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Abstract

Background: Breast cancer (BC) is one of the leading causes of cancer-related mortality among females worldwide. There is no
effective treatment for it, since the molecular mechanism underlying BC still remains unclear.
Objectives: The current study aimed at identifying the hub pathways for BC based on pathway crosstalk networks (PCNs), and re-
vealing the molecular mechanisms underlying BC.
Methods: The current case-control bioinformatics analysis used the already published microarray data of BC. The current
foundation-application study was performed in Moffitt cancer center, USA, in 2010. To begin with, the gene expression profile of
BC (access number E-GEOD-10780), which included 185 samples (143 normal controls and 42 BC samples), was recruited from Array-
Express database. Then, data pretreatment method was used. Next, the original pathways (OPs), original protein-protein interac-
tion (PPI) network (OPPIN), and attract OPs (AOPs) were obtained. Then, the construction of background PCN (BPCN) and cancer
PCN (CPCN) was performed, following by the degree analysis of pathways in the BPCN and CPCN to further identify hub pathways.
Moreover, the cross-talks for hub pathways were extracted and termed as hub cross-talks.
Results: There were 300 nodes and 42,293 edges in BPCN, and 283 nodes and 25,750 edges in CPCN. According to the degree results,
it was found that the degree distribution of pathways for BPCN was concentrated, while that of CPCN was dispersed. Moreover, the
degree of original pathways in BPCN was greater than that of the majority of AOPs in CPCN. Based on the threshold of RankProd <
0.01 and false discovery rate of AOP < 0.01, thirteen significant pathways were detected. Using the threshold of impact factor > 240,
a total of 4 hub pathways including glycolysis/gluconeogenesis, Alzheimer disease, carbon metabolism, and hepatitis C virus (HCV)
infection were identified.
Conclusions: Hub pathways such as glycolysis/gluconeogenesis and Alzheimer disease might be the potential signatures for BC
therapy.
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1. Background

Breast cancer (BC) is one of the leading causes of
cancer-related mortality among females worldwide (1). Re-
markably, aggressive phenotypes of BC have a poor prog-
nosis (2). Currently, the standard diagnostic methods such
as mammography as well as ultrasound are successfully
used to detect early-stage BC (3). However, the limited sen-
sitivity, incurred costs, and the expertise required for these
tools restricted their application. Therefore, there is still
an urgent need to seek for new and accurate screening and
minimally invasive approaches for BC.

Recently, pathways exerting crucial functions in onco-
genesis provided new opportunities for early diagnosis of

cancer (4). Given the sophisticated nature of biological sys-
tems, pathways need to play roles in a coordinated man-
ner to produce appropriate physiological responses to in-
ternal and external stimuli. Previous studies mainly fo-
cused on the single dysregulated pathways, but the cross-
talks among pathways were frequently ignored (5, 6). In
addition, Donato et al. (7) demonstrated that in some
cases pathways with significant P values are not biologi-
cally significant, while some biologically significant path-
ways with nonsignificant P-values become statistically sig-
nificant when the crosstalk effects of other pathways are re-
moved. Moreover, a former study indicated that detecting
pathway cross-talks is beneficial to reveal pathway func-
tions (8). Thus, it is very important to understand the cross-
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talks among pathways to further understand the function
of biological systems. Collectively, protein-protein inter-
actions (PPIs) form a global interaction network that can
elucidate the overall interaction and functional organiza-
tion among functionalities. Moreover, a network-based
method was utilized to analyze these interactions and ex-
plore the molecular mechanism by which biological sys-
tems work (9, 10). Hence, based on the hypothesis that 2
pathways possibly interacted with each other (cross-talks)
if, by chance, more protein interactions were identified
between the 2 pathways than expected, the current study
aimed at extracting the pathway cross-talks via systemati-
cally integrating information of pathways and PPI network
data.

Therefore, the current study identified hub pathways
and hub cross-talks in BC to explore the mechanisms of
BC development based on the combination of biological
pathways and PPI network data. First, the original path-
ways (OPs), original PPI network (OPPIN), and attract OPs
(AOPs) were obtained. Then, the background pathway
crosstalk network (BPCN) and cancer pathway crosstalk
network (CPCN) were constructed, following by the degree
analysis for the pathways in BPCN and CPCN. Subsequently,
RankProd and impact factor (IF) analyses were conducted
to select the hub pathways. Moreover, the cross-talks for
hub pathways were extracted and named hub cross-talks.
It is believed that our results are helpful to understand the
BC progression.

