
Arc
hi

ve
 o

f S
ID

Medical Journal of the  Volume 20 
Islamic Republic of Iran  Number 2 
  Summer 1385 
  July 2006 

  / 52 

INTRODUCTION 

Based on the cytokine environment present in 
Interstitial Lung Diseases (ILDs)  and the pattern of gene 
expression of unfractionated Broncho-Alveolar Lavage 
(BAL) cells from ILD patients with lung inflammation, it 
appears that the macrophages in lung disease have under-
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gone alternative, rather than classical, activation.1 Recent 
studies have added to our understanding of the role of 
cytokine and cytokine receptors in the generation of 
pulmonary inflammatory responses. In the lung, the 
production of cytokine and expression of cytokine 
receptors is under complex biologic control, including 
negative and positive feedback by the cytokines 
themselves.2 IL-9 is a multifunctional cytokine produced 
by activated Th2 cells that promotes inflammation and    
air-way hyperresponses.3 IFN-γ is a key factor in the 
events that favour local immune responses in the lung. It 
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ABSTRACT  

Background: Cytokines play a major role in both acute and chronic 
inflammatory processes, including those produced by Sulfur Mustard. This 
study describes the cytokine level six months after exposure to a single dose of 
sulfur mustard, defined by IL-1β, IL-6, IL-9, IL-12, TGFβ and TNF-α. 

Methods:  The cytokine levels of Broncho-Alveolar Lavage (BAL) and sera 
of twenty male rats exposed to sulfur mustard were measured and compared 
with the control group. The rats in the test group were exposed to a single dose 
of sulphur mustard (inhalation) and left for up to 6 months. After six months 
the animals were anesthetised, blood samples were obtained from their heart 
using 5-mL syringes and serum was kept at -20ºC.  Their BAL was collected by 
lavage. BAL fluid was centrifuged and left at -20ºC until assay. Cytokine assay 
was performed employing the ELISA Method (Bender Med Systems). 

Results: The results showed significant differences (p<0.001) between the 
control and exposed groups in terms of all cytokine (IL-9, γIFN, TGFβ, IL-6, 
IL-1β, IL-12 and TNFα) productions in both the BAL fluid and serum.  The 
most noticeable increase in cytokine release was seen in IL-9, which was 
615.93% and 321.88% for the BAL fluid and serum, respectively (p<0.001). 
After IL-9 the highest increase was demonstrated for TGF-β and IL-6 in the 
BAL fluid which was 200.85% and 125.50% respectively. 

Conclusions: From data presented here, it is possible to suggest that over-
production of IL-6, IL-9 and TGFβ might be involved in the late outcome of 
lung injury after six months exposure to sulfur mustard. 
MJIRI, Vol. 20, No.2, 52-56, 2006. 
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activates pulmonary macrophages to phagocytose 
pathogens. IFN-γ is typically expressed by Th1 cells 
infiltrating the lung in most ILDs.4 IL-1β is produced by 
alveolar macrophages in response to several inflammatory 
stimuli in various ILDs.5 Since IL-1β promotes the 
proliferation of fibroblast and increased collagen 
production, it has been involved in the development of 
lung fibrosis associated with ILDs. In the lung, IL-6 is 
mostly produced by alveolar macrophages. An increased 
release of IL-6 has been involved in the pathogenesis of 
various ILDs.6 IL-12 is mainly produced in the lung by 
macrophages and dendritic cells. In synergy with IL-15, 
IL-12 favours the contact between activated T cells and 
antigen presenting cells (APC).7 TGF-β is a potent 
immunosuppressive molecule that exerts chemotactic 
effects on monocytes. It modulates the synthesis and the 
effect of several molecules, including IL-1, IL-2, IL-3, 
GM-CSF, IFN-γ and TNF-α. TGF-β, which is 
constitutively released in the respiratory tract, is involved 
in the pathogenesis of fibrotic processes associated with 
most ILDs.8 In the lung of patients with ILDs, TNF-α 
stimulates and regulates the synthesis and release of other 
lymphokines such as IL-1, GM-CSF, Platelet-activating 
factor, IL-6 and increases prostaglandin (PG) E2 
production9 . 

