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The aim of this study was to investigate order+diso in the two-dimensional AB alloy to find out ether the number of
componentsiNa andNg, was equal or not. To this end, using the neareighbor interactions, first, we applied a two-disie@nal

lattice which consisted of infinite rowR,and columnsl., so thatRL = NA + Ng. For such a model, using the combinatorial factor
method, we derived an exact equation for the pamtfunction. Because, the derived partition fuoietivas very complicated, the
thermodynamic properties of the lattice could netchlculated; however, but these properties coalddtimated for the models

with a limited number of rows. Our results showttharmodels with finite number of rows, for eagtole fraction of A in the
specific temperature, a phase transition, like Qes&ransition, takes place.
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INTRODUCTION

One of the factors which exerts considerable érfte on
the behavior of some metal systems'is orderingpétties of
metals such as elastic modulus, shear strengtlttriekd
resistivity, and hardness can be enormously inftednby
order-disorder transformations [1,2]. There are ynaretal
compounds which exhibit ordering or are classifiad
superlattice alloys. Such systems as copper-golgper-zinc,
copperberyllium, copper-lead, silver-mercury, nickel-
aluminum, iron-cobalt, gold-nickel, iron-silicon @niron-
aluminum are some of the AB type of structures Wwhiave
such characteristics. If the previously mentioneapprties of
these alloys are affected by the order-disordersframation,
friction characteristics may also be influenced.eTking
lattice systems with interactions involving three more sites
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[3], whose Hamiltonian comprises interaction terofsthe
form -Jj. xoi0; ... ok, Wherei #j # ... # k correspond to different
lattice sites, and; _ is the coupling constant between these
sites, have been used to model a variety of phlysitetions,
like, for example, some binary alloys [4], lipiddyers [5] and
gauge-field theory models [6]. In this paper, usitige
combinatorial factor method, we intend to introduenew
method for solving binary alloy, which can easily &pplied
to spin glasses compounds. Calculation of the tpmarti
function by this method is possible not only foreen
dimensional and two-dimensional lattices, but dsothree-
dimensional cases.

Second-order phase transitions are subtle ondkeloase
of a binary alloy, configuration takes place withthe release
of latent heat. The transition point is marked ldiscontinuity

which does not exist in the same form at any other

temperature. The most important model of a systhat t
exhibits a phase transition is the Ising modlbe model was
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proposed by Wilhelm Lenz [7] and was first solveddly for
the one-dimensional case by his student Ernestg I§&j.

(RL = N) and each of them can be occupied only by onéef t
two particles A or B. Obviously, the number of sjtevhich

However, Ising was very disappointed because the- onare occupied by A or B, arBlA = N@ andNz = N(1-6),

dimensional case did not have a phase transiticeani€rs and
Wannier [9] calculated the Curie temperature usingwo-
dimensional Ising model, and a complete analytiotsm was
subsequently offerred by Onsager [10]. He showedl tthere
was a phase transition in two-dimensionals. Soltiregthree-
dimensional model remains as one of the basic gnablin
statistical mechanics, although a lot is now knaabout it
from approximate methods.

Recently, the Ising model for limited number ofveowas
solved by the transfer matrix [11,12] and combiriatdactor
method [13,14]. On each site, there is a variabhéckv can
take two different values, spin up or spin down,tfie case of
a binary alloy atom A or atom B). Each spin int¢saaith its

respectively. The particles interact with each otiwever,
for the sake of simplicity, we consider the neamsighbor
interactions only, which depend on the type offih.

While each site can choose one of the two conditims
(A or B), each column must have one of the possiiie

configurations (for example, witR = 2, for each column,
there are four configurations as; ~ 8 andg)- The state or

"B A
configuration. of the columns and their number may b
assigned a#,, andN;n, respectively, whereis the number of
B particles in such configurations. It must be stidt, for
eachr (r = 0,1, .., R), there areR/(R-r)!r! configurations

which may have different energies; thus, for each
m=1 2 .., RI/(R-r)!r!. For each value d® (2<R<<N), to

nearest neighbors on the lattice through an ex&hangvoid the end effects, we include the periodic lozup

interaction which favors any given pair of spinsnpiog in the
same direction. In the case of a binary alloy, thernal
energy of the crystal can be written as

E: NAASAA + '\%B‘E‘BB + NAB é:lB

where€ ,, ,Egz  and€,; are the interaction energies of

nearest neighbor AA, BB, and AB.atom pairs, & Ngg
andNg are the numbers of such pairs.

Studying this study, we investigated order-disorofe a
binary alloy lattice by different oridentical mdimctions. We
considered a two-dimensional binary alloy whicltamsisted
of two interacting particles as A afd First, the lattice was
considered to have an exact combinatorial factéven] by
considering the precise amount of the internal gnef the
system as well as its limitations, using the uraiert.agrange
coefficient, we minimized the Helmholtz free energpd
calculated thermodynamic properties of the systech &s the
heat capacity, entropy and internal energy.

