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A B S T R A C T

Background: Smoothing methods are widely used to analyze epidemiologic data, particularly in the area of environmental health where 
non-linear relationships are not uncommon. This study focused on three different smoothing methods in Cox models: penalized splines, 
restricted cubic splines and fractional polynomials.
Objectives: The aim of this study was to assess the effects of prognostic factors on survival of patients with gastric cancer using the smoothing 
methods in Cox model and Cox proportional hazards. Also, all models were compared to each other in order to find the best one.
Materials and Methods: We retrospectively studied 216 patients with gastric cancer who were registered in one referral cancer registry center 
in Tehran, Iran. Age at diagnosis, sex, presence of metastasis, tumor size, histology type, lymph node metastasis, and pathologic stages were 
entered in to analysis using the Cox proportional hazards model and smoothing methods in Cox model. The SPSS version 18.0 and R version 
2.14.1 were used for data analysis. These models compared with Akaike information criterion.
Results: In this study, The 5 year survival rate was 30%. The Cox proportional hazards, penalized spline and fractional polynomial models let 
to similar results and Akaike information criterion showed a better performance for these three models comparing to the restricted cubic 
spline. Also, P-value and likelihood ratio test in restricted cubic spline was greater than other models. Note that the best model is indicated by 
the lowest Akaike information criterion.
Conclusions: The use of smoothing methods helps us to eliminate non-linear effects but it is more appropriate to use Cox proportional 
hazards model in medical data because of its’ ease of interpretation and capability of modeling both continuous and discrete covariates. 
Also, Cox proportional hazards model and smoothing methods analysis identified that age at diagnosis and tumor size were independent 
prognostic factors for the survival of patients with gastric cancer (P &lt; 0.05). According to these results the early detection of patients at 
younger age and in primary stages may be important to increase survival.
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Implication for health policy/practice/research/medical education:
Gastric cancer is the second leading cause of cancer death worldwide and is the most common type of cancer in Iran. This reason 
motivated us to investigate and introduce gastric cancer risk factors utilizing statistical methods.
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1. Background
In survival analysis, major interests are either to com-

pare the failure time distribution function or to assess 
covariate effects on survival via appropriate hazards re-
gression models. The Cox proportional hazards model is 
widely used in epidemiological research to examine the 
association between an exposure and a health outcome 
(1). In a typical approach to the analysis of epidemiologic 
data with a continuous exposure variable, the exposure is 
transformed to an ordinal or nominal polytomous vari-
able and relative risk (RR) is modeled as a step function of 
the exposure. This approach is attractive because there are 
no constraints on the change in RR between exposure cat-
egories and because it is conceptually and computation-
ally straightforward to implement. However, the selection 
of cut points used to define the exposure categories influ-
ences the shape of the dose-response relationship and this 
model sensitivity has raised concerns (2). Moreover, a step 
function does not take advantage of the information with-
in categories (3, 4). Also, Cox proportional hazards model 
restricts the log hazard ratio to be linear in the covariates. 
A non-linear covariate effect may go undetected in this 
model. To avoid these pitfalls, as well as to avoid paramet-
ric constraints on the shape of the exposure-response 
curve, a variety of smoothing techniques have been rec-
ommended by epidemiologists (3, 5, 6).

Smoothing methods are widely used to analyze the epi-
demiologic data, particularly in the area of environmental 
health where non-linear relationships are not uncommon. 
Most of such applications fit cubic functions using splines 
(natural splines, restricted cubic splines, or penalized 
splines) or else, apply fractional polynomials (7). Several 
different smoothing techniques have been applied in envi-
ronmental and occupational epidemiology. For example, 
smoothing splines have been used in generalized additive 
models to quantify the relationship of silica exposure and 
lung cancer (8) and to model air pollution and mortal-
ity (9, 10). Another common smoothing method, locally 
weighted regression smoother (LOESS), has also been used 
to model non-linear exposure-response relationships in 
generalized additive models relating air pollution and 
mortality (8, 11). Penalized splines (12) have recently ap-
peared in several studies of occupational hazards and re-
lated health effects (11-17). Steenland and Deddens in 2004 
described both penalized splines and restricted cubic 
splines in a review of alternative modeling approaches in 
occupational epidemiology (16). Restricted cubic splines 
(RCS) (18, 19) have also been applied in Cox models in both 
nutritional (20-22) and cancer epidemiology (16, 23, 24).

