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Abstract

Background: Non-small cell lung cancer (NSCLC) is the most common type of lung Neoplasms, which accounts for about 85% of all
lung cancer types. However, critical biological pathways and key genes implicated in NSCLC remain ambiguous.
Objectives: The present study aimed at identifying the critical biological pathways and key genes implicated in NSCLC, and provid-
ing insight into the molecular mechanism underlying NSCLC.
Methods: In this case-control bioinformatics study, the researchers used four microarray data of NSCLC from public gene expres-
sion omnibus (GEO) database at the national center for biotechnology information (NCBI) website. The microarray data came from
studies of American, Spanish, and Taiwanese NSCLC patients, and in total contained 190 NSCLC tissue and 180 normal lung tissue.
A standardized- microarray preprocessing and gene set enrichment analysis (GSEA) were used to analyze each microarray data and
obtained significantly regulated pathways. Venn analysis was used to identify the common significantly regulated biological path-
ways. Protein and protein interaction (PPI) network analysis was used to identify the key genes within common significantly reg-
ulated pathways. The PPI information was retrieved from the STRING database, and Cytoscape software was used to construct and
visualize the PPI network.
Results: Through integrating GSEA results of four microarray data, finally, the researchers identified 22 common up-regulated and
85 common down-regulated pathways. Many genes within 107 common significantly regulated pathways were significantly en-
riched within cell cycle pathway (P value of 2.58e-79) and focal adhesion pathway (P value of 2.44e-81). The PPI network showed that
up-regulated CDK1 (P value = 1.33e-18 and logFC = 1.41) and down-regulated PIK3R1 (P value = 5.09e-22 and logFC = -1.13) genes shared
the most abundant edges, and were associated with NSCLC.
Conclusions: This cross-sectional study showed increased concordance between gene expression profiling data. These identified
pathways and genes provide some insight into the molecular mechanisms of NSCLC, and the genes may serve as candidate diagnos-
tic and therapeutic targets of NSCLC.
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1. Background

Lung cancer, as one of the most common malignan-
cies, is the leading cause of cancer-related deaths all over
the world (1). In the last decades, the incidence and mortal-
ity rates of lung cancer have been increasing rapidly, espe-
cially in regions where tobacco consumption is more com-
mon (2). Although many studies have shown that smoking-
tobacco accelerated lung carcinogenesis, genetic factors
still play a key role (3). In all lung cancer types, non-small

cell lung cancer (NSCLC) is the most common type and
accounts for 85% of all lung cancer types. However, de-
spite extensive researches, the molecular mechanisms im-
plicated in NSCLC are yet to be uncovered.

In the last decades, gene expression analysis-based mi-
croarray was widely used to study the NSCLC, and hun-
dreds of differentially expressed genes (DEGs) were found
by differentially expressed gene analysis (DEGA) (4-6). Fur-
thermore, several key genes, including the well-known
gene epidermal growth factor receptor (EGFR) and tumor
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protein p53 (TP53) were identified (5). However, for most
DEGs identified, their roles in NSCLC were obscure and
needed to be discussed further. However, it is difficult
to interpret the role of individual genes (7). Performing
gene set analysis for gene expression profiling data is a
more powerful method to reveal biological mechanisms
implicated in NSCLC than conventional single-gene anal-
ysis methods, especially in identifying genes with subtle
contributions (7, 8). Among some frequently used gene
set analysis methods, gene set enrichment analysis (GSEA)
is the most well-known and widely-used approach (7, 8),
through which the significant difference in expression of
pre-defined gene set between two groups of data can be
identified. The pre-defined gene set can be a set of genes
in a gene ontology category, in a biological pathway, or can
be user-defined (9). Recently, using GSEA method, some bi-
ological pathways, such as Ras signaling pathway and Wnt
signaling pathway were identified to be significantly regu-
lated in NSCLC (9, 10), and explained the biological mech-
anisms of NSCLC. However, these studies mainly aimed at
lung squamous cell carcinoma (LUSC), which is one of the
major subtypes of NSCLC, or immune gene sets in females
with NSCLC (9, 10). The identified biological pathways rep-
resented a fraction of the pathways implicated in NSCLC,
and the biological pathways implicated in NSCLC need to
be identified systematically.

