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Abstract

Background: Missing data is a common problem in cancer research. Although simple methods, such as complete-case 
(C-C) analysis, are commonly employed to deal with this problem, several studies have shown that such methods lead 
to biased estimates. The aim of this study was to address the issues encountered in the development of a prognostic 
model when missing data exist.

Patients and Methods: A total of 310 breast cancer patients were recruited. Initially, the patients with missing data for 
any of the 4 candidate variables were excluded. Then, the missing data were imputed 10 times. Cox regression model 
was fitted to the C-C and imputed data. The results were compared in terms of the variables retained in the model, 
discrimination ability, and goodness of fit.

Results: In the C-C analysis, some variables lost their significance because of a loss in power, but after imputation of the 
missing data, these variables reached significant level. The discrimination ability and goodness of fit of the imputed 
data sets model was higher than those of the C-C model (C-index, 76 % versus 72 %; likelihood ratio test result, 51.19 
versus 32.44). 

Conclusions: The results indicate the inappropriateness of an ad hoc C-C analysis. This approach leads to loss in power 
of the variables and imprecise estimates. Application of multiple imputation techniques is recommended for avoid-
ing such problems.
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Introduction

Prognostic models combine key patient characteristics 
(risk factors) to predict clinical outcomes such as 
recurrence of cancer. These models are excellent tools for 
investigating the contribution of variables to the course 
of a disease and for selecting the appropriate treatment 
approach (1). However, if the model assumptions are 
ignored during its development, the results may be 
misleading (2,3). One of the challenges in modeling 
practice is incomplete data. In survival analysis, a 
problem occurs when data on risk factors are missing 
(4). The traditional response to this problem is to exclude 
the individuals with incomplete data for any prognostic 
factors from the analysis (such an analysis is known 
as complete-case analysis [C-C analysis]) (4). However, 
exclusion of missing data leads to reduction in the 

sample size, which reduces the precision of estimates and 
can lead to biased estimates (5,6). Therefore, appropriate 
methods should be applied for imputing missing data. 
Methodological developments in the analysis of missing 
data offer a lot to modeling. Advanced likelihood-based 
methods can be applied to use partial data to predict 
the missing variables. This approach prevents reduction 
in sample size and helps avoid biased estimates. Many 
methods can help tackle the problem of missing data. 
The main aim of this study was to highlight the issues 
encountered in the development of a prognostic 
model with missing data. Here, we have focused on 
the Multivariable Imputation via Chained Equations 
(MICE) method. MICE is a flexible method that has the 
capability to deal with all forms of variables (continuous, 
categorical, and binary), and it can be used in regression 
settings. Te MICE method was applied to analyze a breast 
cancer data set. To show the information recovery power 
of the MICE method, prognostic models were developed 
using complete data as well.
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Missing indicator Status Stage Grade Benign disease Age

Stage + a - + a + a -

Grade + - b - + a -

Benign disease + - b -b - +

Table 1. Investigation of the association between missingness indicator variables and the present variables

a: Association between the missing variables and the present variables
b: Lack of association between the missing variables and the present variables

Patients and Methods
Patients and outcome

From 1994 to 2003, we collected information of 310 
breast cancer patients in Shiraz (located in southern 
Iran), who had undergone a median follow-up of 2.5 
years. The information was collected from the Hospital-
based Cancer Registry of Nemazee Hospital (affiliated to 
Shiraz University of Medical Sciences). The end point of 
the study was death. At the end of the study, there were 
56 deaths. 

Variables

Variables included in the multifactorial models were 
those with univariate predictive ability (tumor stage 
(early, locally advanced, and advanced), tumor grade 
(1, 2, and 3), history of benign breast disease (positive 
versus negative), and age at diagnosis (≤ 47 years versus 
> 47 years) (7). This data set did not include personal 
information such as name, address, or phone number of 
the patients.

Multifactorial models

For data analysis, Kaplan-Meier (KM) analysis and log-
rank tests were used to compare the survival curves. 
The linear Cox model was then applied to develop 
multifactorial regression models and to estimate Hazard 
Ratios (HR) (8). Two models were developed using C-C 
data and imputed data sets. The MICE method was 
applied to impute the missing data.

