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Abstract

Background: Gene networks have generated a massive explosion in the development of high-throughput techniques for monitor-
ing various aspects of gene activity. Networks offer a natural way to model interactions between genes, and extracting gene network
information from high-throughput genomic data is an important and difficult task.
Objectives: The purpose of this study is to construct a two-way gene network based on parametric and nonparametric correlation
coefficients. The first step in constructing a Gene Co-expression Network is to score all pairs of gene vectors. The second step is to
select a score threshold and connect all gene pairs whose scores exceed this value.
Materials andMethods: In the foundation-application study, we constructed two-way gene networks using nonparametric meth-
ods, such as Spearman’s rank correlation coefficient and Blomqvist’s measure, and compared them with Pearson’s correlation co-
efficient. We surveyed six genes of venous thrombosis disease, made a matrix entry representing the score for the corresponding
gene pair, and obtained two-way interactions using Pearson’s correlation, Spearman’s rank correlation, and Blomqvist’s coefficient.
Finally, these methods were compared with Cytoscape, based on BIND, and Gene Ontology, based on molecular function visual meth-
ods; R software version 3.2 and Bioconductor were used to perform these methods.
Results: Based on the Pearson and Spearman correlations, the results were the same and were confirmed by Cytoscape and GO visual
methods; however, Blomqvist’s coefficient was not confirmed by visual methods.
Conclusions: Some results of the correlation coefficients are not the same with visualization. The reason may be due to the small
number of data.
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1. Background

In recent years, there has been a great explosion in
the development of high-throughput techniques for glob-
ally monitoring various aspects of gene activity (1). High-
throughput genomic data is a rich resource to explain how
genes are joined (2-5). Until now, the study of the proper-
ties, activities, and roles of genes and proteins; the discov-
ery of molecular processes within cells; and the tissues and
molecular biological aspects of illnesses were assessed at
one or several genes or proteins. Microarray technology
has emerged as one way of simultaneously expressing the
levels of thousands of genes, with the general approaches
for the data being gene sets and cluster analyses (1). Like-
wise, several tools have been developed for the visualiza-
tion and analysis of biological networks, such as Cytoscape
(5), VisAnt (6), and tYNA (7). Clustering is the classification
of a heterogeneous population into a number of homoge-
neous subsets, which are then referred to as clusters. This

method attempts to find groups that are significantly dif-
ferent from each other, as members of these groups are ex-
tremely similar (8). Gene set enrichment analysis (GSE) is
designed to find differences in gene expression between
phenotypes by incorporating uses, biological knowledge,
and statistical analysis (9). Clustering techniques cannot
recognize molecular networks, nor can clustering meth-
ods show direct or indirect connections between the genes
inside the clusters. Furthermore, clustering methods as-
sign a gene to one cluster, while the tumor protein p53
can cooperate in several physiological pathways. Thus, we
need to represent gene interaction methods based on dif-
ferent algorithms (8). Information about interactions im-
proves our understanding of the disease and could provide
a basis for new treatment methods (10, 11). There are sev-
eral gene network constructions, such as Boolean network
(12, 13), mutual information, and Bayesian network (14), to
discover the more complex interactions and to detect in-
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teraction networks within the gene expression data. One
disadvantage of these methods is the large samples of ex-
pression data. Networks offer a natural way to model in-
teractions between genes, with nodes representing genes
and with edges representing various interactions inferred
from different data sources (15).

2. Objectives

This study’s purpose is to construct gene networks
using nonparametric Spearman’s correlation and
Blomqvist’s coefficient and then to compare them with
Pearson’s correlation. The first step in creating a gene
co-expression network (GCN) is to score all pairs of gene
vectors. The second step is to select a score threshold and
connect all gene pairs whose scores exceed this value. Fi-
nally, the results were compared with Cytoscape, based on
BIND, and GO visualization, based on molecular function
methods.

