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 Two distinct approaches are used to derive a unique and exact analytical expression for the heat of vaporization with respect to 
the nanocavity energy formation and the molecular hard-core diameter. This expression provides a new method to compare 
different models of cavity formation in the liquids as well as to predict the effective molecular hard-core diameter at different 
temperatures and pressures. The effective hard-core diameters and cavity formation energies of liquid Ar, Xe and CH4 are 
calculated at various temperatures and pressures using different cavity formation models and they are compared. It is found that 
the effective hard-core diameter generally decreases with increase of temperature as expected and it increases with increase of 
pressure.    
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INTRODUCTION  
 
 The energy of solvation is considered to be the result of the 
compensation between the positive cavity formation energy 
(CFE) and the negative stabilization energy of attractions [1] 

and, therefore, accurate calculation of each term is an 
important theoretical challenge. The CFE may be studied by 
using hard sphere (HS) models, which is the subject of the 
present study. It should be noted that if the CFE could be 
correctly predicted, then evaluation of the energy of attraction 
would be possible. Therefore, accurate prediction of cavity 
formation energy could be an important ingredient of 
thermodynamic perturbation and variational theories [2], 
which are based on the hard-sphere fluid properties and an 
interesting subject in the treatment of statistical 
thermodynamics of dense fluids [3-7]. 
 The analytical expressions for  the  CFE  of  a  hard  sphere  
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(HS) solute in a HS solvent are available from the Scaled-
Particle Theory (SPT) [8] and Mansoori-Carnahan-Starling-
Leland (MCSL) equation of state for HS mixtures [9]. The 
MCSL has been tested by the Widom test particle insertion 
method [10-12] for calculating the excess chemical potential 
of dissolved hard sphere solute in hard sphere solvent and was 
found to be an exact approach and superior to the SPT. 
However, the Widom test particle method is practically 
limited to the liquids of low densities and of small size of the 
probe particles [12,13]. Matyushov and Ladanyi (ML) [14] 
have also tested the MCSL in the range of high liquid densities 
and relatively large sizes of insertion probes i.e., where the 
Widom test particle method can not be used to test the MCSL 
analytical expression of cavity formation energy and have 
introduced some modifications to it. 
 The effective hard-sphere diameter (EHSD) of a real fluid 
is an important parameter, which significantly affects the 
results of CFE models [15]. Different values of EHSD have 
been obtained by  using  various  independent  techniques [16- 
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17] and their application gives different results for CFE. 
Therefore, evaluation of CFE expressions would be 
ambiguous. Obviously the values of EHSD, which obtained by 
any method suites for its own technique, therefore it would be 
worthwhile to evaluate the CFE expression by using the 
EHSD values that obtained by corresponding technique. 
 Although the applicability of the CFE expressions has been 
studied, the validity of the thermodynamic properties, which 
can be obtained from the CFE expressions have not been 
investigated. Obviously the final judgment about the validity 
of any cavity formation model, which may result in an analytic 
expression for CFE, depends on the validity of the 
thermodynamic properties, which are originated from the CFE 
expression.   
 It should be noted that there is no experimental values 
available for CFE for real molecules. Computer simulation 
using Monte Carlo method has predicted the only reliable data 
for CFE but for model molecules only [11-13].   
 In this work, which is a complementary of our previous 
work [18], we present an analytical expression for the heat of 
vaporization (ΔHvap), which originates from the CFE 
expression. The validity of different CFE models is then 
examined by using the experimental values of ΔHvap instead of 
the predicted values of CFE. The ability of analytical 
expressions to predict the values of EHSD for any compound 
at any given pressure and temperature is also presented. Since 
the reliable experimental data are needed to test the method, 
therefore Ar, Xe as simple spherical molecules and CH4 as a 
spherically symmetric molecule, for which sufficient desired 
thermodynamic data have been reported in the literature, are 
investigated here. 
 
APPROACHES 
 
Approach 1 
 Energy of solvation in liquids is considered to be the result 
of compensation between the positive repulsive CFE and the 
negative attractive stabilization energy. In dealing with hard 
sphere fluids the hard-sphere potential energy ( hφ ) of 

interaction between molecules is represented [19] by: 
 σφ ≤∞= rh            ,                                                              (1) 

 σφ >= rh             ,0                                                              (2) 
 

 
 
where σ  and r are the hard sphere diameter and the distance 
between the centers of two adjacent molecules, respectively. 
Furthermore, in addition to

hφ , real molecules have a non-rigid 
or attractive potential (

aφ ). The whole potential (φ ) then is: 

 
ah φφφ +=                                                                          (3) 