In this study, the researchers collected four gene ex-
pression profiling data about NSCLC studies from Tai-
wanese, American and Spanish patients, and applied a
standardized microarray preprocessing and GSEA to each
gene expression profiling data to identify significantly reg-
ulated pathways. Furthermore, the researchers performed
Venn analysis to identify common significantly regulated
pathways and constructed the PPI network between genes
within common significantly regulated pathways to iden-
tify key genes. This cross-study improved the concordance
between gene expression profiling data and highlighted
the genes weakly connected with NSCLC, which would pro-
vide some insight into the biological pathways implicated
in NSCLC.

2. Methods

2.1. Microarray Data Collection

In this case-control bioinformatics study, the re-
searchers used four microarray data of NSCLS for reanaly-
sis. The microarray data were searched and downloaded
from public gene expression omnibus (GEO) database at
the national center for biotechnology information (NCBI)
website (http://www.ncbi.nlm.nih.gov/geo/). These data
following the criteria were used in this study: (1) the data

were genome-wide, (2) the data included NSCLC and con-
trol data, (3) the raw or normalized data were complete
and available, (4) the data were generated using the same
chip platform.

Finally, data sets with GEO accessions GSE7670,
GSE10072, GSE18842, and GSE19804 were used in this
study. Affymetrix microarray platform generated the
microarray data. GSE7670 and GSE19804 data were from
Taiwanese NSCLC studies, separately contained 52 and 120
pairwise samples. Furthermore, GSE10072 and GSE18842
data were from American and Spanish NSCLC studies, and
107 and 91 case-control samples, separately. The related
information of microarray data listed in Table 1, such
as author, sample source, GEO accession, chip platform,
sample size, and sample type.

2.2. Microarray Data Preprocessing

To improve the efficiency of data reanalysis,
all microarray data must be reprocessed. The re-
searchers performed the data reprocessing using ver-
sion 3.3.2 R language (http://www.r-project.org) and
software packages version 3.4 Bioconductor project
(http://www.bioconductor.org/). All data were subjected
to background-adjust and normalized. Robust multichip
averaging (RMA) algorithm was used to calculate the log2
probe-set intensities (11). Any gene failing to map any
KEGG pathway was removed in the next analysis. The
interquartile range (IQR) was used to measure the data
variability. The cut-off value was set according to the
resultant distribution of IQR values of all genes, and the
genes with IQR values under 0.5 were removed. If one gene
targeted multiple probe sets, the probe set with the most
substantial variability was retained to be used in the next
analysis.

2.3. Statistical Analysis of DEGs

Statistical analysis of DEGs was performed using the
version 3.32.7 of Limma software package in Bioconduc-
tor project. Limma package employed the Voom method,
Liner modeling, and empirical Bayes moderation to assess
DEGs, and could acquire more robust results even in less
of microarrays. The cut-off criteria of DEGs were fulfilled
according to the following conditions: (1) a false discov-
ery rate (FDR) was not more than 5%, and (2) a linear fold
change (FC) was not less than 2 or not more than 0.5.

2.4. Statistical Analysis of Significant Pathways

Statistical analysis of significant pathway was accom-
plished using the GSEA method. The version 2.40.0 cate-
gory package was used to perform GSEA of the pathway
in the Bioconductor project. The purpose of performing
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Table 1. Characteristics of Datasets Included in This Study

GEO Accession GSE10072 GSE18842 GSE19804 GSE7670

Sample Source America Spain Taiwan Taiwan

First Author Landi M Sanchez-Palencia
A

Lu TP Su LJ

Submitted Year 2008 2009 2010 2007

Chip Platform U133A [GPL96] U133 Plus 2.0
[GPL570]

U133 Plus 2.0
[GPL570]

U133A [GPL96]

Probe Number 22k 55k 55k 22k

Histology AC AC (14, 30%) and
SCC (32, 70%)

AC (56, 93%) and
SCC

AC

Stages I - IV (I, 38%. II, 36%.
III, 21%. IV, 5%)

I - IV (I, 83%. II, 9%.
III, 7%. IV, 2%)

I-IV (I + II, 78%. III +
IV, 22%)