Gastric cancer (GC) is the second most common cancer in 
the gastrointestinal tract throughout the world (25). The 
patients are often diagnosed with advanced disease (26). 
Thus, diagnosis of the stomach cancer to a patient signi-
fies the impending death. In fact, even among the medical 
professionals there is widespread belief that this diagnosis 
implies hopelessness. This attitude is a great deterrent to 

progress and is a sad one. Due to Japanese effort with sci-
entific documentations, it is confirmed that the cancer of 
stomach is a curable disease (26). In the past two decades, 
because of the promotion of hygiene in Iran, death from 
different diseases has been reduced, but death rates due to 
cancers have remained as a major health problem among 
Iranian people (27). In Iran, the incidence is around 7300 
cases per year, which is the most common cancer in men 
(28). During 2000-2005, incidence rate was highest in 
Northern provinces: Gilan, Mazandaran and Ardabil (29). 
Survival analysis is the modeling of time to event of death 
to evaluate the effects of treatment on survival time. It is 
important to determine the prognosis factors for patients 
with GC. Some potential clinicopathological factors such 
as age, tumor size, depth of invasion, distant metastasis, 
and pathologic type, have been evaluated to identify the 
factors affecting survival in these patients (30).

2. Objectives
The aims of the study were to assess the effects of prog-

nostic factors on survival of the patients with GC using 
the smoothing techniques in Cox model and Cox propor-
tional hazards. Also, all models were compared to each 
other in order to find the best one.

3. Materials and Methods

3.1. Study Population
This is a retrospective study of patients treated from 

February 2003 through January 2008, between 216 pa-
tients whom were admitted to the Taleghani hospital 
with a diagnosis of GC. The hospital is a referral center 
for gastrointestinal cancers, and all of the patients were 
diagnosed by endoscopy and biopsies. The exclusion 
criteria were the patients who had not completed docu-
ment at hospital registry or treated out of the time Febru-
ary 2003 to January 2008 and the start point for survival 
time was the time of diagnosis which extracted from the 
patient’s document. The study protocol was approved by 
the ethics committee of the Research Center for Gastro-
enterology and Liver Disease of Shahid Beheshti Medical 
University. In the research center, all patients who reg-
ister with gastrointestinal cancer are monthly followed 
for survival. The case of patient’s death was confirmed by 
contact with the patient’s family by telephone and clini-
cal information was extracted from hospital documents. 
The Clinicopathological features were analyzed for GC pa-
tients were age at diagnosis, sex, pathologic distant me-
tastasis, tumor size, histology type, regional lymph node 
metastasis and pathologic stage.

3.2. Statistical Analysis
In this study, Cox proportional hazards model and 

smoothing methods in Cox model were used for multi-
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variate analysis. The smoothing methods considered in 
this paper are Penalized spline (P-spline), Fractional poly-
nomial (FP) and restricted cubic spline (RCS). In this sec-
tion, all models for analysis are reviewed.

3.3. Cox Proportional Hazards (Cox PH)
Currently, the most popular regression method for 

survival analysis in biomedical studies is the Cox propor-
tional hazards model. The purpose of the model is to si-
multaneously explore the effects of several variables on 
survival. In this model, the effect of the covariates was to 
act multiplicatively on some unknown baseline hazard 
rate. Thus, under the Cox model, the hazard function for 
the failure time Ti associated with a p-vector of the covari-
ates Zi=(zi1, …,zip) is defined as:

λ_(i ) (t)=λ_0 (t)exp(β_1 z_i1+⋯+β_p z_ip)
Where  is an unspecified baseline hazard function and is 

the regression coefficient, where k=1, 2, …, p. Estimation 
of  proceeds through partial likelihood such that  is not 
involved in the estimation of β_i

3.4. Penalized Spline (P-spline)
The P-spline is a non-linear fit, but we can test how much 

of the effect is due to the linear part of the term versus the 
non-linear part. This is very similar to a post-hoc test for 
linear trend applied to a factor or class variable. The main 
point is that splines must be fit to a continuous predictor 
variable (31).

3.5. Fractional Polynomial (FP)
Fractional polynomial (FP) regression models are inter-

mediate between polynomial and nonlinear models. The 
aim in using FP functions in regression is to keep the ad-
vantages of conventional polynomials, while eliminating 
(most of) the disadvantages. Put briefly, FP functions are 
similar to conventional polynomials in that they include 
powers of X, but non-integer and negative powers are 
also allowed. FP models usually give a better fit than con-
ventional polynomials of the same degree, and even than 
those of higher degree. FP functions can be used with any 
generalized linear model and with Cox proportional haz-
ards regression models for survival data. Examples are 
normal errors regression (multiple linear regression), 
(multiple) logistic regression and log-linear modeling of 
contingency table data which have ordered categories. In 
all of these a response variable Y is regressed on a single 
covariate X, or on several covariates X1,…,Xk.