THE MODEL

Consider a two-dimensional binary lattice with wheal
formulaa B, ,,wherefand 16are mole fractions of A and B,

respectively (0<6<1/2). Suppose this lattice contains
N(N - o) sites, which are arrangedlincolumns andR rows

conditions, that is, we assume that the first and sites of
each column, such as first and end columns, aren¢lagest
neighbors.
Because of

z(n)

L= N _» (1)

R
m
r=0 m=1

we can impose the following conditions

N

R-1N, @

P4
>

1
D=

i
o
3
T
IS

®)

RO=Y > (R-1)P, (4)
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R Z(r)

RA-6)=3 >R, () $=i Pl i, +inR,)+ Y

r=0 m=1 r=0 s=0 m=1 n=1

Z(r)Z(s)

sn £ asn snly
Po(- jesn +InP3)

3
i
o
3
7
i

(10)
Also, if we define Nsn = ps» as the number of the nearest
neighbor columns withy _ and a_ configurations, then, the where j = J/KT.
To obtain the equilibrium state, Eq. (10) must be

following constraints must be considered: o ] ) )
maximized. For this task, regarding as our constsawe use

R Z(s) =01.. R the Lagrange multipliers method. After maximizatiome
22 NG =N, have
s=0 n=1 m:]-.Z,...,Z(I’)
or
R Z(r) R Z(r) R Z(r) R Z(r)
S TSTOINCELLESOWCES 3 DI RN

R Z(s) r= O 1’ R r=0 m=1 r=0 m=1 r=0 m=1 s=0 n=1
Y Pr=pP,, R (6) (11)
s=0 n=1 " " m= 1,2,,Z(|')

) where g, g.and g _s are the Lagrange multipliers. Because
The nearest neighbor interaction energies can (be

considered asg,,, g,, and ¢ ) Wheregijs are the &

(e s =g, we can use the equabriori probabilities principle
AB\™ ©BA
[15] and put

BB

interaction energies between the nearest neighbiorgb ij.
For simplicity, if we assume that,¢,, =-¢,, =¢,, =J, then

. : . . P =PI, 12)
the total interaction energy of the lattice canbigten as
R Z(r) R R Z(N)Z(s) @ With definition of
e, =[5k, 3 S e }
r=0 m=1 r=0 s=0 m=1 n=1 Y= %’ y= (YPRIJ ’ gq= eZRJ yR(S—l)Y
01 PRl

where - J¢  and - ggsn are energies within the columns and
rm rm

between the nearest neighbor columns, respectivBhe  from maximization of ®, we conclude the following
coefficientsgrmand £n have discrete values and each of the”bxpressions

changes from-R to +R.
The combinatorial factor for this lattice can betten as A=-NKTIng"® (14)
R Z(r) )(8

[13,14]
P =P R exilien - IR), (15)
Q rm .
umlﬁjz(S) NP5” P _YPsny—sexr(JR Jgsn) (16)

R Z(s) r=O,1,...,R
Using the Stirling approximation, we find the Helofilz free ZZﬁ{exp{(g +E, —ZR) ] y™°Y9, rmsﬂ} {m: 120 Z()
energy,A=E-kTInQ, as S0 =L

(17)
A R Z(s)

r r S, > sn -S H H —_ 18
ZR:Z()P,m(—JE,m+kTIn P,m)+ZR:ZR:Z( )Z()Rsm"(—JEf2+kT|n R'Smn)] Y;;s&n y exp(jR—jssn)—R(l—H) (18)
r=0 m=1 r=0s=0 m=1 n=1

9)
R Z(s) ~ . ) 19)
Y SR yeexpliR- je,,) =1 (
or in the reduced form 50 el
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Where5rmsn is Kronecker delta.

Know, from solution nonlinear Eqgs. (18) to (19)etexact

roots of Y andy can be determined and using them, the

thermodynamic properties of lattice such as theritteltz free
energy, internal energy, entropy and heat capawity be
calculated. In the next section, these calculatiori be
accomplished for simple models.