Unknown (early
and late)

Experimental
Design

Case-control Paired except one
tumor

Paired Paired

Smoking

Never

Normal
Male 4 - - -

Female 11 - 60 -

Cancer
Male 3 - - -

Female 13 - 60 -

Former

Normal
Male 18 - - -

Female 0 - - -

Cancer
Male 16 - - -

Female 2 - - -

Current

Normal
Male 12 - - -

Female 4 - - -

Cancer
Male 16 - - -

Female 0 - - -

Unknown

Normal
Male - - - 5

Female - - - 21

Cancer
Male - - - 5

Female - - - 21

Sample Number
Cancer tissue 58 46 60 26

Normal tissue 49 45 60 26

Abbreviations: AC, adenocarcinoma, one major subtype of non-small cell lung cancer; NSCLC, non-small cell lung cancer, one of the most common types of lung cancer;
SCC, squamous cell carcinomas, one major subtype of non-small cell lung cancer.

GSEA was to determine whether the members of a gene
set S were randomly distributed throughout the entire ref-
erence gene list L or was just primarily found at the top
or bottom. The most significant advantage of the GSEA
method was the relative robustness to noise and outliers
in the data. Gene sets including less than 10 genes were dis-
carded. In each pathway, the t-statistic mean of the genes
was computed. A permutation test of 1000 times was im-
plemented, and the pathways with P value ≤ 0.05 were
identified to significantly change (12).

2.5. Protein-Protein Interaction Network Construction

The interaction relationship between genes within
common critical biological pathways was exhibited using
the PPI network. The PPI information was predicted using
the STRING database (https://string-db.org/), and the min-
imum required interaction score between gene and gene
was set for 0.9. The PPI network was constructed and visu-
alized using open-source version 3.5.1 Cytoscape software
(http://www.cytoscape.org/).
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3. Results

3.1. Identification of Significant Pathways

The researchers used GSEA to reanalyze four datasets
to identify significantly regulated pathways implicated
in NSCLC. According to the permutation 0.05 P value,
the researchers found 28 (GSE7670), 48 (GSE10072), 63
(GSE18842), and 51 (GSE19804) up-regulated pathways,
and 112 (GSE7670), 112 (GSE10072), 115 (GSE18842), and 118
(GSE19804) down-regulated pathways, separately (Table
2). The overlapping analysis showed that 22 common up-
regulated pathways and 85 common down-regulated path-
ways were identified (Figure 1).

In common up-regulated pathways, the researchers
observed that many pathways belonged to cell growth and
death, carbohydrate metabolism, nucleotide metabolism,
glycan biosynthesis and metabolism, replication and re-
pair, translation and so on. In common down-regulated
pathways, the researchers found that many pathways be-
longed to the immune system, cellular community, signal
transduction, endocrine system, immune diseases, infec-
tious diseases and so on (Table 3).

3.2. Identification of Key Genes

Overall, 412 genes were found within 22 common up-
regulated pathways. Based on the minimum required in-
teraction score of 0.9 for PPI information from STRING
database, 370 of 412 genes were enriched in PPI networks
(P value < 1.0e-16), and these genes were significantly en-
riched within cell cycle pathway (P value = 2.58e-79) and
p53 signal pathway (P value = 1.08e-45). Besides, some path-
ways related to metabolism were also enriched at the top.
These pathways included metabolic pathways (P value =
3.03e-64), purine metabolism (P value = 1.95e-44), pyrimi-
dine metabolism (P value = 1.01e-29) and so on (Table 3). The
PPI network showed that cyclin-dependent kinase 1 (CDK1)
gene shared the most abundant edges (Figure 2A), and
expression of CDK1 gene was significantly up-regulated
in NSCLC samples (P value = 1.33e-18, logFC = 1.41, from
GSE10072 data). In addition, the TP53 gene was also ob-
served to share more abundant edges.

