUFF and TULBF preconditioners
will be proposed. To study the effectiveness of such a strategy, we have
generated-some linear systems with the coefficient matrices taken from
[3]. Then, both ILUFF and IULBF preconditioners have been computed
by using this type of dropping strategy and we have used these two
preconditioners as the right preconditioner for the systems. After that,
two Krylov subspace methods Bicgstab and GMRES(30) [9] have been
applied to solve the right preconditioned linear systems.

This paper is organized as follows. In section two, we first review the
ILUFF preconditioner and then, in Proposition 2.3, an INVerse-based
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dropping strategy for this preconditioner will be presented. In section
three, at first, the IULBF preconditioner is introduced and then, at the
end of this section, Proposition 3.3 will give an INVerse-based dropping
strategy for this preconditioner. In section four, numerical experiments
will be presented.

In this paper, notations A. ; and A;. are used for the j-th column and
the j-th row of the matrix A, respectively.

2. Forward factored INVerse process

The following algorithm is the FFINV algorithm [7, 10} which com-
putes the exact factorization (1.1). If we drop the entries of the vectors
zj and w; in each step j, then at the end of this algorithm, the ap-
proximate factorization (1.2) will be computed instead. In this case, the
algorithm is called FFAPINV algorithm.

Algorithm 1 (FFINV algorithm)

1. w1 = 5?7 z1 = e1, di =ai1.
2. for j =2 ton do
3. wj =el', z; =¢;.
fori=1toj—1do

Bji = A{i’;zi o5 = wITALJ

Zj = 25 — Oz, W; = Wy — ,BJZ’LUZ
end for
dj =wj;A. ; {not positive definite}
dj = ijij {positive definite}
10. end for
11. Return W = [wT', .. LwlT, D =diag(d;)1<i<n and Z = [21,. .., 2zn].

© XD o

Suppose that a matrix A has the exact factorization
A=LDU.

In [8], it has been shown that L and U can be computed as a by-products
of Algorithm 1 and for ¢ < j

Lj; = Bji, Uiy = .

Algorithm 2, computes the ILUFF factorization of matrix A. In this
algorithm, the pivot entries are computed from line 11 instead of line
10, when the matrix is positive definite. This will guarantee the existence
of the ILU factorization.
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Algorithm 2 (ILU factorization obtained from FFAPINYV algo-
rithm)

1. w1 =€l 21 = €1, d1 = a11.
2. for j =2 ton do

. T R
w; =€, 2 = ¢€j.
fori=1toj—1do

Az wiA.

J— 2,7 L= KtV ]

le— d; U’Lj_ a.

apply a df‘opping rule to Lj; and to Uy

wi A, Aj:zi

zj =z — ( h )zi, wj = wj — ( i Yw;
for all 1 < i apply a dropping rule to z; and to wj;
end for
10. dj =wj;A. ; {not positive definite}
11. dj = ijij {positive definite}
12. end for
13. Return L = (Lji)lgj,ignv D= diag(di)lgign and V = (Vvij)lgi,jgn

©X N> oW

Suppose that at each step j of Algorithm 2, the vectors ¢ and pU)
are defined as:

w4 wj—1A4;;

¥ = ( o ,0,---,007, pl)= (Aﬂlﬁzl S ¥ L/ N W ,0).
dl dj—l

dy 2 Y dioy 0

Also suppose that I indicates the identity matrix and e; is the j-th
column of this matrix. We define matrices @Q; and P; as:

Qj=1- q(j)e]T, P=1- ejp(j).

Consider W) and ZU). as the computed W and Z matrices at the end
of step j, and WU and ZU=1 as the computed W and Z matrices
at the end of stepg— 1 of Algorithm 2, respectively. Therefore, one can
observe that

70) — Z(j—l)Qj — Ty, w) = ij(j—l) ~- Gy,

in which Gjrand 7} are the error matrices produced by the dropping
strategy.” Suppose that ey and €z are the drop tolerance parameters
for matrices W and Z, respectively. Then, the following two dropping
strategies can be used to drop the entries of the vectors z; and wj.

e First strategy: At each step j of Algorithm 2, entries z;; and
wjy, for [ <4, are dropped when

(2.1) 25| < ez, lwi| < ew.
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e Second strategy: At each step j of Algorithm 2, the whole

vectors
j—1 Jj—1
- wiA. T Aj:zi
) =€ — E ( d )%is wj=¢; — ) ( d Jwi,
T . (A
i=1 i=1

will be computed and then, the entries z;; and wy;, for [ < j,
that satisfy the dropping criteria (2.1) will be dropped:

For both dropping criteria, just the entries (G;); and (7)), for I < j,
will probably be nonzero.