3. Materials andMethods

Venous thrombosis is defined as a blood clot that forms
in a vein, and it is a common reason for morbidity and mor-
tality. A classical venous thrombosis is deep vein thrombo-
sis (DVT), which can break off and cause a life-threatening
pulmonary embolism (16). The VTE microarray dataset in-
cludes 70 adults with one or more prior VTE on warfarin
and 63 healthy controls (17). Blood was gathered in PAX
gene tubes, RNA was separated, and gene expression pro-
files were achieved using the Affymetrix human genome
U133A 2.0 array. In the data, a set of six genes, such as
CYP2A6, NAT2, CYP1A2, CYP2A13, XDH, and NAT1, was se-
lected. The KEGG pathway was used for performing gene
set analysis (18). In the foundation-application study, we
used correlation algorithms to construct gene networks.
The first stage in constructing a GCN is to score all pairs
of gene vectors using correlation coefficients. The second
stage is to select a score threshold and to connect all gene
pairs whose scores exceed this value, focusing on undi-
rected networks, which indicate pairwise relationships of
co-expression without necessarily representing causality.
There are several methods to survey the expression profiles
of gene pairs.

The Pearson’s correlation coefficient, r, is a measure of
the degree of linear relationship between two gene vec-
tors, X and Y, and it is calculated as (19):

(1)r(X,Y ) =

∑N
i=1(Xi −X)(Yi − Y )√∑N

i=1(Xi −X)
2∑N

i=1(Yi − Y )
2

The Spearman’s rank correlation is like the Pearson’s
correlation coefficient except that it acts on the ranks of
the data rather than the normal raw data (20). The Spear-
man’s rank correlation coefficient, rs, between two gene
vectors, X = (X1, ...., XN) and Y = (Y1, ….., YN) with the respec-
tive ranks (R1, …., RN) and (S1, ...., SN), is calculated as:

(2)rs(X,Y ) = 1−
∑N

i=1(Ri − Si)
2

N(N2 − 1)

Blomqvist’s coefficient is a nonparametric correlation
method between two random variables. The coefficient is
asymmetric and focuses on the difference of observed val-
ues among the first ranks in the orderings induced by the
variables. Let (x1, y1),...,(xn,yn) denote a sample from a con-
tinuous bivariate population, and let X~ , ỹ denote sample
medians. It is separated into the (x, y)-plane by four quad-
rants with the lines x = x~ ; and y = ỹ. Then Blomqvist’s B is
defined as (21, 22):

(3)B =
n1 + n2

n1 − n2
=

2n1

n1 + n2
− 1− 1 ≤ B ≤ 1

The next step is to choose a score threshold and to cre-
ate a GCN linking all gene pairs with scores exceeding this
threshold. Let Z1, Z2, ….., ZP be p genes for the pair (Zi, Zj), i
6= j, i, j = 1, 2, ….., p the P value associated to the index K ε [r,
rs, B] and to each fixed pair correlation (Z*

a, Z*
b) is defined

by

P Value(Zi, Zj) =

∑p
a=1

∑p
b=a+1I[k(Z

∗
a , Z

∗
b ) ≤ k(Zi, Zj)]

C(p, 2)

(4)

where I(A) denotes the indicator function of the set A.
The P value was created for all pair genes in Pearson’s cor-
relation, Spearman’s rank correlation, and Blomqvist’s co-
efficient method. If P value is more than 0.95, it means that
the genes are linked together to construct a network.

Cytoscape is an open source software platform to imag-
ine interaction gene networks and to combine these in-
teractions with gene expression and functional genomics
data. Cytoscape is constructed of a gene network graph,
with genes displayed as nodes and with interactions be-
tween nodes displayed as edges. The Cytoscape program
is written in Java and has been released under an LGPL
Open Source license; graph structures and some layout al-
gorithms (hierarchical and circular) are implemented us-
ing the yFiles Graph Library (23).

The GO ontology is structured as a directed acyclic
graph, and each term has defined relationships to one or
more other terms in the same domain, and sometimes to
other domains. GO is improved based on a cooperative
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project and includes three structured control words (On-
tologies) that depict gene products in terms of their cellu-
lar parts, biological procedures, and molecular functions
in a species-independent way (24).

4. Results

In the study, the VTE dataset is a microarray dataset in-
cluding 70 adults with one or more prior VTE on warfarin
and 63 healthy controls. The descriptive statistics of vari-
ables are given in Table 1.