Similarly, 1,972 genes were found within 85 common
down-regulated pathways, and 905 genes were mainly en-
riched within focal adhesion pathway (P value = 2.44e-
81), MAPK signaling pathway (P value = 2.36e-81), and
chemokine signaling pathway (P value = 7.64e-55) (Ta-
ble 3). The PPI network showed that phosphatidylinos-
itol 3-kinase regulatory subunit alpha (PIK3R1) gene (P
value = 5.09e-22, logFC = -1.13, from GSE10072 data) shared
the most abundant edges, and was significantly down-
regulated in NSCLC (Figure 2B). Besides, the researchers

Figure 1. Significant pathways identified and overlapped. A and B respectively repre-
sented up-regulated and down-regulated pathways. “GSEXXXX” was GEO accession
of microarray dataset. For each dataset, the researchers performed GSEA to generate
P value for each pathway and used a permutation test with 1000 times, and obtained
significant pathways with P values cut-off of ≤ 0.05. A, GSEA detected 28, 48, 63 and
51 up-regulated pathways and 22 common pathways were found; B, GSEA detected
112, 112, 115 and 118 down-regulated pathways and 85 common pathways were found.

found that phosphatidylinositol 3-kinase 3 catalytic sub-
unit alpha (PIK3CA) and EGFR genes also shared more
abundant edges.

4. Discussion

Finally, NSCLC mainly including adenocarcinoma and
squamous cell carcinoma is the most common type of lung
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Table 2. Reanalysis Results of Significantly Regulated Pathway Number

GEO Accession No. of Genes After
Preprocessed

No. of Pathways Have Genes
≥ 10

Up-Regulated Pathways Down-Regulated Pathways

GSE7670 6268 184 28 112

GSE10072 5211 177 48 112

GSE18842 11588 203 63 115

GSE19804 11626 205 51 118

Common significantly
regulated pathways

22 85

Figure 2. Protein and protein interaction(PPI) network of genes within significantly regulated pathways. A and B represented PPI network of the genes within up-regulated
pathways and down-regulated pathways, respectively. Each node represented one gene. The node with color showed the gene belonging to the pathway class with the same
color. Node size represented degree size of the node. The label of the node represented gene name. PPI, protein and protein interaction; A, genes of PPI network were mainly
enriched within some pathways belonging to cell cycle and death, metabolism and so on. CDK1 and TP53 genes shared more abundant edges; B, Genes of PPI network were
mainly enriched within some pathways belonging to the immune system, signal transduction and so on. PIK3R1 and PIK3CA genes shared more abundant edges.

cancer. However, early diagnosis and treatment of NSCLC
are still difficult. One main reason is that the molecular
mechanism implicated in NSCLC is vague. In this study,
the researchers selected four microarray data of NSCLC to
perform GSEA and PPI network analysis. Microarray data
were from the same Affymetrix platform. The purpose
was to minimize the error between chip platforms. In

addition, these data included NSCLC patients from Asia,
America, and Europe, and included two major subtypes
of NSCLC and smoking status of NSCLC patients, which
contributed to obtaining insight in the common molecu-
lar mechanism underlying NSCLC. Through GSEA and PPI
network analysis, the results revealed that 107 pathways
(22 up- and 85 down-regulated) were significantly dysreg-
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ulated in NSCLC and the abnormal expression of CDK1 and
PIK3R1 genes were associated with NSCLC.

Uncontrolled proliferation is one of the most promi-
nent features of tumor cells. In the last decades, many stud-
ies have focused on the pathways related to cell growth and
death in tumor formation. More and more results showed
that cell cycle pathway and p53 signaling pathway played
a key role in the formation of malignant tumors (9, 13-15).
In this study, the researchers observed that cell cycle path-
way (all P value < 0.001, from GSEA results of four inde-
pendent microarray data) and p53 signaling pathway (all
P value < 0.001, from GSEA results of four independent mi-
croarray data) were positively regulated in NSCLC. Further-
more, functional enrichment in PPI network showed that
65 and 37 genes were enriched within cell cycle pathway (P
value = 2.58e-79, ranked first) and p53 signaling pathway (P
value = 1.08e-45, ranked third), separately.