Proposition 2.1. Fori < j, the following two relations
(2.2) 15Q: =1, PG =Gj,

hold. Suppose that no dropping is applied to the entries of the matrices
L and U in Algorithm 2. At the end-of step'j of this algorithm, suppose
that U; is the matrixz that its first j columns are the already computed
columns of matrix U and its last n.— j columns are the columns of the
identity matriz. Also, letLj; be the matriz that its first j rows are the
already computed rows of matriz: L and its last n — j rows are the rows
of the identity matriz. Then,

(2.3) U; = Qj—l j_—ll Q3 Li=Pyt.. .Pj__11Pj_1’

and

(2.4) 1-z090;=>"T,, I-LwW=> G
=2 =2

Proof. Because of the pattern of the matrices P;, G and T}, Q;, for i < 7,
the relation (2.2) is clear. Relation (2.3) will be proved by considering
the fact that Qi_l = I—i—q(i)el-T and Pz-_1 = I +¢;p™, for i < j. From line
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7 of Algorithm 2 and the first part of the proposition; we have
zU) = Z(J'*l)Qj — Ty

Thus, ZWU; =T — 2522 T; and the first part of relation (2:4) has been
proved. Similarly, the second part of this relation is proved. ]

At each step j of Algorithm 2, let ¢ and $9) be the dropped ¢V
and p\9) vectors, respectively. Thus, there are veetors

fi=(fj,- s fim1j,0,---,0)T, hj = (hj1, -, hjj—1,0,---,0),
such that
(2.5) G = ql) — s pU) = pli) — hj.
We define matrices Qj and ]5]- as:
(2.6) Gy LT DT, By =T ;).

Proposition 2.2. At the end of step j of Algorithm 2, suppose that U;
s a matriz that its first j columns are the already computed and dropped
columns of matriz U-and its last n — j columns are the columns of the
identity matriz. Also, let L; be a matriz that its first j rows are the
already computed and dropped rows of matriz L and its last n — j rows
are the rows of the identity matriz. Then,

(2.7) U]-:Q;1 ~]f_11...Q2*1’ L;=P; ... PL P

and

J J J J
28) I-290; =31+ 290" fiel), 1= LD =>"Gi+ (O esh) W,
=2 =2 =2 =2
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Proof. From the pattern of the matrices Qi_l and pi—17 for i < j, the
relation (2.7) is clear. Let U; = Q;l ;_11 ---Qy'. Relations (2.5) and
(2.6) imply that for ¢ < j

Qi = Qi + fie] .

Since for ¢ < j, Q;l = Qi_l — fie;fr; then

j
(2.9) Uj=U;j =Y fiel,

i=2
in which U; has been defined in (2.3). Proposition 2.1 and relation (2.9)
give
o A J J o J
1-290; =1-291U; =" fiel | = Y Ty + 2900 fiel).
1=2 2

=2 = =

If in the previous relation we rename the matrix U; by U j» then the first
part of relation (2.8) is proved. Similarly, the second part of this relation
is proved. ]

Proposition 2.3. Let ¢y, z and epy be the same drop tolerance pa-
rameters for matricesU, Z and for matrices L, W, respectively. Suppose
that at each step j of Algorithm 2, entries Lj;, and Uy;, for k < j, are
dropped when the criteria

(2.10) 1LiellWeelt <enw, Ukl Z.kllo < vz,

are satisfied. For1<i<j<mn

o if the first dropping strategy is applied to drop the entries of
matrices Z and W, then

(2.11) ‘([ — ZU)ij| < 2(] — i)EUz, ‘(I — LW)J‘Z" < 2(] — Z')€L7w.

o if the second dropping strategy is applied to drop the entries of
matrices Z and W, then