2. Methods

2.1. Microarray Data

The current case-control bioinformatics analysis used
the already published microarray data on BC. The cur-
rent foundation-application study was performed in Mof-
fitt cancer center (Tampa), USA, in 2010. To the authors‘
best knowledge, ArrayExpress is a larger fully public, in-
ternational, innovative, and interdisciplinary repository
for high-throughput molecular abundance data, primar-
ily gene expression data funded by 22 member states and
2 associate member states. This database can help scien-
tists to realize the potential of big data in biology. So far,
there are a total of 2,194,040 assays in the ArrayExpress
database. In the current study conducted in 2016, under
the filter conditions of “transcription profiling by array”,
“Homo sapiens”, and “breast cancer”, the samples were not
small, gene expression data of BC under the access number
E-GEOD-10780 (11) were downloaded from the ArrayExpress
database on the basis of the platform A-AFFY-44-Affymetrix
GeneChip Human Genome U133 Plus 2.0 [HG-U133_Plus_2].
A total of 42 BC and 143 normal breast tissue samples were

collected from 90 patients with BC in this microarray pro-
file. According to the histopathologic review by a breast
pathologist, all of the 143 normal breast tissue samples
were free from atypical ductal hyperplasia or invasive BC.
Moreover, all of the 42 BC tissue samples were confirmed
by the histopathologic review by the same breast pathol-
ogist, using the modified Bloom and Richardson grading
scheme (12). Thus, all of the 185 samples (143 normal con-
trols and 42 BC samples) were used in the current microar-
ray analysis. The specific information about demographi-
cal variables and confounding factors are shown in the pa-
per published by Chen et al. (12).

2.2. Data Pretreatment Method

Before analysis, data pretreatment method was con-
ducted to control the quality of gene expression pro-
file. Robust multi-array average (RMA) was firstly recom-
mended to conduct background adjustment to eliminate
the influence of nonspecific hybridization (13). Then, the
quantiles-based method was utilized to implement nor-
malization analysis (14). This transformation was calcu-
lated using the following equation:

P’n = X-1 (M (pn))
In this formula, M stood for each array empirical distri-

bution and X represented the mean sample quantiles em-
pirical distribution.

After normalization analysis, the “mas” algorithm
was employed to perform perfect-match (PM)/miss-match
(MM) correction. Median polish was used to conduct the
summarization (15). Specifically, a multiple chip linear
model was fit to each probe set. For a given probe set s with
t = 1, …, Ts probes and data from r = 1,…, R arrays the follow-
ing formula was made:

(1)log2 (PMs
tr) = as

t + bsr + cstr

In the equation, at was on the basis of a probe effect and
br denoted the log2 expression value.

After removing the repeated probes, aligning the
probes to the human genome to obtain the gene symbols,
and eliminating the duplicated gene symbols, a total of
20,102 genes were obtained.

2.3. Pathway Data and PPI Data

Kyoto encyclopedia of genes and genomes (KEGG) is a
database that offers a reference knowledge base to under-
stand cellular processes. In the current analysis, a total of
300 original pathways covering 6,919 human genes were
collected, pathways from KEGG database called OPs.

All the human protein interactions (n = 1,048,576) were
downloaded from the public source of STRING. After map-
ping the protein ID to the gene symbol and eliminating
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repetitive interactions, the study ended up with 787,896 in-
teractions (involved in 16,730 genes). These 787,896 protein
interactions were called OPPIN.

2.4. Construction of BPCN

In an attempt to seek for the pathway cross-talks, the
crosstalk analysis was performed for all the OPs. First, the
background distribution of protein interaction of any 2
Ops was evaluated. Specifically, each OP was randomized
and all genes in a given OP were examined. If a gene did not
have any interactions with other nodes, it was removed. If
a gene had interactions with other genes, firstly the num-
ber of genes it interacted with was recorded, and then, a
gene was randomly drown from the protein interaction
dataset, which interacted with similar or the same number
of genes, and this newly selected gene substituted the orig-
inal pathway gene. Second, after randomizing both OPs,
the number of protein interactions between any of the 2
pathways was calculated. For each OP, the common genes
of the 2 OPs were eliminated and all the protein interac-
tions between the 2 pathways were computed. This step of
randomization was repeated 10 000 rounds. The number
of total interactions of the pairs of corresponding random-
ized pathways was obtained after 10,000 times of random-
izations, and it was defined as the weight value. Then, BPCN
was constructed based on these OPs and weight values us-
ing Cytoscape (16).