When the tumor was formed, sufficient energy, raw
materials, and NADPH were required to provide for fast-
growing cancer cells (16). Up-regulated pathways related
to metabolism would provide the necessity to cancer cells.
At present, many study results have shown that these
pathways were related to cancers, such as prostate can-
cer and breast cancer and so on (16, 17). The current re-
sults showed that many metabolism pathways were sig-
nificantly up-regulated in NSCLC, which mainly included
purine metabolism (P value = 1.95e-44, ranked fourth),
pyrimidine metabolism (P value = 1.01e-29, ranked fifth),
glutathione metabolism (P value = 1.22e-27, ranked sixth),
and amino sugar and nucleotide sugar metabolism (P
value = 1.01e-21, ranked seventh).

Glycans, as important signaling molecules, attached to
proteins or lipids and played an important role in malig-
nant transformation (18). At present, glycans have been
used as candidate diagnostic markers and therapeutic tar-
gets in clinics (19, 20). The modulation of N-Glycan biosyn-
thesis (P value = 6.24e-14, ranked twelfth) changed the gly-
cosylation of proteins and/or lipids, which made the func-
tions and structures of glycoproteins and/or glycolipids
change. The altered functions, such as cell signaling and
cell adhesion, facilitated cancer invasion and metastasis
(21).

An essential function of the immune system was im-
mune surveillance, which played a key role in identifying
and destroying tumors and defending against cancers (22).
Once the immune system of the host was dysfunctional, tu-
mors escaped the immune surveillance to transform can-
cers (23). Furthermore, tumor cells released some im-
munosuppressive cytokines, such as prostaglandins, vas-
cular endothelial growth factor and transforming growth
factor-beta to directly or indirectly inhibit the immune re-
sponse (24). In the GSEA results, the researchers surpris-

ingly found that 12 pathways related to the immune sys-
tem were significantly down-regulated, which indicated
that the immune system was strongly altered/inhibited in
NSCLC (25).

In the pathways belonging to the cellular commu-
nity, the researchers identified three pathways including
tight junction pathway (P value = 7.24e-27, ranked nine-
teenth), gap junction pathway (P value = 2.65e-27, ranked
eighteenth) and focal adhesion pathway (P value = 2.44e-
81, ranked first), which were significantly down-regulated.
Tight junctions played vital roles in creating an intercellu-
lar barrier, controlling para-cellular diffusion, and main-
taining cell-cell junction and tissue integrity (26). The al-
terations in the expression or structures of tight junction
proteins led to the loss of cohesion of tight junction struc-
ture, which resulted in the invasion and metastasis of can-
cer cells (26). Gap junction has been speculated to be essen-
tial in regular intercellular communication, and the loss of
direct intercellular communication was found to be com-
monly associated with cancer onset and progression (27). A
number of studies demonstrated that tumor promoters ef-
fectively inhibited the gap junctional between cells, while
tumor suppressors effectively enhanced gap junction func-
tion (27-29). Focal adhesions, also called cell-matrix adhe-
sions, similar to tight junction and gap junction, played
crucial roles in mediating many processes, including mi-
gration and cell adhesion, tissue homeostasis, and tumori-
genesis and so on (30). The loss or down-regulation of
cell-cell and cell-matrix adhesion contributed to the inva-
sion and metastasis of cancer cells (31). The current results
showed that three pathways might play essential roles in
cell migration of NSCLC.

At present, several studies have reported that some
genes, such as EGFR, TP53, and PIK3CA, were associated with
lung cancer (32-35). The current studies also showed that
these genes shared more abundant edges in PPI networks
(Figure 2), and further verified that the genes played an im-
portant role in NSCLC. However, the researchers observed
that CDK1 and PIK3R1 genes shared the most abundant
edges than the above genes in the sub-network, and were
significantly up-regulated and down-regulated in NSCLC,
separately. Currently, a few studies reported that the CDK1
gene were associated with carcinomas, including gastric,
colorectal, breast, and lung cancers (36-39). Moreover, pub-
lished results showed that some non-coding RNA inhib-
ited cell proliferation of NSCLC by targeting CDK1 (39, 40).
Despite these results, the role of CDK1 in NSCLC is still
vague. The current results further proved the role of CDK1
in NSCLC, and CDK1 was the key gene in the PPI network. At
present, PIK3R1 has been proved to be a double-sided factor
in different cancers, and was a positive regulator in breast
and endometrial cancers (41, 42) and was a negative regu-
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lator in renal cancer (43). Few studies focused on the role
of PIK3R1 in lung cancer. The current results showed that
PIK3R1 was significantly down-regulated in NSCLC.