We define the degree of an FP model as the number of 
terms in powers of X in the model and denote it m. Thus, 
for example y = b0+b1x-1 has degree m = 1 and y = b0+b1x-
1+b2x2 has m = 2. We call the powers in the FP model p1, 
p2, etc., and denote the vector of powers as P. In the two 

examples just given we have p= -1 and P = (-1,2) respective-
ly. It is uncommon to need models with m > 2, and so FP 
concentrates on models with m = 1 or m = 2 (32).

3.6. Restricted Cubic Spline (RCS)
Cubic splines are generally defined as piecewise-polyno-

mial line segments whose function values and first and 
second derivatives agree at the boundaries where they 
join. The boundaries of these segments are called knots, 
and the fitted curve is continuous and smooth at the knot 
boundaries. To avoid instability of the fitted curve at the 
extremes of the covariate, a common strategy is to con-
strain the curve to be a straight line before the first knot 
or after the last knot (33).

In this study, at first, multivariate analysis of Cox PH 
model was fitted on all variables to determine the effec-
tive factors on survival of the patients with GC. Due to 
the suitability of spline models for continuous predictor 
variables, to compare the Cox PH model with P-spline, 
fractional polynomial and restricted cubic spline in Cox 
model from identified continuous effective variables in 
multivariate Cox PH model were used. These models were 
compared with each other by AIC (akaike information cri-
terion) and LRT (Likelihood Ratio Test). Statistical analy-
ses were performed using the computer program SPSS 
version 18.0 and R version 2.14.1. A P value of less than 0.05 
was considered statistically significant.

4. Results
The mean age at diagnosis among the 216 patients was 

50.23 ± 8.11 (rang: 26-69 years). The overall survival was 
80% after one year, 40% after 3 and 30% after 5. Of the pa-
tients, 23 (10.6%) had pathologic distant metastasis, 175 
(80.1%) had tumor size greater than 35mm, 136 (63%) di-
agnosed with advanced stage of GC, 164 (75/9%) with his-
tology type of adeno carcinoma NOS and 26 (12%) in N3 
level of regional lymph nodes metastasis. The results of 
the multivariate analysis of Cox PH model is also given 
in Table 1. Three covariates showed significant impact on 
the GC patients’ data in Cox PH models: age at diagnosis, 
tumor size and pathology stage.

The analysis of Cox PH, P-spline and fractional polyno-
mial in Cox model resulted in age at diagnosis and tumor 
size as prognostic factors on survival time of patients 
with GC independently (P < 0.05). The fact that non-linear 
part of the P-spline model has no significance shows that 
the non-linear effects of the model have been eliminated 
and the linear effects were good for these variables. Also, 
LRT, AIC and survival curve for these patients were equal 
in P-spline, fractional polynomial and Cox PH models but 
P-value, AIC and LRT in restricted cubic spline model was 
greater than other models. Note that the best model is in-
dicated by the lowest AIC.
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Table 1 Multivariate Analysis of Prognostic Factors for GC Patients Usisng the Cox PH Model

Characteristics RCa SE HRa(95% CI) P value

Age at diagnosis 0.052 0.015 2.113 (1.994-4.492) 0.042c

Sex

Femaled - - 1 -

Male 0.114 0.274 1.292 (0.522-1.526) 0.677

Pathologic metastasis

Absentd - - 1 -

Present 0.480 0.342 1.453 (0.488-1.864) 0.889

Tumor size

<35mmd - - 1 -

>35mm 0.548 0.277 1.730 (1.005-2.979) 0.048c

Histology type

Other typed - - 1 -

Adenocarcinoma -0.348 0.395 0.706 (0.349-1.427) 0.332

Signet cell carcinoma -0.592 0.548 0.553 (0.189-1.619) 0.280

Regional node metastasis

N1bd - - 1 -

N2b 0.289 0.418 1.335 (0.588-3.031) 0.490

N3b 0.662 0.543 1.939 (0.669-5.622) 0.223

Pathologic stage

Earlyd - - 1 -

Adv 0.803 0.379 2.198 (1.070-4.513) 0.034c

a Abbreviations: RC, regression coefficient; HR, hazard ratio
b N1, Metastasis in 1-6 regional lymph nodes; N2, in 7-15; N3, &amp;gt;15 (according to SEER Summary Staging Manual 2000)
c Statistically significant at 0.05 level
d Reference group

Due to the suitability of spline models for continuous 
predictor variable, to compare the Cox PH model with P-
spline models, fractional polynomial and restricted cubic 
spline in Cox model from indentified continuous effective 
variables in multivariate Cox PH model was used. The re-
sults of the comparing Cox PH and smoothing techniques 
in Cox models are also given in Table 2 and Figure 1.