2.5. Analysis of OPs Using Attract Method

As documented, pathways with too few genes could
not have enough biological content (17). In light of this,
the 20,102 genes obtained above were mapped to the
OPs, and the OPs with less than 5 genes were abandoned
to select more confident pathways. Subsequently, the
remaining 283 pathways were generated and named as
AOPs. Then, genes enriched in the AOPs were examined
through GSEA-ANOVA to further obtain the F statistic value.
Large F-statistic value demonstrated a strong association,
but on the other hand, small F-statistic value exhibited
that the genes revealed minimal group-specific expression
changes. To testify this relationship, t test was used to
amend log2-transformed F-statistics values. Afterwards,
false discovery rate (FDR) was employed to correct the P
values using the Benjamini-Hochberg method (18). Then,
these AOPs were sorted in the descending order of FDR.

2.6. Construction of CPCN

After attract analysis, CPCN was constructed based on
the 283 AOPs.

First, the weight values were calculated for pathway
cross-talks. It was assumed that G1 and G2 were the number

of genes enriched in any 2 AOPs. Then, the interaction anal-
ysis was performed on the genes in these AOPs. If the genes
in one AOP did not interact with the genes in the other
AOP, weight was determined as 0. Otherwise, the weight
values were calculated on the basis of the formula. Thus,
the weights were defined as the sum of absolute value of
difference of spearman correlation coefficient between 2
AOPs divided by (G1x G2). This randomization step was du-
plicated 10,000 times.

To select more confidant cross-talks, the significance
of interactions between 2 AOPs were evaluated according
to the following 4 numbers: “m” represented the number
of interactions between AOPs, “M” as the number of over-
all interactions of all AOP pairs, “a” as the mean value of
interactions between the pair of corresponding random-
ized pathways after 10,000 times of randomizations, and
“A” stood for the average of overall interactions of all ran-
domized pathway pairs after 10,000 times of randomiza-
tions. The null hypothesis was that the ratio of actual in-
teractions between 2 AOPs to all interactions (m/M) was
the same as the ratio of random interactions to all random
interactions (a/A). The current study focused only on the
AOP pairs where m/M was remarkably greater than a/A. The
weight values obtained above were computed and named
WICD. Then, the WICDs were corrected using FDR. The path-
way cross-talks with FDR values < 0.05 were selected to
construct the CPCN.

2.7. Degree analysis for BPCN and CPCN

Topological centrality is helpful to extract essential
molecules in complex networks (19). Among the topolog-
ical centralities, degree is an obvious index, which means
the number of links of one node with its neighboring
nodes (20). In the current study, degree analysis was im-
plemented to deeply explore the significance of cross-talks
in BPCN and CPCN.

2.8. Identification of Hub Pathways

The rank of FDR of AOPs was obtained in section 2.4 in
the current study. The AOPs with FDR < 0.01 were selected
for further analyses. To detect important cross-talks in BC,
RankProd (21) was utilized, which is a simple, yet power-
ful meta-analysis tool to identify differentially expressed
genes between 2 experimental conditions in many studies
(22, 23). The pathways with RankProd value < 0.01 were
considered as the significant pathways.

Recently, the biological impact of perturbation of path-
ways in genome wide gene expression experiments was
suggested (24). IF analysis obtains deeper level of statisti-
cal analysis, informed by more-specific biology than the ex-
iting techniques. Thus, the current study performed the IF
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analysis on the significant pathways. IFs of the significant
pathways were computed using the following formula:

Ifs = (degree value of the pathways in CPCN) × (1 - FDR
of AOPs)

Based on the formula, the significant pathways with
IFs greater than 240 were considered as hub pathways.
The cross-talks among hub pathways were regarded as hub
cross-talks.

3. Results

3.1. Construction of BPCN and CPCN

As shown in Figure 1, the BPCN included 300 nodes and
42 293 edges, covering 6919 genes. The construction of
CPCN was carried out based on the AOPs. Thus, the study
firstly identified 283 AOPs using the attract method. Based
on these AOPs, cross-talks were extracted. Nevertheless, the
edges where both pathways remarkably overlapped, and
the gene members stood for analogical biology were elim-
inated. Ultimately, a total of 25,750 cross-talks involved in
283 nodes were obtained (Figure 2).