 
Therefore, the chemical potential of fluid can be written [19] 
as:  

ah μμμ +=                                                                         (4) 
 
where

hμ is the chemical potential of a hard sphere system and 

it has been defined as [20]: 
 
 l

hcavh WqkT ,
3 )/ln( +Λ= ρμ                                                 (5) 

 
where ρ  is the number density, 3/1 Λρ and q are the partition 

functions for the translational and internal degrees of freedom, 
2/1)2/( kTmh π=Λ is the thermal wave length, m  is the 

molecular mass, h  is the Planck’s constant, k is the Boltzman 
constant, T is absolute temperature and l

hcavW ,
 is the reversible 

work of creating a cavity in hard sphere fluid with suitable 
size to accommodate the solute molecule. Substitution of Eq. 
(4) by Eq. (5) will give the chemical potential of the liquid  

 
l
a

l
hcav

l WqkT μρμ ++Λ= ,
3 )/ln(                                            (6) 

 
and for a very diluted gas which is considered to behave ideal  
 
 )/ln( 3

0 kTqpkTgid Λ=−μ                                                    (7) 

 
where

0p is the pressure at which the vapor has nearly ideal 

behavior. Subtracting Eq. (6) from Eq. (7) gives 
 
 l

a
l

hcav
lgid WkTpkT μρμμ −−=−−

,0 )/ln(                               (8) 
 
 Based on the Scheme 1, the left hand side term can be 
given as 
 
 )()()( g

eq
gidl

eq
g
eq

ll
eq

lgid μμμμμμμμ −+−+−=− −−                (9) 
 
where l

eqμ and g
eqμ are chemical potentials of an equilibrium gas- 
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Liq(eq).,peq, T                                      Gas(eq)., peq, T 
 
          
                                                     

Liq( l )., p, T               Gas(id )., P0, T 
 

Scheme 1. Schematic of evaporation of a liquid at given  
                       temperature and pressure. 
 
 
liquid system at temperature T  and a given pressure 

eqp . We 

may now simplify Eq. (9) into 
 
 )()( g

eq
gidlg

eq
lgid μμμμμμ −+−=− −−                                 (10) 

 
Existing the reliable thermodynamic data allows the 
calculation of the first term on the right hand side of Eq. (10) 
and the second term is the change in chemical potential of a 
real gas when at a constant temperature its pressure decreases 
from

eqp to
0p .   

 Assuming that the equation of state of real gas is  
                                                                                                        
 ∑

∞

=
+

++=
0

2
)1(

j
j

j
g BpkTpv                                                     (11) 

 
where

2B , 
3B , ... are the second, third, ... virial coefficients.  

Then, the second right hand term in Eq. (10) is given by:  
 
 ∑

∞

=

++
+

− −+=− +
0

)1()1(
020 ][1

1)/ln(
j

j
eq

j
jeq

g
eq

gid ppBppkT jμμ     (12) 

 
Combination of Eqs. (8, 10) and (12) gives 

  

)(

)/ln()/ln(

0

)1()1(
02

0,0

][1
1 lg

eq
j

j
eq

j
j

eq
l

hcav
l
a

ppB

ppkTWkTpkT

j μμ

ρμ

−−−−

−−=

∑
∞

=

++
++

                     (13) 

 
In general l

aμ  can also be decomposed as follows: 

 
l
a

l
a

l
a

l
a Tspve −+=μ                                                                 (14) 

 
where  l

ae , l
av , l

as  are  internal  energy,  volume   and   entropy, 

 
 
respectively, associated with the attractive potential. If the 
vapor is ideal, gpv can be replaced by kT , then [21,22].  

 
id
v

ll
a pvkTe λ222 −−=                                                       (15) 

 
where lv is the liquid volume per molecule and id

vλ is the heat of 

evaporation of the liquid into an ideal gas per molecule. If l
aμ  

is known over a range of values of the state variables then l
as  

and l
av can be computed through the following thermodynamic 

relations.  
 
 

paa Ts )/( ∂∂−= μ                                                               (16)                  

                                
Taa pv )/( ∂∂= μ                                                                 (17)                   

 
Combination of Eqs. (14-16) leads to 

 
][ )/(

2
1

p
l
a

l
a

l
a

lid
v TTpvpvkT ∂∂+−+−= μμλ                       (18) 

 
 In order to derive an expression for 

p
l
a T )/( ∂∂μ  using Eq. 

(13) we need to have an expression for h
lcavW ,
 which appears in 

this equation. Various expressions can be obtained for h
lcavW ,
 

by using SPT, MCSL [8,9] or ML [14] models 
  

6/)1/()1/(6)1ln( 32
, ][ ][][

2

9 πσpyyyyykTW SPT
lcav +−+−+−−=                    

                                                                                        (19)          
 

][ ][][][ 32
, )1/(2)1/(3)1/(3 yyyyyykTW MCSL
lcav −+−+−=                           

                                                                                        (20)                   
                                                                               

]