(212) |<I— ZU)U’ < (] —1+ 1)8[]72, ‘(I— LW)ﬂ’ < (j -1+ 1)5L,W-
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Proof. From Proposition 2.2 and the dropping criteria in (2.10), one can
write

n n
el (I = 2U)es| < el O Tiejl + el 20> fueles
k=2 k=2

n
= el O Twes| + 1Zi. 1]

k=2

n j—1
e O Toesl + D il Zeklloo
k=2 k=1

IN

n
< el O Ties| + (j —ievz.
k=2

If the first dropping strategy is used for matrix Z, then'le] ("1, Tk)e;| <
(j — i)ev,z and if the second dropping strategy is used for this matrix,
then |el (3°7_,Tk)e;| < euz. Therefore, the first parts of relations
(2.11) and (2.12) have been proved. Similarly; the second parts of these
two relations are proved. ]

3. Backward cactored IN Verse process

The following algorithm is the BFINV algorithm [5, 11] which com-
putes the exact factorization (1.1). If we drop the entries of the vectors
zj and w; in each step j, then at the end of this algorithm, the ap-
proximate factorization (1.2) will be computed instead. In this case, the
algorithm is called BFAPINV algorithm.

Algorithm 3 (BFINV algorithm)

1. wp=el, 2, =en, dp = ann.
2. for j=n=1to1ldo
wj = e?, zZj = ej.
fori=j+1tondo
Bji = AQ;Zi o5 = wi;::’j
zj = zj — qijzi, wj = wj — Biiw;
end for
dj = wj;A. ; {not positive definite}
dj = ijwJT {positive definite}
10. end for
11. Return W = [wT, ..., wI]T, D = diag(d;)1<i<n and Z = [21,. .., 2n].

© 0N oA
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Suppose that a matrix A has the exact factorization
(3.1) A=UDL.

The work in [8] can easily be extended and one can show that L and U
in (3.1) are the by-products of Algorithm 3 and for i > j

Uji = Bji»  Lij = oy
The following algorithm computes the IULBF factorization of matrix
A. In this algorithm, the pivot entries are computed from line 11, instead

of line 10, when the matrix is positive definite. This will guarantee the
existence of the TUL factorization.

Algorithm 4 (IUL factorization obtained from BFAPINV algo-
rithm)

1. w, = ez, Zn = €n, dn = Gnn.-
2. forj=n—1to1ldo
3. wj = e]T, zj = ej.
fori=j+1tondo
Az wi A,
Uji = ]Ci7 Lij = 1d1. .
apply a dropping rule to Uj; and to L;
wiA, LYRED
zj = zj — (=g 5z, wj = wj — (== )w;

for all 1 > i apply a dropping ruleto z;; and to wj
end for
10. dj = wj;A. ; {not positive definite}
11. d; = ijw]T {positive definite}
12. end for
13. Return U = (Uji)lgj,ignv D = diag(di)lgign and L = (Lij)lgi,jgn

© 0N o

Suppose that at each step j of Algorithm 4, the vectors ¢\ and p\@)
are defined as:

Az Ay
dit1 7 d,
We define matrices ; and P; as:

Qi=1- ejq(j), P =1 fp(j)ejr.

q9) =(0,-+",0, ), p@D =(0,---,0, LA . ey )T

Y Ty 0 v T d,

Consider W) and Z() as the computed W and Z matrices at the end
of step j and WG+ and ZU+Y as the computed W and Z matrices at
the end of step j + 1 of Algorithm 4, respectively. One can easily verify
the relations

w) = ij(jﬂ) yern 70) — Z(J'H)pj — Ty,
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in which G and 7T} are the error matrices produced by the dropping
strategy. The following two dropping strategies can be used to drop the
entries of the vectors z; and wj.
e First strategy: At each step j of Algorithm 4, entries z;; and
wji, for [ > i, are dropped when the criteria (2.1) are satisfied.
e Second strategy: At each step j of Algorithm 4, the whole
vectors

- wiA; i ° A';Zi
== ) (= Hm wi=e = Y (S w;

=i+l i=j+1 "

will be computed and then, the entries z;; and wj;, for [ > j,
that satisfy the dropping criteria (2.1) will be drepped.
For both dropping criteria, just the entries (G;); and (7)), for ['> j,
will probably be nonzero.