Sulfur Mustard (SM) induced cytotoxicity is due to the 
alkylation of a critical intracellular target, thereby 
interrupting the control of normal cellular processes.10 
Recent studies have, nevertheless, reported characteristic 
clinical and immune responses to SM, which include a 
unique case definition of pulmonary damage and cytokine 
production.11-16 SM exposure produces a chronic 
immunocompromised condition, which systemically 
induces abnormal serum levels of Th1 and Th2         
cytokines.17-19 Few studies have been carried out on in 
vitro models of respiratory epithelial cells, which 
represent one of the main targets of SM.20-22 A study on 
the effects of SM on tracheal epithelial cells has shown 
that mild doses of SM induce apoptosis, while higher 
doses induce necrosis.23 Evidence of an increased death 
toll from respiratory diseases and a higher incidence of 
chronic bronchitis have been reported in Japanese    
workers .24 Manning et al.25 found that pneumonia was the 
only cause of increased mortality among British SM 
factory workers. In vitro studies on human mononuclear 
leukocytes have demonstrated SM-induced mononuclear 
leukocyte cell death in a time-dependent fashion26. In a 

separate study Lardot et al.27 demonstrated that SM 
exposure can modify the expression by cultured human 
keratinocytes of interleukin-8. They observed a significant 
increase in the amount of IL-8 secretion by human 
keratinocyte treated with 1×10-3 M SM after 6 hours of 
exposure. They have also demonstrated that treatment 
with 1×10-6 M and 1×10-5M SM, induced no significant 
differences compared with the control group.27 

On account of the high incidence of debilitating 
exposure to SM during the Iran-Iraq war, there is an 
increased interest in its mechanism of action and in the 
development of therapeutic interventions to prevent SM-
induced lesions. The aim of this study was to investigate 
whether SM affects cytokine production by macrophages 
involved in lung inflammation. 

PATIENTS AND METHODS 

Animals 
Twenty-four male rats, aged 8 weeks old and weighing 

150 g, were divided into two twelve-member groups: 
control and test. The animals were maintained in dust-free 
bedding cages in the animal unit. The twelve animals in 
the test group were exposed to the vapours of SM 
(obtained from The Ministry of Defence) through 
inhalation (42.3 mg/m3)28 for 30 minutes in a small cage. 
The animals in the control group were exposed to acetone 
only. During each two months, two animals were 
examined for lung damage29. Based on no clear damage to 
the lung after 2 and 4 months of exposure and death of 
two animals by six months29, the experiment was 
terminated at six months for cytokine assay in the 
remaining 6 animals of each group.  

Table I. The percentage of increase or decrease of cytokines in SM 
exposed rats in comparison with the control groups (n=6,  and 
p<0.001). 
              Sample 
Cytokine 

BAL/ 6 months 
after exposure 

Serum/ 6 months after 
exposure 

IL-9 %615.93 ↑ %333.4 ↑ 
γIFN %58.94 ↓ %69.02 ↓ 
TGFβ %211.98 ↑ %40.19 ↑ 
IL-6 %125.5 ↑ %105.9 ↑ 

IL-1β %76.47 ↓ %20.56 ↓ 
IL-12 %61.25 ↓ %28.87 ↓ 
TNFα %38.70 ↓ %37.3 ↓ 

 

Fig 1. The cytokine level in the BAL of rat after six months single 
expose to sulfur mustard (n=6, p<0.001). 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

IL-9 IFN-γ TGF-β IL-6 IL-1β IL-12 TNF-α

Type of cytokine

Cy
to

ki
ne

 L
ev

el
 (p

g/
m

l).

Control

Test

Archive of SID

www.SID.ir



Arc
hi

ve
 o

f S
ID

 K. Ahmadi and G. Solgue  

  MJIRI, Vol. 20, No. 2, 52-56, 2006/ 54 

Serum Samples 
After the animals had been anesthetised, blood 

samples were obtained from their heart using 5-mL 
syringes. The blood samples were centrifuged at 1500 rpm 
for 10 minutes, and sera were separated and kept at -20ºC 
until they had been analysed for cytokine assay using the 
ELISA kit (Bender Med Systems, USA). 

Broncho Alveolar Lavage (BAL) 
The animals having been anesthetised, their BAL was 

obtained by cannulating the trachea and lavaging the lung 
six times with a single volume of 15 mL of ice-cold sterile 
NaCl 0.9%. This BAL fluid (BALF) was centrifuged 
(1.000 ×g) for 10 minutes at 4ºC. 

The free cells BAL fluid was kept at -20ºC until it had 
been analysed for cytokine assay using the ELISA kit 
(Bender Med Systems, USA). All cytokine assays was 
performed in molecular immunology laboratory in 
Baqiyatallah Medical Sciences University. 