C-C model

In the C-C model, patients with missing data on any of 
the selected 4 variables were excluded. Cox regression 
model along with the ENTER variable selection method 
was then applied to patients for whom data on all 4 
candidate risk factors was available. The final risk score 
was calculated by multiplying the variables with the 
estimated regression coefficient. Tertiles of the estimated 
risk score were applied as cutoffs to categorize patients 
into the following risk groups: low (L), intermediate (I), 
and high (H).

MICE model

The MICE method is a probabilistic approach. The usual 

practice is to replace each missing value by 10 values, 
leading to 10 imputed data sets, so as to reflect the 
uncertainty about the true values of the missing data 
(9,10). The process of the MICE method is described 
below.

Identification of the missingness mechanism

To identify the missingness mechanism, we adopted in-
dicator variables for the variables with missing data. For 
example, the indicator variable for cancer stage variable 
was used to determine whether information on stage 
was available. A value of 1 was assigned for patients for 
whom stage variable was known, whereas a 0 was as-
signed for those whose stage was unknown. The asso-
ciation between the indicator variables, which reflected 
missingness, and the rest of the variables was assessed by 
applying the Chi-square test. When the missingness de-
pends on observed variables mechanism is called Miss-
ing At Random (MAR).

Selection of variables for the MICE algorithm

For the best imputation, the outcome variable should 
be included in the imputation model (11). Therefore, the 
patients’ outcome and a set of 4 risk factors were used in 
the MICE algorithm.

Specifications of the imputation model

Polytomous and logistic regression analyses were used 
to impute missing data for categorical (stage and grade) 
and binary data (age and history of benign disease), re-
spectively. 

Imputation process

The MICE method does not involve distributional as-
sumption and can be used to impute missing data for 
continuous, categorical, and binary variables. To impute 
missing values for a variable that includes missing data, 
say xj, a regression model relates xj to other variables in 
the imputation model. This regression model is then 
used to generate imputation values from the posterior 
predictive distribution. Each predictor with missing val-
ues is considered in turn by using the current imputed 
value for each of the other predictors (12). The iterative 
process ends when all variables have been updated (tech-
nical details are given in the Appendix) (13). The entire 
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Complete-case model (n = 203, D a = 54) Imputed data sets model (n = 310, D a = 56)

HR b (95% CI c) P value HR b (95% CI c) P value

Stage

1
2
3

1
2.89 (1.52, 5.51)
1.94 (0.81, 4.63)

-
0.001
0.13

1
3.13 (1.64, 5.97)
2.53 (1.05, 6.12)

-
< 0.001
0.03

Grade

1
2
3

1
2.46 (1.61, 5.23)
1.33 (0.58, 3.04)

-
0.02
0.50

1
2.46 (1.15, 5.24)
1.52 (0.65, 3.60)

1
0.02
0.34

Age

< 48 years
≥ 48 years

1
1.75 (0.91, 3.38)

-
0.10

1
1.92 (1.01, 3.65)

1
0.04

Benign disease

No
Yes

1
1.91 (1.04, 3.49)

-
0.04

1
2.32 (1.24, 4.33)

-
0.01

Performance of models

C-index , %
Likelihood ratio test

72
32.44

-
-

76
51.19

-
-

Table 2. Comparison of estimated hazard ratios 95% confidence intervals in the analysis of complete case and imputed data sets 

a D: Number of deaths
b HR: Hazard ratio
c CI: Confidence interval

process was repeated and the imputed values, which 
were generated in the fifth round, were used as the first 
imputed data set. The whole process was repeated 10 
times to replace each missing data by 10 values, thus cre-
ating 10 data sets (12). The standard algorithm imputes 
each incomplete column in the data set from left to right. 
The order of the variables is not relevant to the results.

Aggregation of estimates across imputed data sets 

The creation of 10 data sets means that 10 modeling 
analyses are required, 1 for each data set, and therefore, 
there will be 10 different estimates for each parameter. 
The estimates derived from the imputed data sets (the 
coefficients and standard errors) therefore need to be 
combined; this was achieved by applying Rubin’s rule 
(14). The final regression coefficient is simply the average 
of the coefficients across imputed data sets. While 
estimating standard errors, both between and within 
imputation variations should be taken into account 
(details are given in the Appendix). 