The strong point of the current study was to integrate
gene profiling data of NSCLC from different subtypes, dif-
ferent people, and different smoking status to explore the
molecular mechanism implicated in NSCLC using gene set
analysis and PPI network analysis. Gene set analysis is more
potent in revealing biological mechanisms than single-
gene analysis, especially in identifying genes with subtle
contributions. The PPI network analysis may confirm the
interaction between genes, and contribute to the discov-
ery of key genes in the biological process. Two methods
are helpful for the in-depth understanding of the molec-
ular mechanism of NSCLC. The primary limitation of the
current study was that pure bioinformatics methods ob-
tained the results. Experiments did not confirm the re-
sults. Next, greater attention to the results and verifying
the genes by experiments to deepen the understanding of
molecular mechanism of NSCLC is required.

5. Conclusions

A cross-sectional study of gene expression profiling
data identified many pathways and genes implicated
in NSCLC. Up-regulated cell cycle pathway and down-
regulated focal adhesion pathway were significantly asso-
ciated with NSCLC. The study increased the concordance
between gene expression profiling data and provided in-
sight into the molecular mechanisms of NSCLC. The CDK1
and PIK3R1 genes were identified as key genes of NSCLC and
may serve as candidate diagnostic and therapeutic targets
of NSCLC.
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Table 3. Common Significant Pathways Identified of Four Datasets by Gene Set Enrichment Analysis (GSEA)a , b , c

Entry Pathway Name Class Number of Overlapping
/Enriching Genes

Percentage of Common
Genes, %

FDR

Up-Regulated

04110 Cell cycle Cell growth and death 66/65 56.40 2.58E-79

03013 RNA transport Translation 54/53 45.80 4.22E-52

04115 p53 signaling pathway Cell growth and death 38/37 59.40 1.08E-45

00230 Purine metabolism Nucleotide metabolism 52/49 39.10 1.95E-44

00240 Pyrimidine metabolism Nucleotide metabolism 34/32 42.00 1.01E-29

00480 Glutathione metabolism Metabolism of other amino
acids

25/24 58.10 1.22E-27

00520 Amino sugar and nucleotide
sugar metabolism

Carbohydrate metabolism 21/20 46.70 1.10E-21

03050 Proteasome Folding, sorting and
degradation

21/19 53.80 8.41E-21

00051 Fructose and mannose
metabolism

Carbohydrate metabolism 18/16 58.10 1.26E-18

00250 Alanine, aspartate and
glutamate metabolism

Amino acid metabolism 17/16 65.40 6.75E-18

03030 DNA replication Replication and repair 15/15 44.10 2.62E-16

00510 N-Glycan biosynthesis Glycan biosynthesis and
metabolism

16/15 38.10 6.24E-14

03008 Ribosome biogenesis in
eukaryotes

Translation 15/15 24.60 4.64E-11

00512 Mucin type O-Glycan
biosynthesis

Glycan biosynthesis and
metabolism

11/11 47.80 5.14E-11

00030 Pentose phosphate pathway Carbohydrate metabolism 11/10 50.00 1.78E-10

03060 Protein export Folding, sorting and
degradation

9/9 45.00 9.48E-10

03410 Base excision repair Replication and repair 10/10 38.50 2.34E-09

00983 Drug metabolism - other
enzymes

Xenobiotics biodegradation
and metabolism

12/10 52.20 3.46E-08

03430 Mismatch repair Replication and repair 8/8 40.00 3.68E-08

00601 Glycosphingolipid
biosynthesis - lacto and
neolacto series

Glycan biosynthesis and
metabolism

9/8 40.90 1.06E-07

03020 RNA polymerase Transcription 9/8 34.60 3.26E-07

00860 Porphyrin and chlorophyll
metabolism

Metabolism of cofactors and
vitamins

6/6 26.10 0.000446

Down-Regulated

04510 Focal adhesion Cellular community -
eukaryotes

103/102 57.50 2.44E-81

04010 MAPK signaling pathway Signal transduction 100/95 46.70 2.36E-61

04062 Chemokine signaling pathway Immune system 84/77 54.90 7.64E-55

04144 Endocytosis Transport and catabolism 84/79 47.20 2.60E-54

04145 Phagosome Transport and catabolism 76/69 61.80 1.77E-53

04810 Regulation of actin
cytoskeleton

Cell motility 82/79 46.30 3.19E-51
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04060 Cytokine-cytokine receptor
interaction