Proposition 3.1. For i > j, the following two relations
QiG; =G5, TP =1j,

hold. Suppose that no dropping is applied to the entries of the matrices
L and U in Algorithm 4. At the end of step j of this algorithm, suppose
that U; 1s the matrixz that its last j rows are the already computed rows
of matrix U and its first n — j rows are the rows of the identity matriz.
Also, let Lj be the matriz that its last j columns are the already computed
columns of matriz L and its first m. — j columns are the columns of the
identity matriz. Then,

—1 —1 -1 —1p-1 -1
Uj:Qn—l"'Qj+1Qj ) Lj:Pj Pj+1"'Pn—17

and
‘ n—1 ' n—1
I-ow9 =3"G;, 1-z9L;=>"1T.
i=j i=j
Proof. The proof is similar to that of Proposition 2.1. O

At each step j of Algorithm 4, suppose that ¢ and pY¥) are the
dropped ¢\9) and pl9) vectors, respectively. Thus, there are vectors

fj - (05 )O7fjj-‘r17' o 7fjn)’ h] - (07 o 707hj+1j7"' ahnj)T)
such that the relation (2.5) holds. We define matrices Q; and P; as:
Qj=1-e;q9, Pj=1-pWel.
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Proposition 3.2. At the end of step j of Algorithm 4, suppose that U,
is a matriz that its last j rows are the already computed and dropped
rows of matriz U and its first n — j rows are the rows of the identity
matriz. Also, let L; be a matriz that its last j columns are the already
computed and dropped columns of matriz L and its first n — j columns
are the columns of the identity matriz. Then,

A1 A1 A1 5151 -1
Uj:anl"’Qj+1Qj ) L]:f)] Pj—i—l'”Pnfl’

and
] n—1 n—1 ] ) n—1 ) n—=1
I-UwWD =3"Gi+ O efyW?,  1-290;=3"T;+ 290 hiel).
1=3 i=3 =3 1=y
Proof. The proof is similar to that of Proposition 2.2: O

Proposition 3.3. Let eyw and €1,z be the same drop tolerance pa-
rameters for matrices U, W and for matrices L, Z, respectively. Suppose
that at each step j of Algorithm 4, entries Ly; and Ujy, for k > j, are
dropped when the criteria

(3.2) 1Lkl Zplloo < en,ze Ukl Wil < euyw,
are satisfied. For 1 <j<i<n
o if the first dropping strategy is applied to drop the entries of
matrices Z and W, then
(I —UW)ji| <2(i =devw, (L —ZL)y| <2(i — jler,z.
o if the second dropping strategy is applied to drop the entries of
matrices Z_and W, then
(I = UW)jil=(i=j+Devw, [(I—ZL)y|<(i—j+1erz.
Proof. The proof is similar to that of Proposition 2.3. U

4. Numerical results

In this section, we report the results of Bicgtab and GMRES(30)
methods to solve the right preconditioned linear systems. The precon-
ditioners are the ILUFF and the ITULBF. All the 35 test matrices have
been taken from the University of Florida Sparse Matrix Collection [3].
All the matrices are just nonsymmetric and not positive definite. In all
the experiments whenever a zero pivot has been occurred, then the pivot
element has been replaced by the square root of the machine precision.
All the experiments were done on a machine with one quad Intel(R)



1339 Rafiei

CPU and 8 GB of RAM memory. We have written the codes of ILUFF
and TULBF preconditioners in Fortran 77. In these two codes, we have
just used the CSC format of matrix A. To access the CSR format of
this matrix; the linked lists trick [6] has been exploited. We have used
the multilevel nested dissection reordering [4] as the preprocessing for
all the matrices to compute the ILUFF and TULBF preconditioners.

Table 1, presents the information of the test matrices and the results
of the Krylov subspace methods to solve the original systems but not
the preconditioned ones. In this table, n and nnz indicate the dimension
and the number of nonzero entries of the matrix, respectively, and the
column Group/Matrix shows the group and the name of the matrix. It
in this table is the number of iterations of the Krylov subspace method
and [Itime is its iteration time in seconds.

In this table, a + means that the stopping criterion has not been
satisfied in 10000 number of iterations. For all the systems, the stopping
criterion has been considered as:

| 7% |2
| 7o |2

in which rj is the k-th residual vector of the system and rq is the initial
residual vector. For all the systems, the initial guess is the zero vector
and the right hand side vector is Ae where e = [1,1, ..., 1].