Calculation of hazard ratios and confidence intervals 

HR and corresponding 95 % Confidence Intervals 
(C.I.) were calculated on the basis of the regression coef-
ficients and standard errors that were imputed across 
multiple imputed data sets.

Calculation of a risk score

A risk score was calculated for each of the 10 imputed 

data sets. For each patient, a single averaged risk score 
was calculated by averaging the estimated risk scores 
from each of the 10 imputed data sets.

Comparison of the Performance of the Models

Discrimination ability

In risk stratification studies, it is important to create 
risk groups such that the patients in all groups are equal-
ly likely to develop the outcome (15). Discrimination is 
measured using Harrell’s C-index (concordance index), 
which is a generalization of Area Under Curve (AUC) 
(16,17). The C-index is a measure of correct ordering. It 
shows the proportion of times, when comparing risk 
predictions for 2 patients, that the calculated risk for the 
patient who develops the disease is higher than the cal-
culated risk for the patient who does not develop the dis-
ease. The statistical value of the C-index varies between 
0.5 and 1, and values near 1 indicate high discrimination 
power. However, if the performance is assessed using the 
same sample as that used for model development, then 
the performance will be overestimated. Therefore, boot-
strap procedure was applied to determine bias-corrected 
C-indices (18). 

Goodness of fit (Likelihood ratio test)

For all models, we will report the results of the likeli-
hood ratio test (LRT), which indicates how well the mod-
el fits the data.
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Software

A series of packages that work using the R software 
(version 2.5.1) were used (19). The KM curves were plotted 
by using the SPSS software.

Results

Information for the age variable was available for all pa-
tients. The variables nodal status and grade have a miss-
ing rate of about 20 % (20.3 % and 20.6 %, respectively). The 
missing rate for the history of benign disease was 15.2 
%. However, after exclusion of the missing data for all 4 
variables, 35 % of the data were lost. In total, data on all 4 
variables was available for 203 cases (65 %). Almost all pa-
tients with missing data were those who survived. Out of 
the 56 cases of deaths, only 2 were lost in the C-C analysis. 
First, we examined the missing data mechanism (Table 1). 
Patient’s disease status, grade, and history of benign dis-
ease can help predict missingness on the stage variable. 
Patient status and history of benign disease were predic-
tors of missingness on the grade variable. Furthermore, 
patient status and age were predictors of missingness 
on the history of benign disease variable. These findings 
confirm that the data had an MAR mechanism. 
The estimated HR's and 95 % C.I. values corresponding 
to the C-C and imputed data sets are given in Table 2. 
Age at diagnosis was not significant in the C-C model 
Furthermore, compared to the patients with stage 1 
disease, patients with stage 3 disease did not have a 
significant risk of death. After imputing the missing 
data, age at diagnosis was retained in the model. In 
addition, compared to patients with stage 1 disease, 
patients with stage 3 disease had significant HR's. On 
comparing the performances of the models, we found 
that the imputation of missing data improved the 
discrimination ability of the MICE model (MICE, 76 % 
versus C-C, 72 %). Furthermore, improvement was seen 
in the goodness of fit of the model (before imputation 
of missing data, 32.44 versus after imputation of missing 
data, 51.19). 

Discussion

Missing data are a common problem in medical and 
epidemiological data sets. Exclusion of missing data 
leads to loss of power of the model. In this study, some 
variables lost their statistical significance in the C-C 
analysis. For example, stage of disease, which is one of 
the most important prognostic variables (20, 21), did not 
reach the significance level in the C-C model. We imputed 
10 data sets in order to protect against chance effects of 
imputation. We considered this protection to be worth 
the inconvenience of having to average risk scores across 
the final 10 models. Once missing data were imputed, 
the power increased and the variables that had lost their 
significance in the C-C model (such as stage of disease) 
reached the significance level. 
We also showed that our data had an MAR mechanism, 