[

][

][][

3

32

2,

)1(
)1(

)1(2
)1)(2(3)1/(3)1ln(

y
yyyy

y
yyyyyykTW ML

lcav

−
−++

+

−
+−

+−+−−=        

                                                                                        (21)  
          
where 6/3πρσ=y  in whichσ  is the hard sphere diameter 

of molecules. 
Using Eqs. (18-21) in (13) leads to the following 

expression: 
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∑
∞

=

+
+

++

∂

∂
−−−

−−−−=
∂
∂

−

+
0

2
2

)1()1(
0

2

][ )()(

)()()(

1
1

j
p

j
j

j
eq

j

lg
eq

cfmcfm
pp

l
sl

a

T
B

TBpp

hhpykTkT
T

T

j

ϑηα
μ

μ
                                                   

                                                                                              (22) 
 
where superscript cfm is an abbreviation for cavity formation 
models such as MCSLSPT , or ML , cfmϑ  is a volume term 

which vanishes in the cases of  MCSL and ML models and its 
value for SPT model is 6/3πσ , 

pα is the coefficient of thermal 

expansion of liquid, ih  is the enthalpy of system i  per 
molecule and )(ycfmη is some function of y  which assume the 

following forms for different hard-sphere models 
 
 

3

2

)1(
)21()(

y
yySPT

−
+

=η                                                           (23)   

                                                                         

4

234

)1(
1444)(

y
yyyyyMCSL

−
+++−

=η                                   (24) 

                                                                 
 

4

2345

)1(2
28894)(

y
yyyyyyML

−
+++−+−

=η                         (25) 

                                         
Differentiating the both sides of Eq. (4) with respect to the 
pressure at constant temperature gives 
 
 l

h
l
a

l vvv +=                                                                       (26)                                                                                          
The second term on the right hand side is in fact 

ph T )/( ∂∂μ , 

which can be calculated by using Eq. (5). Since Eq. (5) 
includes l

hcavW ,
, therefore any of Eqs. (19-21) may be used, 

however the result can be given in a general form as 
 
 cfmcfm

T
cfml

h ykTv ϑηβ += )(,                                                  (27) 

 
where Tβ  is the isothermal compressibility coefficient of 

liquid. 
 Combining Eqs. (18) and (22) and replacing from Eqs. 
(23-25) and (27) gives 
 

  

∑
∞

=

+
+

++

∂

∂
−−−

−−−−+−=

+
0

2
2

)1()1(
0 ]

[

][

][

)()(

)()(
2
1

1
1

j
p

j
j

j
eq

j

lg
eqTp

cfmlid
v

T
B

TBpp

hhpTykTkTpvkT

j

βαηλ     (28) 

 
 
Inserting Eq. (12) into Eq. (10) will gives  
 

∑
∞

=

++
+

− −++−=− +
0

)1()1(
020 ][1

1)/ln()(
j

j
eq

j
jeq

lg
eq

lgid ppBppkT jμμμμ

                                                                                              (29) 
 
Applying the Gibbs-Helmholtz relation on the both sides of 
Eq. (29) leads to   
 
   ∑

∞

=

+
+

++−

∂

∂
−−+−=− +

0

2
2

)1()1(
0 ][ )()()( 1

1
j

p
j

j
j

eq
jlg

eq
lgid

T
B

TBpphhhh j
                  

                                                                                              (30) 
 
The left hand side term of Eq. (30) is in fact id

vλ . Therefore, 

replacing the last two terms on the right hand side of Eq. (28) 
by id

vλ , then rearranging and multiplying the result by 

Avogadro’s number, AN ,  gives 

  
 ][)( Tp

cfm
lvap pTyRTVpRTH βαη −+−=Δ                        (31)                   

where 
lV  is the molar volume of the liquid and R is the gas 

constant. At formal pressures 1/ <<RTVp l
and 

1)( <<yp cfm
T ηβ  which in turn simplifies Eq. (31) to 

 
)(2 yRTRTH cfm

pvap ηα+=Δ                                              (32) 

Approach 2  
 In this approach we start with the free energy of solution of 
a gaseous solute in a solvent which has been given [1] as  
 
 )/ln( licsol VRTRTGGG ++=Δ                                        (33) 

 
where

cG and
iG are the molar free energy of cavity formation 

and solute-solvent interaction, respectively. Although Eq. (33) 
was initially introduced and applied for binary systems, it is 
also applicable for pure systems, i.e. the solute and the solvent 
are the same. In this case, for a pure system at a constant 
temperature and pressure, the solution and the evaporation 
process are exactly the inverse of one another, 
i.e.,

vapsol GG Δ−=Δ  (for pure systems), hence 

  
 )/ln( licvap VRTRTGGG −−−=Δ                                       (34)                   
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Applying the Gibbs-Helmholts relation on the both sides of 
Eq. (34) gives 
 2RTRTHHH picvap α−+−−=Δ                                       (35)                                                                     

 
In Eq. (34) 

cG  is in fact h
lcavW ,
 multiplied by AN , therefore any 

one of Eqs. (19-21) can be used to evaluate 
pcc TTGH )]/1()/([ ∂∂= . However a general form as may 

indicate the result is 
 

cfmcfm
p

cfm
c pyRTH ϑηα +−= ][ 1)(2                                       (36)                                                                 

 
Using Eqs. (15) and (26), the value of

iH can be predicted  

 
 )(22 l

hlvapi VVpHRTH +−Δ−=                                        (37)  

                                                                      
Now an analytical expression for ΔHvap, which is exactly the 
same as Eq. (34), is obtained by inserting (36) and (37) into 
Eq. (35) and using Eq. (27) 
 Considering that the above two distinct approaches have 
resulted in the same analytical expression for the heat of 
vaporization is a strong indication of the exactness of Eq. (31).  
In the following section we utilize Eq. (31) to evaluate the 
cavity formation energies and to calculate the hard-sphere 
diameters of various real molecules in liquid state using the 
heat of vaporization and other thermodynamic properties as 
appear in Eq. (31) with consideration of various hard-sphere 
equations of state.   