In Tables 2-5, properties of the preconditioners and the results of the
Krylov subspace methods which solve the right preconditioned linear
systems have been presented. In these tables, Ptime is the precondi-
tioning time which is also in seconds and density for both ILUFF and
IULBF preconditioners, is defined as:

nnz(L) + nnz(U)
nnz(A) ’

in which nnz(L), nnz(U) and nnz(A) refer to the number of nonzero
entries of matrices L, U and A, respectively. For all matrices, the D and
U factors.of the ILUFF preconditioner and the D and L factors of the
IULBF preconditioner have been merged.

To compute the ILUFF preconditioner, €7, has been used as the
same drop tolerance parameter for matrices L and W and ey z as the
same drop tolerance parameter for matrices U and Z. In Table 2, e;, v =
eu,z = 0.01 has been selected for all the test matrices but in Table 4,
er,w = €uz = 0.1 has been considered. The notations ILUFF(0.01)
and ILUFF(0.1) refer to this selection of drop tolerance parameters for

< 10719,

density =




ILU and IUL factorizations obtained from forward and backward 1340

TABLE 1. matrix properties and results of iterative
methods with no preconditioning

Matrix properties Bicgstab GMRES(30)
Group/Matrix n_ | nnz It [Ttime | It | Itime
Engwirda/air foil - 2d 14214 259688 + + + +
Bourchtein/atmosmodd || 1270432 | 8814880 || 625 | 45.59 || 919 | 208.82
Bourchtein/atmosmodj || 1270432 | 8814880 || 629 | 45.82 || 2158 | 491.85
Lucifora/cell2 7055 30082 + + + +
Muite/Chebyshev3 4101 36879 + + + +
Watson/chem_ masterl 40401 201201 || 1033 | 0.819 + +
Oberwol fach [ chipcool 20082 281150 + + + +
Oberwol fach/chipcooll 20082 281150 + + + -
IBM_ Austin/coupled 11341 97193 || 4081 | 1.86 + +
IBM_EDA/dcl 116835 | 766396 + + S8 +
IBM_EDA/dc2 116835 | 766396 + + + +
IBM_FEDA/dc3 116835 | 766396 + + + +
Sanghavi/ecl32 51993 | 380415 + + + +
Averous/epbl 14734 95053..[ 1033 | 0.51 || 1682 | 1.63
Averous/epb2 25228 175028 || 847 | 0.68 || 1338 | 2.76
Oberwol fach/ flowmeters 9669 67391 + + + +
Norris/lung2 109460 | 492564 + + + +
QLi/majorbasis 160000 | 1750416 | 255 | 2.59 | 216 | 3.81
Hamm/memplus 17758 99147 2899 | 1.51 | 4477 | 5.11
FEMLAB /poisson3Db 13514 | 352762 | 513 | 7.53 | 693 | 12.33
Rajat/rajat03 7602 32653 || 2457 | 0.319 | + +
Rajat/rajat3l 4690002 | 20316253 || + + + +
H B/sherman3 5005 20033 + + + +
IBM_ EDA/trans4 116835 | 749800 + + + +
IBM_ EDA/transh 116835 | 749800 + + + +
Simon /venkat01 62424 | 1717792 + + + +
Wang/wang3 26064 177168 429 | 0.25 608 1.10
Wang/wang4 26068 177196 671 | 0.36 + +
Simon /raef skyb 6316 167178 + + 4649 | 2.82
Simon/raef sky6 3402 130371 + + 2643 | 1.12
Sandia/ASIC — 100ks 99190 578890 + + + +
Hamm/hcircuit 105676 | 513072 + + + +
Sandia/ASIC — 680ks 682712 | 1693767 + + 201 | 23.32
Sandia/ASIC — 320ks 321671 | 1316085 || 3283 | 54.93 || 526 | 61.28
FEMLAB /poisson3Da 13514 352762 259 | 0.32 || 444 | 5.348
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ILUFF preconditioner. The dropping criteria (2.10) has been applied to
drop the entries of matrices L and U and the first dropping strategy has
been used to drop the entries of matrices Z and W.