Figure 1. Construction of Background Pathway Crosstalk Network Involving 300
Nodes and 42 293 Interactions

Nodes were the original pathways, edges stood for the cross-talks among pathways;
yellow nodes denoted hub pathways.

Next, the degree distribution of the pathways in BPCN
and CPCN were checked to explore the significant cross-
talks between BC and control samples. According to the re-
sults, it was found that the degree distribution of pathways
for BPCN was concentrated (Figure 3A), while that of CPCN
was dispersed (Figure 3B). Moreover, the degree of original
pathways in BPCN was greater than that of the majority of
AOPs in CPCN.

Figure 2. Cancer Pathway Crosstalk Network Construction

There were 25,750 cross-talks involved in 283 nodes. Nodes were the attract original
pathways (AOPs); edges stood for the cross-talks among them; yellow nodes were the
hub pathways.

3.2. Identification of Hub Pathways

Based on the threshold of RankProd < 0.01 and FDR of
AOP < 0.01, thirteen significant pathways were detected
(Table 1). When the IF was set as 240, a total of 4 path-
ways were identified and termed as hub pathways, includ-
ing glycolysis/gluconeogenesis (IF = 255.096), Alzheimer
disease (IF= 254.187), carbon metabolism (IF = 249.144),
and hepatitis C virus (HCV) infection (IF = 244.214). Sub-
sequently, the hub cross-talks among hub pathways were
drawn and displayed in Figure 4.

4. Discussion

Currently, high-throughput technologies, such as
gene microarray, are effective and standard means in
biomedicine. Accordingly, a series of computational ap-
proaches are successfully employed to discover causal
disease-associated genes (25, 26). However, to date, an
unsolved problem is how to explain these genes in the
biological contexts. A common solution is to utilize sta-
tistical method to detect pathways connected with the
disease-associated genes (27). Exhilaratingly, the identi-
fication of possible pathogenic pathways improves the
accuracy when these pathways are utilized as biomarkers,
compared with the gene-based methods. Unfortunately,
the majority of these methods do not consider the func-
tional dependency among pathways, which may not be
capable of generating a comprehensive view to the impact
of the disease genes on pathways. Generally, pathways
can influence each other via a phenomenon known as

4 Iran Red Crescent Med J. 2017; 19(10):e12901.
www.SID.ir

http://ircmj.com
www.SID.ir


Arc
hive

 of
 S

ID

Zheng J et al.

Figure 3. Degree Distribution of Pathways in A, BPCN and B, CPCN

Pathway Pathway

0                  50                100               150              200               250              300 0                  50                100               150              200               250              300

D
eg

re
e

D
eg

re
e

300

250

200

150

100

50

250

200

150

100

50

0

BA

The degree distribution of pathways for BPCN was concentrated, while that of CPCN was dispersed. Moreover, the degree of original pathways in BPCN was greater than that
of the majority of AOPs in CPCN.

Table 1. List of Significant Pathways

Pathway Term Degree in BPCN Degree in CPCN FDR of AOP RP Value

Glycolysis/gluconeogenesis 298 257 7.41E-03 2.22E-03

VEGF signaling pathway 292 216 3.83E-05 2.31E-03

Alzheimer disease 298 255 3.21E-03 2.31E-03

Olfactory transduction 284 1 3.76E-05 3.33E-03

Focal adhesion 295 222 9.43E-05 3.51E-03

Carbon metabolism 298 250 3.42E-03 3.56E-03

Hepatitis C virus infection 294 245 3.21E-03 4.04E-03

TNF signaling pathway 293 207 3.83E-05 4.20E-03

PI3K-Akt signaling pathway 295 231 4.59E-04 4.40E-03

Pathways in cancer 297 231 5.57E-04 5.92E-03

Adherence junction 290 223 4.59E-04 6.58E-03

Chagas disease (the American trypanosomiasis) 295 224 4.59E-04 8.56E-03

Viral carcinogenesis 293 228 1.08E-03 9.44E-03

Abbreviations: AOP, The rest original pathways when abandoning the original pathways with less than 5 genes; BPCN, background pathway crosstalk network; CPCN,
cancer pathway crosstalk network; RP, RankProd; FDR, false discovery rate.

crosstalk, rather than acting independently (7). Thus,
a novel method was introduced to detect dysregulated
pathways in BC. Unlike the existing methods, the cur-
rent study method considered the pathway interactions
among pathways. Comprehensively, the current study
discovered that glycolysis/gluconeogenesis, Alzheimer
disease, carbon metabolism, and HCV infection were the
hub pathways. These promising results suggested that
the hub pathways indeed had cross-talks with each other,
which further indicated the effectiveness of the proposed
method.