 
RESULTS AND DISCUSSION  
 
  Since Eq. (31) is an exact consequence of the assumed 
form of CFE; therefore, it may directly be used to calculate the 
values of the effective hard-sphere diameter (

effσ ), which is 

the only adjustable parameter that affects the results of the 
CFE models. Therefore, the obtained values of 

effσ can then be 

used for evaluation and comparison of different CFE models.  
 Using Eq. (31) along with the experimental data of heat of 
vaporization, molar volume, αp, and βT of various substances 
one can predict the values of )(ylη . Since )(ylη is a function 
of y , according to various models proposed above, one can 
calculate the effective hard-core diameter (

effσ = [6y/(π.ρ)]1/3) 

  
 
for various liquids at different temperatures and pressures. The 
values of physical properties such as lρ (density), fΗΔ (molar 
enthalpy of formation for gas and liquid), pC (molar heat 
capacity at constant pressure), vC  (molar heat capacity at 
constant volume), 

oC (speed of sound), which were needed in 

our calculations, were taken from Refs. [24-26]. The 
isothermal compressibility and the thermal expansion 
coefficients [23] needed in our calculations were calculated 
by: 
 2

0/ clT C ργβ =                                                                   (38)   

                                                                                               
2/1

2
0

)1(
⎥
⎦

⎤
⎢
⎣

⎡ −
=

MTc
C CC V

p
γγ

α                                                      (39)  

                                                                            
where 

Vp CCC /=γ is the ratio of heat capacities at constant 
pressure and constant volumes, 

lρ  is the density of liquid, 
M is the molar mass, and 

0c  is the speed of sound.   
 The values of 

effσ which were predicted at different 

temperatures and pressures along the coexistence liquid-gas 
line are given in Table 1.  Application of these values into Eq. 
(21) will obviously give the values for cavity formation 
energy. Although there are no experimental values of CFE to 
be compared with, it has a singular value at any given 
temperature and pressure, which must be predicted by any 
model. Figure 1 which is typically plotted for Ar illustrates 
this argument. Figure 2 also shows the predicted values of 
CFE for Ar, Xe and CH4. Figure 2 indicates while the values 
of 

cTT → , the values of 0→CFE . This prediction is due to 
the application of unrealistic values of 

effσ which are obtained 

by Eq. (31) in this region.     
 The more direct approach for evaluation and comparison 
of different CFE models is to compare the values of heat of 
vaporization, which are predicted by Eq. (31) with 
experimental values.    
 Mayer [27] has used SPT to calculate the values of 

effσ  for 

various substances at two different temperatures by using 
experimental data of surface tension and compressibility. We 
have repeated Mayer’s method at more temperatures where 
reliable and desired experimental data of surface tension and 
compressibility are known [28]. Since the Mayer’s 
compressibility    approach    consists   of   the   Percus-Yevick  
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equation of state (compressibility approach, here after denoted 
as PYc), one may think of using the other equations of state of 
hard spherical systems. We have also derived the following 
compressibility equations by applying the Percus-Yevick 
equation of state (virial coefficients approach, here after 
denoted as PYv) and also Carnaham-Starling equation of state 
[29] (here after denoted as CS). 
 
 ][ )3951/()1()/( 323 yyyyRTVl

PYv
T −++−=β                    (40) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                         
 ][ )3951/()1()/( 323 yyyyRTVl

SC
T −++−=β                   (41)                   

 
These equations were also used to predict the values of 

effσ .   

 Typical results for Ar are shown in Table 1.  The values of 
effσ  which were predicted by using the Mayer’s method 

(Table 1, columns 5-8) were taken as the results of 
independent techniques and used to predict the values of 
∆Hvap, which in turn they were used for evaluation and 
comparison of three different CFE  models,  i.e.,  SPT,  MCSL 

      Table 1.  Different  Values  of   Effective  Hard Spherical  Diameters  (Å) of Ar Predicted by  Different 
                      Models Along the Vapour-Liquid Coexistence Line 
 