5. Discussion
Smoothing methods are widely used in epidemiologic 

study where non-linear relationship is not uncommon. 
We have compared smoothing methods (penalized 
spline, fractional polynomial and restricted cubic spline) 
in Cox model with Cox PH model and assessed the effects 
of prognostic factors on survival of the patients with GC. 
The Cox PH, P-spline and fractional polynomial models 
led to similar results, but P-value, AIC and LRT in restrict-
ed cubic spline was greater than other models. So, AIC 
showed a better performance for Cox PH, P-splines and 
fractional polynomial models comparing to the restrict-
ed cubic spline.

Numerous complex regression techniques are available 
to flexibly model the functional form of a continuous 
covariate’s effect on outcome. Particularly smoothing 
approaches that encompass a broad range of techniques 
and avoid assumptions of a particular functional form 
of a relationship between independent variables and 
outcome have been well-established in the statistical 
literature (34-36). Hollander and Schumacher in 2004 
compared restricted cubic splines and fractional 
polynomials in Cox models through simulations and 
improved estimation of risk functions through bagging 
(37). In another report Govindarajulu et al. in 2007, 
applied penalized splines, restricted cubic splines, and 
fractional polynomials in survival models to data from 
two occupational cohort and compared results (5).  In 
another study, Restricted cubic splines and penalized 
splines were found to be closer to each other than 
either was to the fractional polynomial in both datasets 
where they were used to model lung cancer mortality 
as a function of lifetime exposure (38) and to uranium, 
measured as radon progeny (39).
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Table 2 Results for Comparing Smoothing Methods and Cox PH Model in a Study of GC

Variable Coefficient SE P value LRTa(P value) AICa

Cox PH 22.6 (0.00197) 689.4

Age at diagnosis -0.0545 0.015 0.00028c

Tumor size -0.0262 0.013 0.04400c

P-spline 22.6 (0.00197) 689.4

Age at diagnosis 
(linear)b

-0.0545 0.015 0.00028c

Age at diagnosis 
(non)b

0.94000

Tumor size 
(linear)

-0.0262 0.013 0.04400c

Tumor size (non) 0.93000

Fractional poly-
nomial

22.6 (0.00197) 689.4

Age at diagnosis -0.0545 0.015 0.00028c

Tumor size -0.0262 0.013 0.04400c

Restricted cubic 
spline

22.9 (0.0112) 695.1

Age at diagnosis -0.0567 0.0488 0.25000

Tumor size -0.0900 0.0450 0.04500c

a Abbreviations: AIC, Akaike information criterion; LRT, Likelihood Ratio Test
b For the P-spline, the first term tests if the linear spline function is significant and the second term tests whether the non-linear component of the 
spline function is significant
c Statistically significant at 0.05 level
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Figure 1. Survival Curve of GC Patients With 95% Confidence Interval for 
Smoothing Methods and Cox PH Model

As we expected life expectancy significantly decreased 
with age at diagnosis. So, our finding was similar as 
previous reports (40-46). Also, a study performed in 
the United States showed that older age groups have a 
shortened life expectancy in comparison to young (46). 

In our results, sex had no effect on survival rate. Liu et 
al., Curtis et al. and Bako et al. indicated that there was 
no association between gender and survival of patients 
with early GC (47-49). Metastasis is another important 
prognostic factor of GC (50), however in our results no 
association was observed according to analysis. Size of 
tumor was another significant factor where affected 
the survival probability of patients in our analysis. This 
finding was in confirmed with those where pointed a 
higher hazard ratio of death for patients with larger 
tumor (47, 51, 52).

In the present study, the use of smoothing methods 
helps us to eliminate non-linear effects but it is more 
appropriate to use Cox proportional hazards model in 
medical data because of its’ ease of interpretation, capa-
bility of modeling both continuous and discrete covari-
ates, accessibility of software packs, not being costly and 
time-consuming and no need of complicated programs 
and advanced computers. In this study, indicated that 
age at diagnosis and tumor size were associated factors 
for survival time in patients with GC. According to these 
results the early detection of patients at younger age and 
in primary stages may be important to increase survival.
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