USE OF COMBINATORIAL
METHOD FOR SIMPLE MODELS

FACTOR

We start with the simplest model whikrk-1 (the one-
dimensional model). WheR =1(r = 0,1), the coefficients of

the interaction energies within and between theirook are
£y =&,=0 el =gl=1 and el=gl=-1. From Eqgs. (17) to

(19), we have

VRl -v)+JRYe =0 (20)
Rie” +yPI (e’ -Y/y)=0 (21)
piYei=1-9, (22)
y
[3111+P1111j\(ei -1 (23)
y
From Eqgs. (20) to (23) we can show:that
_ 0 Yei —1)° gl (24)
v=1el"e Y e
-3
V=S | 206 -t e +e 06— T a-0)re |,
(25)

which using them, the Helmholtz free energy Eq.)(T&n
calculate. For example fog =1/2(the one-dimensional Ising
model in the absence of magnetic field), the ekat energy
[13] can be obtained as,

A= NKT In(2coshj). (26)

Fig. 1. The two dimensional alloy model using boundary
condition.

In addition, Egs. (25), (26) and Eq. (14), can use
consideration of .the one-dimensional spin glasses (§is
very small).

In the next simplest two-dimensional model we set
R=3(r = 0,1,2;3).-Using the periodic boundary conditions,

this model is shown in Fig 1. Refereeing to Tahl&qds. (17)
to (19) and.after simplification{ =x, =x;, X,,; = X,, =X,3)s

we will find,
Xo, (1= Y) + X,,30+ X,,30% + X, 0* =0 (27)
Xo 0% + X, (20* +b% = YY) + X, (2b° +b°) + x,b* = 0 (28)
X0 + %, (2% +b%) + x,, (20* +b* = y2Y) + x,b* =0 (29)
Xo® + %,,30% + x,,30+ x, 1- y*Y) =0 (30)
Y(sp1111 L 3P3311] =1-9 (31)
yor Tyt oy
BYE P+ Billz +3 Fzzzllz + P%lJ =1 (32)
yb® yDT y

where X, = /pssnn and b=¢?, Using Egs. (28) to (32) the

partition function for the model wittR=3, can be obtained
numerically.

Finally, the same approach as the above can b# tose
calculate the partition function for the model witk 3. When
R increases, the solution of the nonlinear equatlmesomes
more complicated, so much so that we were only tbswlve
it for R(@=0.5)<15 and R(#=0.6,0.7, 0.8 and 0.8 1 by
numerical methods. The results of such calculatamesgiven
in Figs. 2 to 8, for the reduced free energy, imakrenergy,
heat capacity, and entropy.
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CONCLUSIONS

In this work, we have used a two-dimensional datti
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Table 1. The Total Energies and Coefficiengs , within each Row folR=3. The Rolid
and Nonsolid CicRepresent A-Type and B-Type, Respectively

r 0 1 2 3
m 1 1 2 3 1 2 3 1
. . ] » o L 2 o] *» o o

Conflguratlon * » oo. * » * O oo. oo * O o0
Ar m AOl All A12 A13 A21 A22 A23 A31
Em 3 -1 -1 3
Total energy -3 J J -3J
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Fig. 2. The reduced internal energye&-E/NJ)Vs. j for §=0.6 andR=3to 11.

factor for the models with different rowR, However, due to
soft- and hardware limitations, we could only céte it

model with L columns ( - «), and limited number of rows, figures, there are some interesting points to beéema
R, in which the coordination number for each pagtisbas 1. In Figs. 2 to 7, the behavior of models with saeneg and
four. We have shown how one can solve the bioatorial  different rows is similar.

990

for3<R<10. The results are shown in Figs. 2 to 8. In these
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Fig. 3. The same as Fig. 2, for the reduced heat cap8gifyC / Nk) .

]

Fig. 4. The reduced Helmholtz free energy.sX-A/ NkT), vs. j, for the 8= 05 (solid line), 8= 06 (dot line),
6=07 (dash line),6 = 0.8(dash-dot line) = 09 (dash-dot-dot line), angg=9 and 10.
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Fig. 6. The same as Fig. 4, for the reduced heat capacity.
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Fig. 7. The same as Fig. 4, for the reduced ent'Sgy(S/ Nk).
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Fig. 8. The inverse of critical temperatwe 4.
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2. In Figs. 2 and 5, we see that for eaghall the internal
energy curves pass through specific temperaturis. @n be
considered as a critical point [14]. Thus, the gh@ansition
can be predicted by our method.

3. In Figs. 3 and 6, we see that, around speg¢ificritical
temperature), the heat capacities have maximumesaland

when R goes to infinity (actual model), they can also go t

infinity (in fact, in this condition, the Onsagehase transition
can occur [16]). However, our model can only shaffude
phase transition.

4. For eacly, using the internal energy curves (such as Figs.

or 5), we can assign critical temperatures andguiem, we
can plot the inverse of critical temperature versusee Fig.
8). In these figures, we can see that whglincreases, the

critical temperature,T , decreases and goes to zero whe

61

Finally, it is obvious that the approach suggestedhis
work can be used for a three-dimensional latticeweler, it
must be added that, for these conditions, the tzlon of
combinatorial factor is a difficult task at presevitich_could
be taken up in future.
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