Alterations in energy metabolism of the cell are re-

garded as the hallmark of cancer (28). As already reported,
cancer cells vitally need glucose similar to the metabo-
lites for cancer cell growth (29). In cancer cells, glucose is
metabolized by aerobic glycolysis preferentially, and this
phenomenon, known as the Warburg effect, is character-
ized by enhanced glycolysis generation (30). Dong et al.
(31) also demonstrated that silencing of gluconeogenic en-
zyme, fructose-1,6-biphosphatase, can activate fermenta-
tive glycolysis. Except being a striking characterization of
cancer cell metabolism, the Warburg effect provides con-
ditions favoring rapid proliferation and apoptosis resis-
tance to cancer cells (32). It is noteworthy that the War-
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Figure 4. The Cluster for Hub Pathways
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Nodes denoted hub pathways. Edges represented hub cross-talks among hub path-
ways. The edge thickness was the correlated strength between 2 hub pathways.

burg effect, as a specific metabolic pathway, might be a
promising strategy to inhibit tumor growth and relapse
(33). More significantly, a former study implicated that tar-
geting the Warburg effect is a potentially novel therapeu-
tic method in BC (30). Evidence demonstrated that the
accumulation of glucose caused by the constitutive acti-
vation of glycolysis leads to the HIF activation (34). Con-
sequently, the HIF activation increases the expression of
many proteins that favor cancer progression, including
apoptosis resistance, metastasis, invasion, and angiogen-
esis (35). Another study reported that suppression of gly-
colysis was a potentially efficient approach to inhibit BC
stem cell proliferation (36). BC stem cells are responsible
for regulating metastasis (37). In addition, a previous study
suggested that regulation of glycolysis and gluconeogen-
esis provides an insight into the therapeutic potential in
hepatocarcinogenesis (38). Thus, hub pathway of glycoly-
sis/gluconeogenesis might be beneficial to develop poten-
tial anticancer strategies, as many studies demonstrate the
enhanced glycolytic metabolism of cancer cells exerts cru-
cial functions in tumor progression.

Another hub pathway, Alzheimer disease, was identi-
fied in the current study. A link between neurodegener-
ation and cancer is plausible since these 2 diseases share
several genes as well as biological pathways, such as inap-
propriate activation and misregulation of cell cycle (39).
Proteins including Pin1, which has a dual role in protein
folding and cell cycle control, play an important part in
the physiology of Alzheimer disease and cancer (40). In ad-
dition, Driver et al. indicated an inverse relationship be-

tween Alzheimer disease and cancer (41). A former study
also suggested that prevalent cancer had a 43% lower risk
of ever being admitted in a hospital with Alzheimer dis-
ease, and those with prevalent Alzheimer disease had a 69%
lower risk of ever developing cancer (42). In the light of
these, the current study results supported the possibility
of the relationship between Alzheimer disease and BC.

4.1. Limitations and Conclusion

The current study conducted analysis on BC based on
PCNs via systematically integrating pathways information
as well as PPI network data, for the first time. It was
the main strong point of the current study. Overall, the
current study successfully identified 4 hub pathways us-
ing this novel computational method. However, it should
be considered that the current study had several limita-
tions. The samples were downloaded from the open ac-
cess database. The microarray analysis was not performed
on patients with BC. The current study analysis only em-
ployed bioinformatics methods to screen hub pathways
to explore the pathogenic process of BC, yet the associa-
tion between pathways and BC was not confirmed by an-
imal experiments. It was the main weak point. Hence,
the further understanding of the basic relationship be-
tween these pathways and BC is needed to illuminate the
molecular mechanisms underlying BC. Despite these draw-
backs, it is believed that the predicted pathways offer in-
vestigators valuable resources for better understanding of
the BC mechanisms and also detecting potential biomark-
ers for early diagnose and therapy of BC. Additionally, this
method might provide analysis on other corresponding
studies.

In a nutshell, hub pathways such as glycoly-
sis/gluconeogenesis, and Alzheimer disease might be
potential signatures for BC therapy. These pathways might
provide additional diagnostic and therapeutic targets for
BC.
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