Signaling molecules and
interaction

90/87 49.50 3.19E-51

04380 Osteoclast differentiation Development 64/62 56.10 2.23E-49

04514 Cell adhesion molecules
(CAMs)

Signaling molecules and
interaction

65/59 59.10 3.00E-42

05146 Amoebiasis Infectious diseases 2/56 1.50 3.13E-41

05145 Toxoplasmosis Infectious diseases 60/51 56.10 7.16E-38

04670 Leukocyte transendothelial
migration

Immune system 55/50 56.70 2.19E-36

05142 Chagas disease (American
trypanosomiasis)

Infectious diseases 46/44 35.70 6.66E-33

04610 Complement and coagulation
cascades

Immune system 38/38 69.10 1.07E-32

05323 Rheumatoid arthritis Immune diseases 43/40 56.60 1.52E-30

05150 Staphylococcus aureus
infection

Infectious diseases 35/32 83.30 6.28E-30

04630 Jak-STAT signaling pathway Signal transduction 55/51 52.40 6.28E-30

04540 Gap junction Cellular community -
eukaryotes

40/37 56.30 2.65E-27

04530 Tight junction Cellular community -
eukaryotes

49/44 47.10 7.24E-27

04640 Hematopoietic cell lineage Immune system 40/37 58.00 7.24E-27

04270 Vascular smooth muscle
contraction

Circulatory system 46/42 52.30 9.53E-27

04660 T cell receptor signaling
pathway

Immune system 45/39 46.40 1.57E-26

05140 Leishmaniasis Infectious diseases 36/33 62.10 1.04E-25

04666 Fc gamma R-mediated
phagocytosis

Immune system 40/35 47.10 4.16E-24

04650 Natural killer cell mediated
cytotoxicity

Immune system 46/40 47.90 2.28E-23

04722 Neurotrophin signaling
pathway

Nervous system 44/38 38.60 1.55E-22

04350 TGF-beta signaling pathway Signal transduction 35/31 47.30 1.67E-21

04910 Insulin signaling pathway Endocrine system 0/39 0 3.63E-21

04662 B cell receptor signaling
pathway

Immune system 34/29 47.90 8.35E-21

04916 Melanogenesis Endocrine system 35/33 45.50 2.52E-20

04210 Apoptosis Cell growth and death 34/31 43.60 3.32E-20

05100 Bacterial invasion of epithelial
cells

Infectious diseases 31/29 48.40 5.25E-20

05120 Epithelial cell signaling in
Helicobacter pylori infection

Infectious diseases 27/27 45.80 2.70E-19

04972 Pancreatic secretion Digestive system 33/31 49.30 3.32E-19

04020 Calcium signaling pathway Signal transduction 46/42 38.70 3.92E-19

05416 Viral myocarditis Cardiovascular diseases 2/25 1.50 4.14E-19

03320 PPAR signaling pathway Endocrine system 27/27 54.00 9.82E-19

04150 mTOR signaling pathway Signal transduction 23/25 48.90 3.13E-18

05144 Malaria Infectious diseases 29/22 69.00 1.48E-17

04970 Salivary secretion Digestive system 29/28 48.30 2.15E-17

05221 Acute myeloid leukemia Cancers 25/23 47.20 1.01E-16
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05210 Colorectal cancer Cancers 29/23 48.30 2.53E-16