indicating that the missing data depends on other 
characteristics of patients; therefore, the missing data 
can be imputed using multiple imputation methods. Our 
main goal was to illustrate the process of development 
of a prognostic model for cases with missing data, and 
we used a breast cancer data set to illustrate the process. 
The discussion of the risk factors for breast cancer is 
beyond the scope of this paper. The risk factors for breast 
cancer have been discussed previously (20,21). When the 
missing rate is low, results of the C-C model, in terms of 
the variables retained in the final model, may be similar 
to those of the MICE model. Asia Pacific Cohort Studies 
Collaboration (APCSC) collects data to determine the 
risk factors for coronary heart disease (CHD). The ability 
of multiple imputation and C-C analysis to handle 
the missing data on a single variable (cholesterol) in 
26 studies was compared (22). The missing rate for 
cholesterol varied from 0 % to 69 %. In 22 studies in which 
the cholesterol data were unavailable for about 10 % of 
the subjects, the C-C and MICE methods gave similar 
results. However, in the remaining 4 studies in which the 
missing rate for cholesterol data was between 10 % and 
60 %, a clear difference was seen between the results of 
the 2 models. 
However, we believe that even a low rate of missing 
data on each variable may cause serious problems in 
multivariate modeling when patients with missing data 
on different variables are not the same. Furthermore, the 
missing data may substantially reduce the number of 
complete cases available for analysis and in turn increase 
the chance of bias because of the exclusion of cases. We 
developed the multifactorial models in conjunction with 
the ENTER variable selection method. When backward 
elimination (BE) variable selection is adopted, a series 
of iterative steps are required to exclude variables that 
do not contribute significantly to the model. If a single 
multifactorial model is developed, then application of BE 
is straightforward. However, when there are 10 imputed 
data sets, direct application of BE will not be feasible. In 
an iterative process, the results are aggregated across the 
10 data sets at each step, and the variable with the highest 
P value (exceeding 0.05) is removed. Another set of 10 
models are fitted to the remaining variables, the results 
are aggregated, and the P value for the variable to be 
excluded in determined (variable is excluded if P > 0.05). 
The whole process is continued as long as the variables 
remain statistically significant (12,13). Before developing 
multifactorial models, we dichotomized the age variable 
at a median age of 48 years since we have previously 
shown that, compared to the continuous variable, the 
dichotomized variable improves the quality of the 
model (23). Therefore, in this study, only information 
on 2 binary and 2 categorical variables was analyzed. 
When continuous data are available, the Predictive Mean 
Matching (PMM) technique can be employed. In the PMM 
method, the complete case with a value closest to the 
imputed value is chosen by taking the observation from 
the complete case as the imputed value.
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Our study has several limitations. We used a data set 
containing only 4 variables. Therefore, the impact of 
the number of variables on the multifactorial model 
was not investigated. Furthermore, we only compared 
the performances of the C-C model and MICE at a 
missing rate of 35 % and under the MAR mechanism. The 
performance of the models depends on the mechanism 
of missing data, rate of missing data, method of 
imputation of missing data, and sample size to a great 
extent (24,25,26,27). Our work was simply a case study 
to explain the issues encountered in the application of 
the MICE method and the skill involved in the recovery 
of information. Therefore, further studies are required 
to compare the performance of imputation models in 
different situations (different sample size, missingness 
mechanism, missing rate, and method of imputation). 
We have already shown that the C-C model decreases the 
power of the variables and the MICE method recovers 
data. However, at this stage, because of the limitations 
listed above, we cannot provide a specific guideline on 
how the problem of missing data can be best tackled 
because there are many approaches to deal with miss-
ing data (28). Under special circumstances, alternative 
methods with easier techniques (such as replacement of 
missing data by the mean observed value) may provide 
comparable estimates. Application and comparison of 
alternative imputation methods are beyond the scope of 
this paper and will be published elsewhere. Our results 
show how exclusion of missing data affects the composi-
tion of the model. Application of ad hoc methods such 
as C-C analysis is hugely criticized (29,30). Even when C-C 
analysis gives results comparable to those of the MICE 
method, a gold standard such as the MICE method is re-
quired to compare results with those of other simpler 
methods. Therefore, the application of MICE-like meth-
ods is highly recommended. 
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Appendix A 
1) Technical details of the MICE method

If  are k random variables where each 
variable contains missing data and t represents iteration 
number, missing data are imputed from the following 
sequence of Gibbs sampler iterations (31): 
For  draw imputations  from  
For  draw imputations  from  
For  draw imputations  from  

2) Aggregation of estimates across imputed data sets 

If is the estimated regression coefficient in the ith 

data set, then the final regression coefficients, say 
, and its variance can be estimated by applying the 
following formulas. Here, M shows the number of data 
sets imputed. 
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