The scatter plots drawn in Figure 1 show the positive
or negative linear relationships between two genes. A
Kolmorov-Smirnov test was also conducted to examine the
normality distribution of the genes. The results showed
that all of them were insignificant (P > 0.05).

The dataset’s Pearson’s correlation, Spearman’s rank,
Blomqvist’s coefficient, and calculated P value are pre-
sented in Table 2. We compared these relationships with
GO and Cytoscape.

As shown, XDH-CYP2A6 has a strong relationship with
Pearson and Spearman correlations; NAT2-CYP1A2 has a
relationship with Blomqvist’s coefficient; and the other
pair genes have weak relationships at the 0.05 significance
level. The Cytoscape visualization method, based on BIND,
has been drawn for the genes in Figure 2.

As shown, the XDH gene has a relationship with CYP1A2,
and this gene is related to CYP2A6 through OXY. Pearson
and Spearman correlations confirmed the relationship;
however, Blomqvist’s beta does not show the relation.

Table 3 shows the GO method, based on molecular func-
tion, for six genes. The XDH gene has a relationship with
CYP2A6, which confirms our algorithm. There are other re-
lations in the GO method, as well.

The results showed that Pearson and Spearman cor-
relation coefficients revealed better conclusions than the
Blomqvist’s coefficient. The reason may be due to the small
number of data.

5. Discussion

In 2006, Kim et al. presented a new distance measure
that is applied for both linear trends and fold-changes of
expression in a mouse (25). They compared performances
of different distance measures on seven experiments that
consisted of 288 mouse oligonucleotide microarrays. They
showed that the proposed distance measurement for com-
paring expression profiles recognizes genes with several
numbers of common regulatory components since it con-
sidered the inherent regulatory knowledge better than
previous distance measures. In the present study, we

surveyed three correlation coefficients and two visualiza-
tion methods that confirmed the relations. Although
Blomqvist’s coefficient does not have similar results, the
findings of the Pearson and Spearman correlation coeffi-
cients are the same.

In 2002, Kue et al. surveyed mRNA measurement
comparisons between matched measurements and calcu-
lated concordance between clusters from two DNA mi-
croarray technologies, Stanford type cDNA microarrays
and Affymetrix oligonucleotide microarrays (26). They
compared Pearson correlation and Spearman’s rank cor-
relation coefficient for genes, cell lines, and across all 162,
120 matched pairs of measurements. They hypothesized
that the data had normal distribution and used Student’s
t-distribution. Hierarchical clustering was done using Eu-
clidean distance, as the measure of similarity, and average
linkage clustering using Matlab software. There were poor
correlations between the two platforms. In the study, we
presented several methods of correlation coefficients us-
ing R-3.1.1 and a visualization method using the Cytoscape
and GO methods. Pearson and Spearman correlation coef-
ficients showed the same results.

In 2000, Butte and Kohane used three methods not
categories to cluster RNA expression data (27). The sim-
ple criterion for clusters was based on a fold-difference
greater than a given threshold. They applied the Euclidean
method for connecting all genes computing the extensive
pair-wise mutual information, removed the connections
under the threshold, isolated clusters of genes or related
networks, and then detected related clusters biologically.
Each gene was thus completely connected to every other
gene with the calculated mutual information. In our study,
we displayed the relationship between genes by correla-
tion coefficients and compared them with visualization
methods. Using Pearson and Spearman correlation coeffi-
cients, the results were the same.

In 2012, Bergen et al. expressed that the metabolic
enzyme included in nicotine and cotinine metabolism is
CYP2A6 (28). Other variables in the study were age, gen-
der, BMI, smoking situation, and hormonal status. They
carried out a hierarchical linear model for DMET SNPs and
adjusted NMR, and then continued by adjusting for related
tests (PACT) within genes with > 1 common SNP with ≥
1 SNP with nominal P < 0.05. They recognized SNPs at 13
genes with PACT < 0.05 in ≥ 2 transmission models in a
large twin dataset. In their article, they investigated the im-
portance of CYP2A6 in tobacco smoking. However, we con-
sidered CYP2A6 and five other genes in order to draw a gene
network based on the correlation method and on compar-
ing them with Cytoscape and GO in venous thromboem-
bolism. By comparing the two studies, it was concluded
that CYP2A6 and five other genes are effective in venous
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Table 1. Descriptive Statistics for Six Genes Related to VTE Dataset