                     ΔHvap                            Mayer  
T (K) SPT   MCSL ML  Surf PYc    PYv       CS 
83.8 3.46233 3.30764 3.30888  3.23768 3.31648 3.25996 
84 3.46021 3.30553 3.30677 3.18841 3.23554 3.31407 3.25776 
85 3.45173 3.29707 3.29831 3.17762 3.22856 3.30607 3.25054 
86 3.44259 3.28796 3.2892 3.16722 3.22064 3.29704 3.24237 
87 3.43341 3.27881 3.28006 3.15672 3.21267 3.28796 3.23414 
88 3.42453 3.26997 3.27122 3.14540 3.20542 3.27965 3.22664 
89 3.41484 3.26036 3.26161 3.13451 3.19698 3.27006 3.21794 
90 3.40533 3.25094 3.25218 3.12279 3.18869 3.26063 3.20936 
91 3.39526 3.24098 3.24222  3.18002 3.25077 3.20041 
92 3.38568 3.23152 3.23276  3.17209 3.24173 3.19222 
93 3.37541 3.22137 3.22262  3.16328 3.23174 3.18312 
94 3.36486 3.21098 3.21222  3.15405 3.22127 3.17358 
95 3.35431 3.20061 3.20185  3.14482 3.21081 3.16405 
96 3.34346 3.18995 3.19119  3.13546 3.20023 3.15439 
97 3.33239 3.17909 3.18032  3.12582 3.18934 3.14443 
98 3.32095 3.16789 3.16911  3.11577 3.17802 3.13406 
99 3.30953 3.15672 3.15794  3.10583 3.16679 3.12378 
102 3.27307 3.12114 3.12234  3.07409 3.13115 3.09105 
105 3.23327 3.08246 3.08363  3.03880 3.09174 3.05466 
108 3.18898 3.03959 3.04071  2.99879 3.04736 3.01347 
111 3.14068 2.99299 2.99406  2.95513 2.99923 2.96858 
114 3.08560 2.94004 2.94104  2.90479 2.94417 2.91691 
117 3.02361 2.88062 2.88154  2.84862 2.88321 2.85937 
120 2.95017 2.81044 2.81126  2.78040 2.80985 2.78964 

        SPT: Scaled  Particle  Theory,  MCSL: Mansoori-Carnahan-Starling-Leland,  ML: Matyushov-Ladanyi, 
        Surf. = surface tension, PYc: Mayer’s compressibility approach consists of the Percus-Yevick  equation  
        of state PYv:Percus-Yevik (virial approach), CS: Carnahan-Starling. Insignificant digits  are  retained to 
        avoid round-off errors. 
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Fig. 1. Cavity formation energies of Ar predicted by using the  
             values of EHSD obtained by Eq. (34). 
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Fig. 2. Cavity formation energies of Ar, Xe and CH4 predicted  

      by using the values of EHSD obtained by Eq. (34). 
 

and ML through Eq. (31). Therefore, there are 12 predicted 
values of ∆Hvap at each temperature, denoted as mpdcfm

vapH −Δ .   

 The general superscript mpd is an abbreviation for the 
Mayer’s method of the prediction of the hard-sphere diameters 
and is classified as surface tension (denoted as su) and 
compressibility (denoted as comp which is substituted with 
PYcC, PYvC and CSC abbreviations depending on the type of 
applied equation of  state)  approaches.  The  experimental and 
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Fig. 3. A comparison between the experimental and predicted 

             values of  heat  of  vaporizations:  (♦) SPT, (□) MCSL   
             and (▲) ML, (●) exp

vapHΔ , (─) su,  (---)  PYc, (…) PYv,  
             (▪▪▪) CS. 
 

 
predicted values of heat of vaporizations are compared in Fig. 
3. It should be mentioned that, for any set of 

effσ , the 
predicted values of ∆Hvap through MCSL and ML models are 
nearly the same; therefore to avoid any complication, the 
predictions of ML method have not been presented, 
necessarily.  This figure also indicates that:  
 1. The class of sucfm

vapH −Δ  has the worst agreement with the 
values of exp

vapHΔ ; therefore, the surface tension and its curvature 

dependence expressions [3] which were used by Mayer are 
inaccurate. Since this terms (the second and the third term in 
Eq. (19)) form the major portion of the CFE expression in the 
SPT, therefore it can be expected that the SPT model for CFE 
may include the inevitable deviations. The more remarkable 
point which is understood from the class of sucfm

vapH −Δ  is that, 
when the values of

effσ , predicted by using the SPT through 

the Mayer’s surface tension approach, applied into the three 
CFE models by using Eq. (31), the worse results are again 
correspond to the SPT predictions. Therefore, from the point 
of Eq. (31) view the MCSL and ML models are more accurate 
than SPT, even though the utilized values of 

effσ  may bear 

some systematic errors.    
 2. The MCSL and ML models of CFE are more reasonable 
than SPT. This is in agreement with the predictions of Monte 
Carlo method [12] and also confirms the above discussion.  
 3. The accuracy of CS equation of state [29] in comparison  