Statistical Analysis 
All experiments were performed six times (n=6) and 

the data were analysed by Mynova software using t-test. 

RESULTS 

The results showed significant differences (p<0.001) 
between the control and exposed groups in terms of all 
cytokine (IL-9, γIFN, TGFβ, IL-6, IL-1β, IL-12 and 
TNFα) productions in both the BAL fluid and serum     

(Fig. 1,2). The most noticeable enhancement in cytokine 
release was seen in IL-9, which was 615.93% and 
321.88% for the BAL fluid and serum, respectively 
(p<0.001). After IL-9 the highest increase was 
demonstrated for TGF-β and IL-6 in the BAL fluid which 
was 200.85% and 125.50% respectively. In both BAL and 
sera, a significant reduction was seen by γIFN (58.95% 
and 69.02% for BAL and sera respectively). The rate of 
reduction for IL-1β, IL-12, and TNF-α in the BAL was 
more than that in sera, but no significant difference was 
seen in the rate of TNF-α reduction in BAL and sera 
(Table I). 

DISCUSSION 

The reactivity of cytotoxic alkylating agents with 
DNA, RNA and proteins can cause mutagenic damage and 
cell death.30 Moreover, the underlying immunological 
effects of SM exposure have remained poorly defined. 
Recent studies, however, have reported clinical and 
immune responses to SM, which include a unique case 
definition of pulmonary damage and cytokine production. 
Previous studies indicate that SM exposure produces a 
chronic immunocompromised condition, which 
systemically induces abnormal serum level of Th1 and Th2 
cytokines.17 Since infiltration by lymphocytes and 
polymorphonuclear leukocytes represents one of the first 
events observed in vivo upon exposure to SM, this study 
examined whether SM exposure could modify the 
production of cytokines.  

The results of this study showed that SM inhalation 
up-regulated IL-6, IL-9 and TGF-β release in the BAL 
fluid and serum and down-regulated IFN-γ, IL-1β, IL-12, 
and TNF-α (p<0.001), indicating the possible role of 
cytokines in lung inflammation in chemical warfare 
victims.  

In our study, a high level of IL-9, TGF-β and IL-6 
were demonstrated; indicating the possible effect of SM 
induced lung injury via these above mentioned cytokines. 
Supporting our view, Arrovo et al.12 reported an increase 
in IL-1β, IL-6 and TNF-α release by human epidermal 
keratinocytes exposed to SM, demonstrating the important 
role of these cytokines in SM injury. In favour to our 
findings important roles for TNF-α, TGF-β in lung 
inflammation have been established by other      
researchers 31, 32 

Aghanouri et al.33  reported a significant difference in 
the level of TGF-β between chemical warfare victims and 
control group, proposed that IFN-γ could be a useful drug 
for those suffering from lung inflammation. Hassan         
et al. 34 in a recent investigation demonstrated that SM 
caused an overall suppression of the immune response. 
There is also ample information demonstrating the role  of 
IL-9, IL-12 and IFN-γ in promoting lung injury. 35, 36 In 
this study, the level of TGF-β and IL-9 were increased, 
while IFN-γ showed a significant reduction (p<0.001). 
Therefore it seems that macrophages by enhancing the IL-
9 production are trying to act in opposite action of TGF-β. 
Related to our results, Gary et al.36 demonstrated that IL-9 
has the capacity to modulate the development of lung 

Fig 2. The cytokine level in the serum of rat after six months single 
expose to sulfur mustard (n=6, p<0.001). 
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fibrosis. Noticeable changing in the level of cytokine after 
six months exposure to SM in this study, show that SM 
may induce an alteration in gene expression which are 
primarily involved in inflammation, apoptosis and cell 
cycle regulation.37-40 Related to our view, microarray 
analysis provided the opportunity to identify multiple 
transcriptional biomarkers associated with SM       
exposure.41 Rogers 41 demonstrated that in an SM-exposed 
skin, a total of 19 genes within apoptosis, transcription 
factors, cell cycle, inflammation, oncogens and tumor 
suppressors categories have been up-regulated. 

In conclusion, in light of the results of this study and 
other similar investigations, it seems that SM, by 
modulating macrophage function in terms of the 
production of inflammatory cytokines, might be 
responsible for lung inflammation. The results of this 
study also provide a further understanding of the 
molecular responses to inhalation SM exposure, and 
enable the identification of potential diagnostic markers 
and therapeutic targets for treating SM injury. 
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