Name of Genes Minimum -Maximum Mean± SD Median

CYP2A6 5.75 - 7.11 6.36 ± 0.28 6.33

NAT2 3.72 - 4.89 4.17 ± 0.19 4.16

CYP1A2 5.41 - 7.004 6.04 ± 0.301 6.037

CYP2A13 5.79 - 7.28 6.32 ± 0.26 6.28

XDH 4.95 - 6.71 5.77 ± 0.342 5.76

NAT1 5.03 - 8.82 6.404 ± 0.83 6.24

Table 2. Spearman’s Rank Coefficient, Pearson’s Correlation, Blomqvist’s Coefficient, and Associated P Value for 15 Pairs of Genes CYP2A6, NAT2, CYP1A2, CYP2A13, XDH, and NAT1

Number Gene - Gene Spearman Corr. Pearson Corr. Blomqvist

Value P Value Value P Value Value P Value

1 CYP2A6 - NAT2 0.573 0.73 0.594 0.73 1 1

2 CYP2A6 - CYP1A2 0.562 0.67 0.555 0.67 1 0.93

3 CYP2A6 - CYP2A13 0.643 0.8 0.678 0.93 0.33 0.4

4 CYP2A6 - XDH 0.765 1 0.785 1 0.5 0.6

5 CYP2A6 - NAT1 -0.648 0.87 -0.629 0.8 0.2 0.33

6 NAT2 - CYP1A2 0.357 0.13 0.367 0.13 1 0.86

7 NAT2 - CYP2A13 0.43 0.27 0.393 0.2 0 0.066

8 NAT2 - XDH 0.528 0.6 0.524 0.6 0.33 0.46

9 NAT2 - NAT1 -0.401 0.2 -0.409 0.27 0 0.133

10 CYP1A2 - CYP2A13 0.337 0.07 0.332 0.07 -1 0.8

11 CYP1A2 - XDH 0.515 0.53 0.513 0.4 0 0.2

12 CYP1A2 - NAT1 -0.435 0.33 -0.419 0.33 -0.33 0.53

13 CYP2A13 - XDH 0.468 0.4 0.523 0.53 -1 0.73

14 CYP2A13 - NAT1 -0.511 0.47 -0.51 0.4 0 0.27

15 XDH - NAT1 -0.658 0.93 -0.631 0.87 -1 0.66

thromboembolism disease, and they inferred that CYP2A6
is the predominant metabolic enzyme involved in nicotine
and cotinine metabolism.

In 2012, Neal et al. surveyed the Cytochrome p450
(CYP) family of 60 genes in the metabolism and combina-
tion of different chemicals and lipid cellular molecules in-
volving vitamin D (29). In genotyped NHANES III partici-
pators, they researched genetic deviation in CYP (33 SNPs
in 9 genes), vitamin D receptor genes (2 SNPs), and addi-
tional variables connected to sufficiency in previous stud-
ies, such as body mass index (BMI), season of sample col-
lection (SSC), sex, supplementation habit, income, and age
for associations with vitamin D sufficiency. They applied
chi square tests and multiple logistic regression to deter-
mine relations with Vitamin D sufficiency. There were im-
portant relationships between vitamin D sufficiency and

SSC, BMI, sex, and age across RE level. Several CYP SNPs were
associated with vitamin D sufficiency in general models.
CYP2A6 (rs1801272) was meaningfully related to vitamin D
sufficiency in several groups in adjusted and crude mod-
els. The article is the first report of CYP2A6’s connection
with vitamin D sufficiency, and there is also biological plau-
sibility because of its wide range of potential metabolic tar-
gets. In their article, they surveyed the relation between a
gene and vitamin D. Our study surveyed relationships be-
tween CYP2A6 and five other genes in venous thromboem-
bolism, and it drew a gene network based on correlation
methods in the data and on comparisons with Cytoscape
and GO. Comparing the two studies, we concluded that
CYP2A6 can cause vitamin D deficiency and skeletal, cardio-
vascular, autoimmune, and metabolic disease, as well as ve-
nous thromboembolism. Garcia-Closas et al. surveyed the
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Figure 1. Scatter Plots for Pairs of Genes Related to VTE Dataset