CH4 

Xe 
Ar 
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with the PYC, is also proved by Eq. (31).   
 4. The best and the worst values of 

effσ are those predicted 

by the PYvC approach and the surface tension approach, 
respectively. Therefore Eq. (31) can be used for evaluation 
and comparison of different methods for the prediction of 
effective hard-sphere diameters.  
 5. The values of PYvCcfm

vapH −Δ  indicate that, at low 

temperatures, the predictions of ML model is slightly better 
than the MCSL model. Therefore, Eq. (31) proves that the 
Matyushov and Ladanyi have exerted the proper modification 
on the MCSL model. 
 Figure 4 shows a comparison between the values of 

effσ  
listed in Table 1 and indicates that the values of

effσ  predicted 

by using the SPT model are larger than those predicted by 
using the other approaches, while the values of 

Teff ∂∂ /σ remains almost the same. This should be mentioned 

that surface tension and compressibility’s expressions used by 
Mayer are originated from SPT as well as the heat of 
vaporization’s expression. Therefore, one may expect to 
obtain the same values for HSD by using any of three 
expressions i.e., surface tension, compressibility or heat of 
vaporization.  
 Here, we do not wish to explain discrepancy between 
surface tension and compressibility predictions, but we would 
like to discuss the origin of discrepancy in 

effσ  values 

predicted either by surface tension or compressibility and heat 
of vaporizations to some extent. The surface tension or 
compressibility expressions used by Mayer are in fact 
applicable to hard spherical fluids and if applied to real fluids 
some deviations in results can be expected. While, both hard 
and soft potentials have been considered in derivation of 
analytical expression for heat of vaporization and considering 
the soft potential in turn helps to treat a fluid as close as to a 
real one. This can then be pretended that the results are 
obtained by Eq. (31) have more compatibility with reality.  
The values of 

effσ  presented in Fig. 4 were predicted at both 

different temperatures and pressures along the liquid-gas 
coexistence line. We have also predicted the values of 

effσ  for 

Ar and Xe and CH4
 at different temperatures and constant 

pressure and vice versa. An arbitrary constant pressure of 6.0 
MPa was used to show that the proposed method could be 
applied at any  desired  pressure  even  at  upper  critical  point 
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    Fig. 4. A  comparison between  the effective  hard sphere  
               diameters along  the vapor-liquid coexistence  line  

                   of  Ar  predicted   by  different   models:  (♦)  SPT,  
                   (□) MCSL and (▲) ML, (○) Mayer-su, (●) Mayer-  
                   co, (■) PYvC, ( ) CSC. 

 
 
 (Tables 2-4).  
 Figure 5 helps us to compare different approaches and 
have a better understanding of the variation of

effσ  with 
temperature. This figure shows that the value of

effσ  obtained 

by different methods decreases with increasing temperature 
with a nearly constant slope. The physical significance for 
temperature dependence of 

effσ  is that at high temperatures the 

molecules have more energy and are capable of 
interpenetrating one another to a greater extent. There is also a 
satisfactory agreement between the values of 

effσ  predicted by 

MCSL and ML models with those predicted by 
compressibility expressions. According to Barker [30] and 
Anderson [31], this phenomenon may be attributed to the fact 
that the present method can be treated as a simple perturbation 
approach. Therefore, it can be expected that the properties of 
reference system (HS) do not strongly affected by the 
perturbation factor. One may think that the values of 

effσ  

predicted by the proposed method are unrealistically small at 
high temperatures. This behavior may be attributed to 
perturbative nature of the present method, because of the fact 
that perturbation theories are known to systematically over- 
estimate   the  critical  point  and  also  the  entire  vapor-liquid 
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equilibrium curve, particularly at temperatures above about 
half-way between the triple-point and critical point. Although 
the perturbative nature of the  method may  be  responsible for 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
such observations, it cannot be the major reason. Such results 
are also obtained by compressibility approaches which are not 
consistent with perturbation approaches. We believe that  such 

        Table 2. Different Values of Effective Hard  Spherical  Diameters  (Å)  of Ar  Obtained  by Different 
                       Models at 6.0 MPa and Different Temperatures 
 

                          ΔHvap   Compressibility 
T (K) SPT       MCSL       ML    PYc   PYv       CS     
86 3.46896 3.31426 3.31549 3.24246 3.32191 3.26489 
90 3.43619 3.28153 3.28278 3.21490 3.29037 3.23641 
94 3.40078 3.24638 3.24763 3.18457 3.25577 3.20506 
98 3.36321 3.20930 3.21054 3.15233 3.21912 3.17176 
102 3.32283 3.16967 3.17089 3.11769 3.17989 3.13597 
106 3.27913 3.12697 3.12817 3.08026 3.13771 3.09732 
110 3.23004 3.07926 3.08041 3.03704 3.08938 3.05275 
114 3.17539 3.02639 3.02749 2.98920 3.03626 3.00347 
118 3.11255 2.96588 2.96689 2.93402 2.97552 2.94675 
122 3.03793 2.89429 2.89522 2.86766 2.90325 2.87870 
124 2.99562 2.85383 2.85470 2.83113 2.86374 2.84130 
126 2.94693 2.80734 2.80815 2.78742 2.81679 2.79664 
128 2.89272 2.75566 2.75640 2.73941 2.76554 2.74766 
130 2.83129 2.69721 2.69787 2.68601 2.70888 2.69328 

         SPT: Scaled Particle Theory, MCSL: Mansoori-Carnahan-Starling-Leland, ML: Matyushov-Ladanyi, 
         PYc: Percus-Yevik (compressibility approach), PYv: Percus-Yevik (virial approach),  CS: Carnahan- 
         Starling. Insignificant digits are retained to avoid round-off errors. 
  