To compute the IULBF preconditioner in Tables 3 and 5, ¢,z and
eu,w have been used as the same drop tolerance parameters for matri-
ces L, Z and U, W, respectively. In Table 3, the notation TULBF(0.01)
indicates that eyw = €1,z = 0.01 has been considered for all the test
matrices and the notation IULBF(0.1) in Table 5 means that eyw =
er,z = 0.1 has been taken. The dropping criteria (3.2) has been ex-
ploited to drop the entries of matrices L, U and again the first dropping
strategy has been considered to drop the entries of matrices<Z and W.

In Tables 2-5, It is again the number of iterations of the Krylov sub-
space method and T'time is the total time which is the preconditioning
time plus the iteration time. This papameter is also in seconds. In
these tables, a + indicates that the convergence criterion has not been
satisfied in 2500 number of iterations.

Numerical results of Tables 2 and 3, indicate that the density and the
Ptime of both ILUFF(0.01) and TULBF(0.01) preconditioners are more
or less the same as each other. Matrices dcl, dc2, de3, transd and transb
are exceptions. These results also show that these two preconditioners
have nearly made the Krylov subspace methods convergent in the same
number of iterations and total time.

Numerical results of Tables 4 and 5, also show that Ptime and density
of both ILUFF(0.1) and IULBF(0.1) preconditioners are more or less the
same except for matrices del, dc2, de3, trans4 and transb. These results
also indicate that both.of these two preconditioners are useful to decrease
the number of iterations of the Bicgstab and GMRES(30) methods.

5. Conclusion

In this paper, new dropping techniques for ILU and IUL factoriza-
tionsy which are obtained as by-products of FFAPINV and BFAPINV
processes, have been presented. These types of droppings are known as
the INVerse-based dropping techniques. Numerical experiments on 35
test matrices indicate that when the new dropping strategies are used to
compute both of the ILU and IUL factorizations, then they are equally
effective to reduce the number of iterations of the Krylov subspace meth-
ods.
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TABLE 2. Properties of the ILUFF(0.01) preconditioner
and results of iterative methods

ILUFF(0.01)

Bicgstab GMRES(30)
Matrix Ptime | density | It | Ttime| It [Ttime
air foil - 2d 0.67 0.282 | 449 | 1.26 + +
atmosmodd 6.06 1.04 369 | 71.83 | 414 | 162.68
atmosmodj 6.05 1.04 393 | 71.14 | 667 | 258.53
cell2 0.61 1.3 345 | 0.75 + +
Chebyshev3 0.59 0.33 267 | 0.64 | 248 |0.67
chem_ masterl || 0.72 1.45 399 | 2.12 | 1402 | 8.76
chipcool( 0.70 0.71 227 | 1.36 | 355 | 2.13
chipcooll 0.72 0.71 187 | 1.25 | 341 | 2.12
coupled 0.68 0.64 147 | 0.80 | 138 | 0.85
dcl 54.38 0.72 787 | 63.06 | 289 | 59.25
dc2 53.52 0.72 213 | 55.91 | 149 | 56.22
dc3 55.00 0.72 | 1177 | 68.02 | 829 | 69.02
ecl32 0.8 0.83 4837 3.24 + +
epbl 0.65 1.18 359 | 1.08 | 494 | 1.55
epb2 0.69 1.09 155 | /1.05 | 155 | 1.28
flowmeterd 0.63 1.052° | 451 | 0.95 | 2058 | 2.72
lung?2 0.86 1.08 347 | 3.79 | 367 | 5.83
majorbasis 1.25 0.58 45 2.23 44 2.50
memplus 0.63 0.39 585 | 1.08 | 522 1.44
poisson3 Db 1.27 0.51 139 | 1.10 | 361 | 10.59
rajat03 0.61 0.79 431 | 0.73 | 473 | 0.86
rajat3l 14.27 0.79 825 | 355.0 | 1038 | 1037.7
sherman3 0.63 1.26 391 | 0.72 | 1846 | 1.36
transd 38.07 0.65 141 | 39.06 | 132 | 40.24
transb 39.37 0.66 233 | 41.9 | 371 | 45.55
venkat01 1.36 0.75 75 2.85 70 2.95
wang3 0.69 1.36 183 | 1.13 | 228 | 1.58
wang4 0.68 1.18 197 | 1.13 | 265 | 1.66
rae fskyb 0.62 0.42 11 0.63 10 0.65
raefsky6 0.61 0.20 17 0.61 12 0.62
ASIC_ 100ks 0.89 0.98 51 0.49 20 1.16
hcircuit 0.96 0.99 375 | 4.44 | 469 | 7.74
ASIC_ 680ks 2.09 0.60 7 2.55 5 2.64
ASIC_ 320ks 1.44 0.67 117 | 5.25 49 3.85
potsson3Da 0.68 0.52 139 1.10 182 1.40
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TABLE 3. Properties of the IULBF(0.01) preconditioner
and results of iterative methods