association between NAT2 slow acetylation and GSTM1null
genotype in the risk of bladder cancer (30). They stud-

ied polymorphisms in NAT2, GSTM1, NAT1, GSTT1, GSTM3,
and GSTP1, and there were 1,150 patients with transitional
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Figure 2. Cytoscape Visualization Method, Based on BIND, for Six Genes

cell carcinoma of the urinary bladder and 1,149 members
of the control group in Spain. They also performed meta-
analyses of GSTM1, NAT2, and bladder cancer that involved
more than twice that of other studies. In bladder can-
cer, they compared the odds ratios for persons with an ab-
sence of one or two copies of the GSTM1gene with NAT2
rapid or intermediate acetylators. NAT2 slow acetylators
had an increased overall risk of bladder cancer that was
stronger in cigarette smokers than in nonsmokers. They
concluded that the GSTM1null genotype increases the risk
of bladder cancer, and the NAT2 slow acetylator genotype
enhances the risk among cigarette smokers. In the cur-
rent study, we investigated NAT2 and five other genes in
venous thromboembolism. We also drew a gene network
with a correlation-based algorithm and compared it with
Cytoscape and GO visualization methods. Comparing the
two studies, we concluded that NAT2 can cause bladder
cancer and venous thromboembolism.

In 2000, Bartsch et al. studied several genes, such as
CYP1A1, 1A2, 1B1, 2A6, 2D6, 2E1, 2C9, 2C19, 17, and 19, sin-
gularly or as a mixture with detoxifying enzymes as ad-
justers for the risk for tobacco-interconnected cancers (31).
They expressed the important actions by which the com-
pounds are metabolized and caused DNA adducts in the
bladder epithelium, including N-hydroxylation (CYP1A2)
and N-acetylation (NAT1 and NAT2). These aromatic amines

are the main components of smoke and seem to be an im-
portant reason for urinary bladder cancer in smokers. They
also stated that deleting the CYP2A6 region leads to an in-
active enzyme or lack of protein synthesis, differences in
the polyadenylation signal of NAT1 that affects transcript
half-life, the quantity of the enzyme, and interactions of
the CYP1A2 gene and its enzyme catalysis products. In this
study, we surveyed NAT1, CYP2A6, CYP2A2, and three other
genes in venous thromboembolism. We also constructed
a gene network using a correlation-based algorithm and
compared it with GO and Cytoscape methods. Comparing
the two studies, it was concluded that NAT2, CYP2A6, and
CYP2A2 are effective in tobacco-related cancers and venous
thromboembolism.
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Table 3. GO Method Base on Molecular Function

Gene Name GO Term

CYP2A6

Oxidoreductase activity GO:0016705

Iron ion binding GO:0005506

Heme binding GO:0020037

NAT2

Arylamine N-acetyltransferase activity GO:0004060

CYP1A2

Enzyme binding GO:0019899

Aromatase activity GO:0070330

Oxidoreductase activity GO:0016712

Demethylase activity GO:0032451

Electron carrier activity GO:0009055

Oxidoreductase activity GO:0016491

Iron ion binding GO:0005506

Monooxygenase activity GO:0004497

Heme binding GO:0020037

Caffeine oxidase activity GO:0034875

CYP2A13

Iron ion binding GO:0005506

Heme binding GO:0020037

Aromatase activity GO:0070330

XDH

UDP-N-acetylmuramate dehydrogenase activity GO:0008762

2 iron, 2 sulfur cluster binding GO:0051537

Molybdopterin cofactor binding GO:0043546

Electron carrier activity GO:0009055

Xanthine oxidase activity GO:0004855

Iron ion binding GO:0005506

Protein homodimerization activity GO:0042803

Flavin adenine dinucleotide binding GO:0050660

NAT1

Arylamine N-acetyltransferase activity GO:0004060

Funding/Support: Shahid Beheshti University of Medical
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