           Table 3. Different Values of Effective  Hard  Spherical  Diameters (Å) of  Xe  Obtained by  Different 
                          Models at 6.0 MPa and Different Temperatures 
 

T (K) ΔHvap Compressibility 

 SPT     MCSL ML PYc      PYv     CS 
170 3.96753 3.78811 3.78957 3.69458 3.77775 3.71850 
180 3.92299 3.74385 3.74530 3.64948 3.72613 3.67181 
190 3.87038 3.69203 3.69346 3.59781 3.66750 3.61839 
200 3.80753 3.63061 3.63200 3.53724 3.59943 3.55585 
210 3.73028 3.55564 3.55695 3.46346 3.51748 3.47986 
220 3.63233 3.46121 3.46241 3.37038 3.41543 3.38427 
230 3.50381 3.33800 3.33905 3.24848 3.28375 3.25953 
240 3.32613 3.16855 3.16937 3.08031 3.10509 3.08821 
250 3.06037 2.91613 2.91667 2.82668 2.84067 2.83121 

               SPT: Scaled Particle Theory, MCSL: Mansoori-Carnahan-Starling-Leland, ML: Matyushov-Ladanyi,  
               PYc:Percus-Yevik  (compressibility approach),  PYv:Percus-Yevik (virial approach),  CS: Carnahan- 
               Starling. Insignificant digits are retained to avoid round-off errors. 
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 Fig. 5. A  comparison  between  the  values of  effective  hard  
            spherical diameter of Ar predicted by different models  
            at   different   temperature  and  constant  pressure:  (♦)  
          SPT-H,  (□)  MCSL-H and  (▲) ML-H,  (●) PYcC, (○) 
            PYvC, ( ) CSC. 
 
 
results are related  to  some  other  factors  such  as  the  rate of 
variation of the physical property with temperature within the 
interval temperature and the type of the intermolecular 
potential. If potential was of one parametrical type, such as 
those presented in Eqs. (1) and (2), all variations would be 
exerted on that single parameter. But when a two parametrical 
potential such as Lennard-Jones is  being  used,  the  variations  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
are exerted on two parameters and consequently each 
parameter varies slightly with variation of temperature.  
 Another reason for obtaining the unrealistic small values 
of

effσ  at high temperatures is that at the 
cTT →  limit, the 

liquid behavior deviates considerably from the HS systems 
and is dominated by fluctuations. Therefore, in critical region, 
more sophisticated perturbation approaches than those 
presented in this work must be used.   
 The effect of pressure on EHSD was also investigated 
through Eq. (31). An arbitrary constant temperature (at which 
the system is in liquid state) was used in order to study this 
phenomenon in a wide range of pressure. The results are 
shown in Tables 5-7. Figure 6 is also plotted to help us to have 
a better understanding of the variation of  

effσ  with pressure. 
 This figure shows that the value of

effσ  increases with 

increasing pressure. As previously mentioned, the expected 
value of EHSD is related to this fact that to what extent the 
given particles, which approach each other, can penetrate one 
another at a given temperature. Any factor which causes those 
particles not to penetrate considerably, will result into the 
bigger value of EHSD. Increasing the exerted pressure on 
liquid will compress the system, which in turn leads to activate 
the intermolecular repulsions more throughout the liquid. 
However, the kinetic energy is the major factor determining 
the extent of penetration, and increasing the pressure will 
compensate the effect of kinetic energy to some extent 
depending on the amount of applied pressure. This 
compensation results in a larger value of EHSD. The predicted 

        Table 4. Different Values of Effective Hard Spherical Diameters  (Å) of CH4  Obtained  by  Different  
                       Models at 6.0 MPa and Different Temperatures 
 

T (K) ΔHvap Compressibility 

 SPT   MCSL ML PYc     PYv   CS 
100 3.86234 3.69304 3.69435 3.60750 3.70190 3.63368 
120 3.73722 3.56759 3.56895 3.50030 3.57871 3.52287 
140 3.55794 3.39199 3.39328 3.34128 3.39935 3.35868 
150 3.42912 3.26761 3.26874 3.22607 3.27208 3.24017 
160 3.24662 3.09285 3.09375 3.06329 3.09584 3.07349 
170 2.95121 2.81187 2.81243 2.80527 2.82329 2.81107 

            SPT: Scaled Particle Theory, MCSL: Mansoori-Carnahan-Starling-Leland, ML: Matyushov-Ladanyi,  
            PYc: Percus-Yevik (compressibility approach),  PYv: Percus-Yevik (virial approach), CS: Carnahan- 
            Starling. Insignificant digits are retained to avoid round-off errors. 
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        Table 5. Different Values of Effective Hard Spherical  Diameters  (Å)  of  Ar  Obtained  by  Different  
                       Models at 94.0 K and Different Pressures 
 