TULBF(0.01)

Bicgstab GMRES(30)
Matrix Ptime | density | It ‘ Ttime | It ‘ Ttime
airfoil - 2d 0.62 0.28 423 1.15 + +
atmosmodd 5.42 1.01 419 | 70.57 | 446 | 219.25
atmosmodj 5.67 1.00 459 | 83.83 | 473 | 235.82
cell2 0.61 1.11 + + + +
Chebyshev3 0.6 0.44 399 | 0.67 | 298 | 0.72
chem_ masterl 0.88 1.27 529 2.42 + +
chipcool0 0.69 0.71 217 | 1.29 | 293 | 2.08
chipcooll 0.72 0.71 199 1.27 292 2.15
coupled 0.63 0.54 + + 72 3.27
del 0.90 0.59 1003 | 11.69 | 334 | 7.86
dc2 0.88 0.58 263 | 3.67 | 184 4.69
dc3 0.88 0.58 925 |.10.78 | 389 | 8.97
ecl32 0.78 0.81 5831 3.83 + +
epbl 0.64 1.01 391 1.05 | 493 | 1.77
epb2 0.69 0.92 135 | 0.97 | 143 | 1.36
flowmeterd 0.64 1.31 321 | 0.88 | 763 | 1.72
lung?2 0.87 1.25 1741 | 16.61 + =+
majorbasis 1.1 0.39 51 2.05 46 2.51
memplus 0.62 0.41 479 1.01 304 1.34
poisson3Db 1.38 0.56 257 7.55 319 | 11.38
rajat03 0.58 0.63 |2099 | 1.14 | 435 | 0.91
rajat3l 13.49 0.63 + + + +
sherman3 0.62 1.24 397 | 0.73 |2018 | 1.66
trans4 0.79 0.37 145 2.07 136 3.28
transd 0.81 0.37 257 | 3.11 423 8.72
venkat0l 1.30 0.74 79 2.69 71 2.86
wang3 0.70 1.32 171 1.12 175 1.58
wang4 0.72 1.31 157 1.11 143 1.44
raefskyb 0.59 0.38 11 0.59 10 0.61
rae f sky6 0.57 0.22 13 0.58 11 0.59
ASIC_100ks 1.06 0.87 101 | 2.26 73 2.99
hcircuit 0.78 0.87 + + + +
ASIC_680ks 1.9 0.92 7 2.32 5 2.53
ASIC_ 320ks 1.2 0.38 51 2.44 76 5.03
potsson3Da 0.65 0.57 131 1.02 133 | 1.18
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TABLE 4. Properties of the ILUFF(0.1) preconditioner
and results of iterative methods