04920 Adipocytokine signaling
pathway

Endocrine system 24/24 47.10 1.32E-15

04940 Type I diabetes mellitus Endocrine and metabolic
diseases

22/19 68.80 2.92E-15

04960 Aldosterone-regulated
sodium reabsorption

Excretory system 22/18 68.80 4.92E-15

05020 Prion diseases Neurodegenerative diseases 18/18 66.70 4.92E-15

05213 Endometrial cancer Cancers 23/20 46.90 2.83E-14

04971 Gastric acid secretion Digestive system 24/23 53.30 4.19E-14

04730 Long-term depression Nervous system 27/21 50.90 6.33E-14

04912 GnRH signaling pathway Endocrine system 30/25 39.50 9.73E-14

05143 African trypanosomiasis Infectious diseases 16/16 66.70 3.15E-13

04370 VEGF signaling pathway Signal transduction 30/20 46.90 1.03E-12

04664 Fc epsilon RI signaling
pathway

Immune system 28/21 41.80 1.08E-12

05332 Graft-versus-host disease Immune diseases 19/16 63.30 1.64E-12

04976 Bile secretion Digestive system 22/21 45.80 2.05E-12

05414 Dilated cardiomyopathy Cardiovascular diseases 30/22 44.80 6.07E-11

04962 Vasopressin-regulated water
reabsorption

Excretory system 19/16 52.80 6.23E-11

05330 Allograft rejection Immune diseases 17/14 65.40 1.51E-10

04964 Proximal tubule bicarbonate
reclamation

Excretory system 12/11 75.00 1.62E-10

04720 Long-term potentiation Nervous system 21/18 38.90 3.39E-10

00982 Drug metabolism -
cytochrome P450

Xenobiotics biodegradation
and metabolism

20/18 46.50 3.39E-10

00071 Fatty acid degradation Lipid metabolism 16/15 47.10 4.92E-10

05412 Arrhythmogenic right
ventricular cardiomyopathy
(ARVC)

Cardiovascular diseases 27/19 45.80 6.03E-10

04930 Type II diabetes mellitus Endocrine and metabolic
diseases

18/15 50.00 9.89E-10

00380 Tryptophan metabolism Amino acid metabolism 17/14 54.80 1.21E-09

04621 NOD-like receptor signaling
pathway

Immune system 25/16 49.00 3.26E-09

00590 Arachidonic acid metabolism Lipid metabolism 17/16 42.50 1.24E-08

05410 Hypertrophic
cardiomyopathy (HCM)

Cardiovascular diseases 26/18 41.90 2.99E-08

05320 Autoimmune thyroid disease Immune diseases 17/14 63.00 3.27E-08

00980 Metabolism of xenobiotics by
cytochrome P450

Xenobiotics biodegradation
and metabolism

19/16 45.20 5.21E-08

04672 Intestinal immune network
for IgA production

Immune system 15/13 46.90 6.73E-08

00564 Glycerophospholipid
metabolism

Lipid metabolism 19/18 31.10 1.58E-07

05310 Asthma Immune diseases 12/10 66.70 3.38E-07

04710 Circadian rhythm Environmental adaptation 9/10 45.00 4.86E-07

04973 Carbohydrate digestion and
absorption

Digestive system 13/11 48.10 9.06E-07

02010 ABC transporters Membrane transport 14/11 45.20 1.58E-06
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04070 Phosphatidylinositol
signaling system

Signal transduction 24/15 37.50 2.55E-06

00340 Histidine metabolism Amino acid metabolism 11/8 45.80 2.67E-05

04260 Cardiac muscle contraction Circulatory system 14/13 29.80 4.04E-05

04080 Neuroactive ligand-receptor
interaction

Signaling molecules and
interaction

27/26 24.10 0.000284

00562 Inositol phosphate
metabolism

Carbohydrate metabolism 20/9 43.50 0.00224

04623 Cytosolic DNA-sensing
pathway

Immune system 17/8 50.00 0.00856

04320 Dorso-ventral axis formation Development 10/4 50.00 0.0232

04130 SNARE interactions in
vesicular transport

Folding, sorting and
degradation

16 48.50 Not be enriched

00830 Retinol metabolism Metabolism of cofactors and
vitamins

6 26.10 Not be enriched

Abbreviation: FDR, False discovery rate. FDR was obtained according to the results computed by STRING platform.
aNumber of overlapping genes was obtained according to the overlap of genes within each common pathway of four datasets.
bNumber of enriching genes was obtained according to the enriching results of all genes within all common pathways.
cTwo pathways with 04130 and 00830 entry were not enriched in functional enrichment of Protein and Protein Interaction (PPI) network, but were significantly regulated
by GSEA.
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