P/MPa ΔHvap Compressibility 
 SPT    MCSL   ML PYc      PYv CS 
1 3.37044 3.21647 3.21771 3.15886 3.22670 3.17854 
6 3.40078 3.24638 3.24763 3.18457 3.25577 3.20506 
10 3.42172 3.26711 3.26835 3.20175 3.27529 3.22281 
20 3.46396 3.30916 3.31040 3.23371 3.31188 3.25584 
30 3.49734 3.34266 3.34388 3.25626 3.33796 3.27918 
40 3.52561 3.37122 3.37241 3.27440 3.35904 3.29796 

            SPT: Scaled Particle Theory, MCSL: Mansoori-Carnahan-Starling-Leland, ML: Matyushov-Ladanyi,  
            PYc: Percus-Yevik (compressibility approach), PYv: Percus-Yevik (virial approach),  CS: Carnahan- 
            Starling. Insignificant digits are retained to avoid round-off errors. 
 

        Table 6. Different Values of Effective Hard Spherical Diameters  (Å)  of  Xe  Obtained  by  Different  
                       Models at 180.0 K and Different Pressures 
 

P/MPa ΔHvap                            Compressibility                      
 SPT     MCSL      ML PYc   PYv      CS 
1 3.90445 3.72583 3.72728 3.65393 3.73114 3.67640 
6 3.93108 3.75208 3.75353 3.67927 3.75981 3.70257 
10 3.94959 3.77039 3.77184 3.69661 3.77948 3.72046 
20 3.98837 3.80894 3.81039 3.73182 3.81965 3.75684 
30 4.01954 3.84011 3.84154 3.75890 3.85074 3.78484 
40 4.04613 3.86687 3.86829 3.78115 3.87638 3.80784 

            SPT: Scaled Particle Theory, MCSL: Mansoori-Carnahan-Starling-Leland, ML: Matyushov-Ladanyi,  
            PYc:Percus-Yevik (compressibility approach),  PYv:Percus-Yevik  (virial approach),  CS: Carnahan- 
            Starling. Insignificant digits are retained to avoid round-off errors. 

 
           Table 7. Different Values of Effective Hard Spherical Diameters (Å) of CH4  Obtained  by  Different  
                          Models at 150.0 K and Different Pressures 
 

P/MPa ΔHvap Compressibility                      
 SPT      MCSL ML PYc   PYv    CS 
6 3.42924 3.26773 3.26886 3.22607 3.27208 3.24017 
10 3.49913 3.33501 3.33623 3.29160 3.34380 3.30742 
25 3.65010 3.48157 3.48291 3.42682 3.49420 3.44668 
30 3.68179 3.51261 3.51397 3.45337 3.52423 3.47410 
35 3.71380 3.54403 3.54540 3.47528 3.54914 3.49676 
40 3.73523 3.56514 3.56652 3.49355 3.57004 3.51566 

              SPT: Scaled Particle Theory, MCSL: Mansoori-Carnahan-Starling-Leland, ML: Matyushov-Ladanyi, 
              PYc: Percus-Yevik (compressibility approach), PYv: Percus-Yevik (virial approach),  CS: Carnahan-  

           Starling. Insignificant digits are retained to avoid round-off errors. 

www.SID.ir



Arc
hi

ve
 o

f S
ID

 
 
 

Azizi & Nasehzadeh 

 241

 
 

3.1

3.2

3.3

3.4

3.5

3.6

0 10 20 30 40 50

P (M Pa)

σ
 (Å

)

 
Fig. 6. A  comparison  between  the  values of  effective  hard  
            spherical diameter of Ar predicted by different models  
             at  different  pressure  and  constant   temperature:  (♦)   
             SPT-H,   (□)   MCSL-H,   (▲)  ML-H,  (●) PYcC, (○)  
             PYvC and ( ) CSC. 
 
 
values of effσ by using SPT are again larger than those 

predicted by MCSL and ML models, while the slopes are the 
same. It should be noted that the values of 

Teff p)/( ∂∂σ  which 

are obtained through the compressibility (Mayer’s method) are 
smaller to some extent than those obtained using Eq. (31). We 
believe that this effect also originates from the fact that the 
compressibility expressions used by Mayer are only applicable 
to hard spherical fluids and if applied to real fluids some 
deviations in results are expected. However, based on the 
previous discussions, we expect that the intermolecular 
distances of a real system are more affected by the pressure 
than the intermolecular distances of a hard-sphere system.   
 Based on the above discussions, it can be concluded that in 
derivation of Eq. (22) the temperature and pressure 
dependency of molecular hard core diameter has to be 
considered, which in turn leads to: 
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 where PT T )/( ∂∂=′ σσ and 

Tp p)/( ∂∂=′ σσ  
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