ILUFF(0.1)
Bicgstab GMRES(30)
Matrix Ptime | density | It [ Ttime | It | Ttime
airfoil - 2d 0.67 0.26 419 | 1.22 + +
atmosmodd 4.92 0.63 | 441 | 70.33 | 485 | 166.37
atmosmodj 4.81 0.63 | 423 | 67.57 | 761 | 267.36
cell2 0.62 0.94 + + + +
Chebyshev3 0.61 0.33 | 287 | 0.66 | 345 0.72
chem_masterl || 0.72 0.96 |479| 2.02 | 1327 | 7.42
chipcool( 0.69 0.34 | 293 | 1.24 | 503 2.28
chipcooll 0.69 0.34 |231| 1.19 | 493 2.24
coupled 0.66 0.48 159 | 0.77/ | 168 0.83
dcl 52.00 0.64 + + 273 | 56.11
dc2 51.02 0.63 | 277/ 53.94 | 167 | 53.72
de3 51.02 0.64 | 759 | 58.97 | 742 | 62.77
ecl32 0.76 0.51 | 777 4.18 + +
epbl 0.61 0.78 415 | 1.00 551 1.14
epb2 0.69 0.57 | 195 1.00 | 212 1.33
flowmeterd 0.60 074 1521 | 0.90 | 1990 | 2.33
lung?2 0.84 1.03° | 361 | 3.81 | 392 6.27
majorbasis 1.13 0.52 47 | 1.98 45 2.23
memplus 0.61 0.39 |571| 1.05 | 551 1.44
poisson3 Db 0.97 0.17 | 313 | 5.68 | 481 10.66
rajat03 0.58 0.78 1409 | 0.69 | 505 0.84
rajat3l 15.51 0.77 | 897 | 405.91 | 1048 | 1240.50
sherman3 0.65 0.83 | 505 | 0.76 + +
trans4 34.57 0.62 |131| 35.83 | 134 | 36.59
transb 33.51 0.61 |265| 36.30 | 453 | 40.80
venkat01 0.97 0.34 | 101 | 2.34 93 2.54
wang3 0.73 0.84 203 | 1.11 | 268 1.59
wang4 0.75 0.55 |239| 1.08 | 344 1.72
rae f skyd 0.75 0.19 13 | 0.75 11 0.75
raefsky6 0.70 0.14 15 | 0.71 12 0.71
ASIC_ 100ks 0.86 0.78 51 | 1.31 23 1.15
hcircuit 0.89 0.75 | 481 | 4.81 | 649 9.13
ASIC_ 680ks 2.35 0.60 7 2.80 6 2.97
ASIC_ 320ks 1.51 0.65 961 | 31.44 51 4.02
poisson3Da 0.68 0.18 | 157 | 0.95 | 185 1.17
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TABLE 5. Properties of the IULBF(0.1) preconditioner
and results of iterative methods

TULBF(0.1)
Bicgstab GMRES(30)
Matrix Ptime | density | It |Ttime| It [ Ttime
airfoil_ 2d 0.66 0.26 447 | 1.25 + +
atmosmodd 4.69 0.62 453 | 66.30 | 451 | 222.82
atmosmodj 4.87 0.62 375 | 54.62 | 608 | 303.52
cell2 0.58 0.86 539 | 0.74 + +
Chebyshev3 0.59 0.43 261 | 0.63 | 195 | 0:66
chem_ masterl | 0.66 0.86 575 | 1.96 + +
chipcool0 0.66 0.33 255 1.13 | 393 | 2.19
chipcooll 0.68 0.33 239 | 1.13 |-349 | 2.10
coupled 0.59 0.40 689 1.05 + o
dcl 0.83 0.52 + + 704 | 15.51
dc2 0.86 0.52 337 | 4.12 | 281 6.26
de3 0.88 0.51 1083 | 12.11 | 645 | 14.04
ecl32 0.75 0.50 615-3.51 + +
epbl 0.69 0.7 413 | 1.04 | 567 | 1.85
epb2 0.67 0.61 171 096 | 165 | 1.36
flowmeterd 0.60 0.81 419 | 0.85 | 1045 | 1.85
lung?2 0.88 L11 4 + + +
majorbasis 1.07 0.27 53 1.98 50 2.70
memplus 0.61 0.37 | 1497 | 1.76 | 485 1.7
poisson3 Db 1.02 0.18 299 | 6.04 | 402 | 10.68
rajat03 0.57 0.63 + + 584 | 1.04
rajat3l 14.39 0.63 + + + +
sherman3 0.61 0.82 557 | 0.73 | 2123 | 1.63
transd 0.86 0.34 253 | 3.22 | 187 | 4.47
transd 0.85 0.34 477 | 5.27 | 530 | 11.15
venkat01 0.94 0.33 107 | 2.30 87 2.47
wang3 0.64 0.83 203 | 0.99 | 220 | 1.54
wang4 0.66 0.60 221 | 097 | 232 | 1.54
raefskyb 0.63 0.18 11 0.63 10 0.63
raef sky6 0.59 0.16 15 0.60 12 0.60
ASIC_100ks 0.82 0.57 + + 73 2.01
hcircuit 0.83 0.51 305 | 3.08 + +
ASIC_ 680ks 2.14 0.91 7 2.61 5 2.85
ASIC_ 320ks 1.27 0.38 53 2.59 7 5.53
potsson3Da 0.68 0.18 161 | 0.94 | 166 | 1.21
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